420,274 research outputs found

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Evolutionary multi-stage financial scenario tree generation

    Full text link
    Multi-stage financial decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future returns of the selected assets or asset categories. Various approaches towards an optimal generation of discrete-time, discrete-state approximations (represented as scenario trees) have been suggested in the literature. In this paper, a new evolutionary algorithm to create scenario trees for multi-stage financial optimization models will be presented. Numerical results and implementation details conclude the paper

    A Comparative Study on the Use of Classification Algorithms in Financial Forecasting

    Get PDF
    Financial forecasting is a vital area in computational finance, where several studies have taken place over the years. One way of viewing financial forecasting is as a classification problem, where the goal is to find a model that represents the predictive relationships between predictor attribute values and class attribute values. In this paper we present a comparative study between two bio-inspired classification algorithms, a genetic programming algorithm especially designed for financial forecasting, and an ant colony optimization one, which is designed for classification problems. In addition, we compare the above algorithms with two other state-of-the-art classification algorithms, namely C4.5 and RIPPER. Results show that the ant colony optimization classification algorithm is very successful, significantly outperforming all other algorithms in the given classification problems, which provides insights for improving the design of specific financial forecasting algorithms

    A note on evolutionary stochastic portfolio optimization and probabilistic constraints

    Full text link
    In this note, we extend an evolutionary stochastic portfolio optimization framework to include probabilistic constraints. Both the stochastic programming-based modeling environment as well as the evolutionary optimization environment are ideally suited for an integration of various types of probabilistic constraints. We show an approach on how to integrate these constraints. Numerical results using recent financial data substantiate the applicability of the presented approach

    Investment Optimization under Constraints

    Get PDF
    We analyze general stochastic optimization financial problems under constraints in a general framework, which includes financial models with some ``imperfection'', such as constrained portfolios, labor income, random endowment and large investor models. By using general optional decomposition under constraints in a multiplicative form, we first develop a dual formulation under minimal assumption modeled as in Pham and Mnif (2002), Long (2002). We then are able to prove an existence and uniqueness of an optimal solution to primal and to the corresponding dual problem. An optimal investment to the original problem then can be found by convex duality, similarly to the case considered by Kramkov and Schachermayer (1999).Stochastic Optimization, Investment Optimization, Duality Theory, Convex and State Constraints, Optional Decomposition

    Multistage Portfolio Optimization: A Duality Result in Conic Market Models

    Full text link
    We prove a general duality result for multi-stage portfolio optimization problems in markets with proportional transaction costs. The financial market is described by Kabanov's model of foreign exchange markets over a finite probability space and finite-horizon discrete time steps. This framework allows us to compare vector-valued portfolios under a partial ordering, so that our model does not require liquidation into some numeraire at terminal time. We embed the vector-valued portfolio problem into the set-optimization framework, and generate a problem dual to portfolio optimization. Using recent results in the development of set optimization, we then show that a strong duality relationship holds between the problems

    General Smooth Solutions to the HJB PDE: Applications to Finance

    Full text link
    We overcome a major obstacle in mathematical optimization. In so doing, we provide a smooth solution to the HJB PDE without assuming the differentiability of the value function. We apply our method to financial models
    corecore