
1

Investment Optimization under Constraints

Long Nguyen-Thanh

Warsaw School of Economics,

Department of Management and Finance

(e-mail: lnguyen@sgh.waw.pl or thanhlong@poczta.onet.pl)

This draft: January 2003

Abstract. We analyze general stochastic optimization financial problems under constraints in a
general framework, which includes financial models with some “imperfection”, such as constrained
portfolios, labor income, random endowment and large investor models. By using general optional
decomposition under constraints in a multiplicative form, we first develop a dual formulation under
minimal assumption modeled as in Pham and Mnif (2002) [Ph-M], Long (2002) [L02a]. We then are
able to prove an existence and uniqueness of an optimal solution to primal and to the corresponding
dual problem. An optimal investment to the original problem then can be found by convex duality,
similarly to the case considered by Kramkov and Schachermayer (1999) [K-Sch].

Key words: Stochastic Optimization, Investment Optimization, Duality Theory, Convex and
State Constraints, Optional Decomposition

JEL Classification: G11

Mathematics Subject Classification (1991): 93E20, 90A09, 90A10

1 Introduction

Basic problems of mathematical finance are the problems of pricing, hedging or optimizing some
portfolio choices, which could be formulated as the optimization problem of maximizing the ex-
pected value of some concave objective (eventually state-dependent) utility functions. The prob-
lems can be attacked by the stochastic optimal control methods as, for instance, in the papers
of Merton (1971) [M], Duffie, Flemming, Soner and Zariphopoulou (1997) [D-F-W-Z], or by a
modern, more powerful and elegant method: the duality approaches. The difference is that, while
the optimal control methods are wedded to the dynamic programming Hamilton-Jacobi-Bellman
equation and based on the requirement of Markov state processes, the duality techniques, rather
then rely on the Hamilton-Jacobi-Bellman equation, use the stochastic duality theory and permit
us to deal with more general and non-markovian processes. The key point in this method is the
duality characterizations of the set of wealth processes provided by the set of martingale measures
for state processes.

Duality approaches have been used with success in treating portfolio optimization problems for
incomplete financial markets in a continuous-time diffusion model such as in Karatzas, Lehoczky,
Shreve and Xu (1991) [K-L-S-X], or in a more general framework, where the asset prices are
semimartingales, as it is showed in series of papers of Kramkov and Schachermayer (1999 - 2001)
[K-Sch]. The further extension to the case of constraints on the proportion of portfolio choice
appears in Shreve and Xu (1992) [Sh-X], Cvitanic and Karatzas (1992) [Cv-Ka]. The extension to
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the case of constraints imposed on the amount addressed by Cuoco and Cvitanic (1998) [Cv-Cu],
Cuoco (1997) [Cu]. However, all the mentioned papers above dealt with the Itô processes model.

Recently, Pham and Mnif (2002) [Ph-M] generalized the financial framework and developed it
into a general structure that has an optional decomposition in an additive form. This framework
is universal enough to incorporate many financial models, such as with constrained portfolios,
random endowment and large investor, as well as reinsurance models.

In this paper, we study the general structure of optimization financial problems of an agent,
whose wealth process admits an optional decomposition in a multiplicative form. Like the model
proposed by Pham and Mnif (2002), our formulation is also sufficiently general to include as special
cases the problems with constrained proportion portfolios, random endowment and large investor,
as well as with the existence of labor income, which were considered in Cvitanic and Karatzas
(1992, 1993) [Cv-Ka], El Karoui and Quenez (1996) [E-Q], Cuoco and Cvitanic (1998) [Cv-Cu],
El Karoui and Jeanblanc-Piqué (1998) [E-J], Rogers (2001) [RG] and Klein and Rogers (2001)
[K-RG]. Using the general optional decomposition under constraints in a multiplicative form of
Föllmer and Kramkov [F-K], we provide the duality characterization of the state process in terms of
a set of suitable probability measures, which are associated to the convex constraints on the family
of wealth processes. We are then able to prove an existence and uniqueness of an optimal solution
to our primal problem. However, to ensure an existence to the dual problem, we need to enlarge
the set of abstract setting by considering the closure of this set with respect to the norm of L0(P).
With this setting, under minimal assumptions similar to those Pham and Mnif (2002) [Ph-M], we
are also able to prove an existence of an optimal solution to the dual problem. The solution to the
original problem then can be found by convex duality, similarly to the case considered by Kramkov
and Schachermayer (1999) [K-Sch], but with careful attention to the behavior of the additional
term arising from the convex and state space constraints.

The outline of the paper is organized as follows. Section 2 describes the general framework of
a financial model. In Section 3 we set up and analyze the properties of the dual set, which is the
set of equivalent local supermartingale measures for state processes. In Section 4, we formulate
the optimization problem and the so-called budget constraint. The existence and uniqueness of
an optimal solution to the original problem is given in Section 6, after analyzing the properties of
our abstract setting. In Section 7 we provide and analyze the duality theorem. Section 8 devotes
concluding remarks. For completeness, in Appendix we prove a stochastic control lemma needed
in the context of this paper, which was given without proof in Föllmer and Kramkov (1997) [F-K].

2 The Market Setting

Let (Ω, F , F, P) denote a filtered probability space with a filtration F = (Ft)0≤t≤T satisfying
the “usual” conditions, here T ∈ R+ is a fixed time horizon and we assume that F0 is trivial.
Except for processes which appear as integrand of stochastic integrals, all processes considered in
the sequel are assumed to be real-valued, to have right-continuous paths with left limits (càdlàg),
and to be adapted with respect to the given filtration; in particular they are all optional.

For the theory of stochastic integration we refer to Dellacherie and Mayer (1982) [De-Ma],
Protter (1990) [P] and Jacod and Shiryaev (1987) [J-S]. The stochastic integral of a predictable
process π with respect to a semimartingale X will be denoted by

∫
πdX or π • X. We denote

by L(X) the space of all predictable processes integrable with respect to X. The Émery distance
between two semimartingales X and Y is defined as:

D(X,Y ) = sup
|π|≤1

(∑
n≥1

2−nE[min(|(π • (X − Y )n)|, 1)]
)
,

where the supremum is taken over the set of all predictable processes π bounded by 1. The
corresponding topology is called the semimartingale topology.

Let R be a Rn-valued semimartingale in (Ω, F , P). We prescribe a convex subset Π of L(R)
containing the zero element and convex in the following sense: for any predictable process ζ ∈ [0, 1]
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and for all π1, π2 ∈ Π we have:
ζπ1 + (1− ζ)π2 ∈ Π.

We consider a family {Hπ : π ∈ Π} of adapted processes with finite variation, with initial value 0.
In the following, we shall denote by O the set of all nondecreasing adapted processes with initial
value 0 and introduce an ordering � on O indicating that A is not greater than B (A � B) if
(B −A) is a nondecreasing process. We shall assume the following concavity property:

Hζπ1+(1−ζ)π2
� ζ •Hπ1

+ (1− ζ) •Hπ2
, (1)

We then consider the following family:

X̃ =
{
π •R+Hπ

}
We shall make the following closure property assumption:

Standing Assumption 2.1 Under the condition (1), the set X̃ is closed for semimartingale topol-
ogy.

Given X̃0 ∈ X̃ , we define the set

X̃b =
{
X̃ − X̃0 : X̃ ∈ X̃ and X̃ − X̃0 is locally bounded from below

}
(2)

so that X̃b is locally bounded from below, closed for the semimartingale topology, null at 0 and
containing the constant process 0.

Remark 2.1 Under the relation (1), the family of semimartingales X̃ (or X̃b) clearly is a pre-
dictable convex set in the sense of [F-K], i.e. for Xi ∈ X̃ ( or X̃b) (i = 1, 2), and for any predictable
process ζ such that 0 ≤ ζ ≤ 1 we have:

ζ •X1 + (1− ζ) •X2 ∈ X̃ − O ( or X̃b −O) (3)

For x > 0, we denote by W̃(x) the family of nonnegative semimartingales defined as follows:

W̃(x) =
{
W̃ (x) = xE(X̃ − D̃); X̃ ∈ X̃ , and D̃ ∈ O

}
(4)

W̃b(x) =
{
W̃b(x) = xE(X̃b − D̃); X̃b ∈ X̃b, and D̃ ∈ O

}
(5)

where E(·) is the exponential semimartingale of Doléans-Dade. Clearly,

W̃(x) = xW̃(1) = {xW̃ : W̃ ∈ W̃(1)},

Now let us introduce the set P(X̃b) of all nonnegative local-martingales Z with Z0 = 1 such that
for any Xb ∈ X̃b, there exists a process A ∈ Op – the set of nondecreasing predictable processes
with initial values A0 = 0 – satisfying

Z(X̃b −A) is a P-local supermartingale for any X̃b ∈ X̃b. (6)

The next definition of the upper variation process is adopted from the one in Föllmer and
Kramkov (1997) [F-K].

Definition 2.1 The upper variation process of X̃b corresponding to Z ∈ P(X̃b), defined as the
element AX̃b(Z) in Op satisfying (6) and is minimal with respect to this property, i.e. such that
AX̃b(Z) � A for any A ∈ Op satisfying (6).
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In the context of this paper, we assume throughout that

Standing Assumption 2.2 The upper variation process AX̃b(Z) exists.

On the set P(X̃b), we define the set

P∗(X̃b) =
{
Z ∈ P(X̃b) : AX̃b(Z) is a continuous process with finite variation

}
,

and its subset

P∗(X̃b) =
{
Z ∈ P∗(X̃b) : Z is a positive and P-martingale

}
.

We can identify any Z ∈ P∗(X̃b) with a probability Q ∼ P, whose density process is Z =
(Zt)t∈[0,T ], Zt = E[dQ/dP|Ft].

In the remainder of this paper, we shall make the following standing assumptions

Standing Assumption 2.3 P∗(X̃b) 6= ∅

Let us introduce a positive process S0. In what follows, we assume that X̃0 can be chosen so
as:

Assumption 2.1 X̃0 is a finite variation process with continuous paths and null at 0.

Assumption 2.2

E
[

ZT

E(AX̃b(Z)T )E(X̃0
T )S0

T

]
<∞ ∀ Z ∈ P∗(X̃b)

Remark 2.2

1. In general, we shall choose X̃0 ≡ H0 corresponding to the element of X̃ for π = 0.

2. A sufficient condition for Assumption 2.2 is that E(AX̃b(Z)T )E(X̃0
T )S0

T is bounded away from
zero.

We are now interested on the family of state processes:

W(x) , {W = S0W̃ : W̃ ∈ W̃(x)}, (7)

=
{
W = S0

(
x+ W̃− • X̃ − W̃− • D̃

)
: X̃ ∈ X̃ , D̃ ∈ O

}
, (8)

It is clear that
W(x) = xW(1)

We suppose that the process W̃− • D̃ can be represented by the formula:∫ t

0

W̃s−dD̃s =
∫ t

0

c̃sds, ∀ t ∈ [0, T ]

In a financial context, W (x) ∈ W(x) can be interpreted as a wealth process with an initial
nonrandom endowment x of an economic agent, who is taking part in a financial market consisting
of n+ 1 assets: one bond and n stocks, and with finite horizon time T . We suppose that the bond
with positive price process S0 is chosen as a numéraire. In a sense of Föllmer and Kramkov (1997)
[F-K], R = (Ri)1≤i≤n is stated as the Rn-valued return process of n stocks, and the increasing
process D̃ appears in (8) as the accumulated proportion consumption process. In this framework,
an agent can decide at any time t ∈ [0, T ], what proportion πt = (πit)1≤i≤n of his wealth to invest
in the ith-stock. Of course these decisions can only be based on the current information Ft without
anticipation of the future. The set Π models constraints on proportion portfolios π. Process Hπ



5

allows to take into account the term arising from labor income and large investor. Process X̃0

describes the wage income (rate) throughout investment life-time. With X̃0 chosen in advance, we
state that the proportion income process X̃0 is spanned by the market assets and therefore is not
a source of new uncertainty.

We now define a consumption process:

Definition 2.2 A consumption process c(·) is an Ft-adapted nonnegative process, which is related
to the accumulated proportion process by the formula∫ t

0

csds =
∫ t

0

S0
sW̃s−dD̃s, 0 ≤ t ≤ T. (9)

Put Λt = t, then in the standard notation of the stochastic calculus for semimartingales (9)
can be written as follows:

c • Λ = S0W̃− • D̃,
and we have c ≡ S0c̃.

One of the families of examples we have in mind for applications is described below. We refer
the reader to Pham and Mnif (2002) and Pham (2002) for more explicitly examples.

Example (Cuoco and Liu (2000), Rogers (2001)).
This is an important example, generalizing a number of other papers in the subject: Cvitanic

and Karatzas (1992, 1993) [Cv-Ka], El Karoui, Peng and Quenez (1997) [E-Q], Cuoco and Cvitanic
(1998) [Cv-Cu], Rogers (2001) [RG], El Karoui and Jeanblanc-Piqué (1998) [E-J], for example. The
numéraire S0 and the wealth process W of the agent satisfies:

dWt = Wt

[
rtdt+ πt

(
σtdBt + (bt − rt1)dt

)
+ g(t, πt)dt+ etdt

]
− ctdt, (10)

W0 = x

dS0
t = rtS

0
t dt, S0

0 = 1 (11)

where πt ∈ Π, B is an n-dimensional Brownian motion, b, r, V ≡ σσT (the superscript T stands
for “transpose”), V −1, e are all bounded processes, and there is a uniform Lipschitz bound on g:
for some θ <∞,

|g(t, x, ω)− g(t, y, ω)| ≤ θ|x− y|
for all x, y, t and ω. In our model the agent receives an income with a proportional (eventually
stochastic) rate et per unit time.

The unconventional term in the dynamics (10) is the term involving g about which we assume:

• for x ∈ Rn, (t, w) 7→ g(t, x, ω) is an optional process;

• for each t ∈ [0, T ] and ω ∈ Ω, x 7→ g(t, x, ω) is concave and upper semicontinuous.

• g(t, 0, ω) = 0 for all t ∈ [0, T ] and ω ∈ Ω.

Suppose that ct = Dt
Wt

, and Dt is a nonnegative process. Now let W̃ , W
S0 , by Itô Lemma we

have:

dW̃t = W̃t

[
πt

(
σtdBt + (bt − rt1)dt

)
+ g(t, πt)dt−Dtdt+ etdt

]
In this case, we choose

X̃0
t = H0

t =
∫ t

0

esds

so that X̃b = π •R+Hπ, with

dRt = σtdBt + (bt − rt1)dt
dHπ

t = g(t, πt)dt
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By the martingale representation theorem for Brownian motion (see, e.g. Karatzas and Shreve
(1991)), any probability measure equivalent to P has a density process in the form:

Zυ ,
dBυ

dB
= E

(
−
∫
σTt V

−1
t (bt − rt1 + υ)dBt

)
where υ ∈M:

M ,
{
υ :
∫ T

0

|σTt V −1
t υ|2dt <∞, and E[ZυT ] = 1

}
Now by Girsanov’s Theorem, the Doob-Meyer decomposition of X̃b = π • R + Hπ ∈ X̃b under
P υ = ZυTP, υ ∈M, is:

dX̃bt = πtσtdB
υ
t + dAυ,πt

where Bυ is a n-dimensional Brownian motion under P υ and Aυ,π is the predictable compensator
under P υ:

dAυ,πt = (g(t, πt)− πtυ)dt

Now denote

g̃(t, υ) =
∫ t

0

sup
π∈Π

(
g(s, πs)− πsυ

)
ds

the convex conjugate of −g(t,−π) and let H̃ = {υ ∈ Rn : g̃(t, υ) <∞} its effective domain.
We deduce that P∗(X̃b) consists of all probability measures P υ, υ ∈M(H̃):

M(H̃) , {υ ∈M : υ ∈ H̃ and g̃(t, υ) is a continuous process with finite variation}

Moreover, the upper variation process is given by:

AX̃b(P υ)t =
∫ t

0

g̃(s, υ)ds

Since all coefficients are bounded, it is straightforward to verify that the model satisfies the
Standing Assumptions 2.2, 2.3, and Assumptions 2.1, 2.2. Moreover, the closure property of X̃
may also be proved in this model under a Liptschitz condition on function g and the invariance of
the Emery distance under translation, see Pham (2002).
Remark 2.3

1. In the paper of Cuoco and Cvitanic (1998) [Cv-Cu], they preassummed that g̃ is bounded on
its effective domain.

2. Recall that in our framework, the labor income is restricted to be a continuous process with
finite variation. Therefore our framework is not applicable to the general case considered
by El Karoui and Jeanblanc-Picqué, where the income process e is of the general Markovian
form det = µ(t, et)dt+ σ(t, et)dBt.

3 The Dual Setting

We define the family Y(y) of nonnegative semimartingales Y with Y0 = y and such that

Y(y) =
{
Y = y

Z

E(AX̃b(Z))E(X̃0)S0
: Z ∈ P∗(X̃b)

}
In the sequel, let us denote by Y+(y) ⊂ Y(y) the subset containing all positive Y ∈ Y(y). We

also suppose that any Z ∈ P∗(X̃b) can be written as Z = E(N), where N is some P-local martingale
null at 0. Since X̃0 and AX̃b(Z) are continuous processes of finite variation, by using Proposition



7

I.4.4.69 in Jacod and Shiryaev (1987) [J-S] we have [X̃0, Y ] = 0 and [AX̃b(Z) + X̃0, Y ] = 0 for any
semimartingale Y with Y0 = 0, therefore any Y ∈ Y(y) can be rewritten as:

Y = y
E(N −AX̃b(Z)− X̃0)

S0
(12)

Lemma 3.1 For all x > 0, y > 0, Y ∈ Y(y) and W ∈ A(x), the process (YW + Y c • Λ) is a
P-supermartingale.

Proof. Since

Y(y) = yY(1)
A(x) = xA(1)

for all x > 0, y > 0, then we may focus without loss of generality to the sets Y(1) and A(1).
Recall that for any semimartingale X null at 0 the Doléan-Dade exponential E(X) is a solution

of the following stochastic differential equation:

Z = 1 + Z− •X, Z0 = 1.

Moreover any solution of this equation coincides with E(X) on the set {(ω, t) : E(X)− 6= 0}.
Since (X̃0 + AX̃b(Z)) is a continuous process with finite variation, by Itô’s lemma and after

straightforward calculations, from (12) we get:

YW + Y c • Λ = 1 + Y−W− •
(
X̃ −AX̃b(Z)− X̃0 +N + [N, X̃]

)
(13)

By some algebras we also get

Z(X̃ − X̃0 −AX̃b(Z)) = 1 + Z− • (X̃ − X̃0 −AX̃b(Z)) + [Z, X̃] +

+ (X̃ − X̃0 −AX̃b(Z))− • Z

= 1 + Z− •
(
X̃ − X̃0 −AX̃b(Z) + [N, X̃]

)
+

+ (X̃ − X̃0 −AX̃b(Z))− • Z,

Since Z(X̃ − X̃0 −AX̃b(Z)) is a P-local supermartingale. The last term on the right-hand side of
the above equality is a P-local martingale, it follows then

Z− •
(
X̃ − X̃0 −AX̃b(Z) + [N, X̃]

)
is also a P-local supermartingale.

Moreover, since Z− is positive and predictable, we deduce that(
X̃ − X̃0 −AX̃b(Z) + [N, X̃]

)
(14)

is a P-local supermartingale. Since Y, W are nonnegative, by Remark VI.53.d in Dellacherie and
Mayer (1982) [De-Ma], we deduce from (14) that the processes on the both sides of (13) is a P-
local supermartingales. Furthermore, since Y ≥ 0, W ≥ 0, c • Λ ∈ O we have YW + Y c • Λ is
bounded from below. We then deduce by Fatou’s lemma that in fact, YW +Y c•Λ is a nonnegative
P-supermartingale. This completes the proof of the lemma. �

Remark 3.1 Assumption 2.2 implies that in fact Y(y) ⊂ L1(P).

Remark 3.2 From the last lemma, we deduce that, for any x > 0, the product YW is a P-
supermartingale for all W ∈ W(x).
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4 The Utility Function and the Optimization Problem

We now consider an economic agent, which has a utility function U : (0,∞) → R for wealth. At
first, we recall some classical definitions and properties of utility function.

Definition 4.1 A utility function U : (0,∞)×Ω→ R∪{−∞} is a uppersemicontinuous, concave,
continuously differentiable and nondecreasing on its (convex) domain. Moreover, it satisfies the
Inada-type conditions:

U ′(0+) , lim
x↓0

U ′(x) =∞ and U ′(x) , lim
x↑x

U ′(x) = 0 a.s. (15)

To alleviate notations, we omit the dependence in the state ω ∈ Ω and we write U(x). We assume
that inf {x > 0: U(x) > −∞} = 0 a.s. and sup {x > 0: U(x) > −∞} =∞.

We set:
x = sup {x > 0: U(x) > −∞}, (16)

so that the convex domain of U , dom U , {x > 0: U(x) > −∞} satisfies int(domU) = (0, x), a.s.
Notice that by the uppersemicontinuity of U , we have U(x) <∞ if x <∞.

We shall denote by I(.) the (continuous, strictly decreasing) inverse of the marginal utility
function U ′(.); this function maps (0, U ′(0)) onto (0, x), extended by continuity on (0,∞) by
setting I(y) = 0 for y > U ′(0).

We also introduce the (state-dependent) conjugate function of U

Ũ(y) , sup
x>0

[U(x)− xy], y > 0, (17)

It is well-known (see e.g. [R]) that this function is nonincreasing, convex differentiable on (0,∞)
with Ũ(y) = U(x), and satisfies

Ũ ′(y) = −I(y), y > 0, a.s., (18)

We also know that I(y) attains the supremum in (17), i.e.

Ũ(y) = U(I(y))− yI(y), y > 0, a.s. (19)

From Lemma 3.1 we deduce that the process

ZW

E(X̃0)E(AX̃b(Z))S0
+

Zc

E(X̃0)E(AX̃b(Z))S0
• Λ

is a P-supermartingale for any Z ∈ P∗(X̃b), since then

v(W, c) , E
[

ZTWT

E(AX̃b(Z)T )E(X̃0
T )S0

T

+
∫ T

0

Ztctdt

E(AX̃b(Z)t)E(X̃0
t )S0

t

]
≤ x, (20)

for all Z ∈ P∗(X̃b).
In a financial context, the formula (20) is stated as a constraint on the consumption plans.
For a given initial capital x > 0, the goal of the agent is to maximize the expected value

E[U(WT )]. The value function of this problem is denoted by:

u(x) = sup
W∈W(x)

E[U(WT )], x > 0 (21)

= sup
W∈W(x)

E[U(WT ∧W )] (22)

where
W = sup {W > 0: U(W ) > −∞},



9

Remark 4.1 When U is a deterministic function with W = ∞, the problem (21) is an utility
maximization problem from terminal state. However, U could be on the form U(x+ B), where B
is an FT -measurable nonnegative random variable, problem (21) becomes an utility-based pricing
problem, see Karatzas and Kou (1996). U also can be on the form:

U(x) =
{
−l(B − x) 0 ≤ x ≤ B,
−∞ x > B

where l is a convex nondecreasing function on R+. This is a shortfall risk minimization problem
in finance and insurance (cf. Pham and Mnif (2002)).

5 The Abstract Setting

Following the line of research of Kramkov and Schachermayer (1999) [K-Sch], we dualize the
optimization problem (21). First, we need to pass from the sets of processes W(x), Y(y) to the
sets C(x) and D0(y) of random variables dominated by the elements ofW(x) and Y(y) respectively.
The sets C(x) and D0(y) are defined as follows:

C(x) = {F ∈ L0
+(FT ) : F ≤WT , for some W ∈ W(x)} (23)

D0(y) = {g ∈ L0
+(FT ) : g ≤ YT , for some Y ∈ Y(y)} (24)

for any x > 0, y > 0.
We denote by D0

+(y) the subset of D0(y) consisting of all positive g.
Now let us denote the closure of D0(y) in L0(P) by D(y).

Remark 5.1 Since the set Y(y) ⊂ L1(P), then it is clear that D0(y) ⊂ L1(P), we then deduce
from Vitali’s Convergence Theorem 1 that D(y) ⊂ L1(P).

We observe that
C(x) = xC(1) ∀ x > 0 (25)

and the analogous relations for D(y), D0(y), W(x), W̃(x) with any x > 0, y > 0.
The duality relation between C(x) and D(y) (or equivalently between A∗T (x) and Y(y) is a

basic theme in mathematical finance (see, e.g. Delbaen and Scharchermayer (1994), Kramkov and
Schachermayer (1999) [D-Sch, K-Sch]... and the references therein)).

The next lemma presents the key polarity properties of “bipolar”-type, which the primal and
dual above quantities are related by.

Lemma 5.1 Suppose that F ∈ L0
+(FT ) and g ∈ D(1), then

F ∈ C(1) iff υ(F ) , sup
g∈D(1)

E[gF ] ≤ 1, (26)

Proof. First of all, notice that by Fatou’s lemma we have:

sup
g∈D(1)

E[gF ] = sup
g∈D0(1)

E[gF ] (27)

so all we need to confirm (26) is to check the statement for g ∈ D0(1).
The “if part” of the relation (26) is obvious, since YW is a P-supermartingale. What remains

now is to prove the converse assertion.
Consider an adapted, nonnegative FT -measurable random variable AT defined as

AT =
F

E(X̃0)TS0
T

1Vitali’s Convergence Theorem states that if fn is a sequence of uniformly P-integrable functions, fn → f a.e.,
and |f | <∞ a.e., then f ∈ L1(P) and fn → f in L1(P).
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Since Y(1) ⊂ D0(1) then for any Y ∈ Y(1), by (27) we should have:

sup
Y ∈Y(1)

E[YTF ] ≤ sup
g∈D(1)

E[gF ] ≤ 1 (28)

Notice that all random variables under consideration are nonnegative. Plugging (12) into (28), we
obtain

sup
Q∈P∗(X̃b)

EQ

[
AT

E(AX̃b(Q))T

]
≤ sup

Z∈P∗(X̃b)
E
[

ZTF

E(AX̃b(Z))TE(X̃0)TS0
T

]
= sup

Y ∈Y(1)

E[YTF ] ≤ 1 < ∞ (29)

where the first inequality follows from the inclusion P∗(X̃b) ⊂ P∗(X̃b). Then by the stochastic
control lemma A.1 there exists a càdlàg version of the nonnegative process:

W̃ b
t = ess sup

Q∈P∗(X̃b),T∈Tt
E(AX̃b(Q))tEQ

[
AT

E(AX̃b(Q))T

∣∣∣∣Ft], 0 ≤ t ≤ T (30)

Moreover, for any Q ∈ P∗(X̃b), the process W̃ b/E(AX̃b(Q)) is a Q-supermartingale. By the optional
decomposition under constraints (see Corollary 3.1 in Föllmer and Kramkov (1997) [F-K]), the
process W̃ b admits a decomposition:

W̃ b = W̃ b
0E(X̃b − D̃) = W̃ b

0 + W̃ b
− • X̃b − W̃ b

− • D̃ (31)

where X̃b ∈ X̃b defined as in (2), D̃ ∈ O, and

υ(A) , W̃0 = W̃ b
0 = sup

Q∈P∗(X̃b)
EQ

[
AT

E(AX̃b(Q))T

]
≤ 1, (32)

We now consider process

W̃ = E(X0)W̃ b = W̃0 + W̃− • X̃ − W̃− • D̃

where X̃ ∈ X̃ .
Let us consider process W = S0W̃ . Using the definition of X̃ , (31) we get

W = S0

(
W̃0E(X̃ − D̃)

)
= S0

(
W̃0 + W̃− • X̃ − W̃− • D̃

)
= S0

(
1 + W̃− • X̃ − (W̃− • D̃ + 1− W̃0)

)
where X̃ ∈ X̃ . It is obvious that W ∈ W(x), WT ≥ F . Moreover, since W̃0 ≤ 1, and W̃ is a
nonnegative process, D̃ is an increasing process, then W̃− • D̃ is a nonnegative increasing process.
As a result, we see that W belongs to the set W(1). Hence, W ∈ W(1) is a wealth process that
dominates F in a sense of (23). �

Characterization (32) in the last lemma means that υ(A) is the least initial state value, which
allows to dominate in the almost sure sense the FT random variable A by a state process. In
the financial context, υ(A) is usually called the superreplication cost of the European option AT .
Notice in particular that the expression of υ(A) does not depend on the choice of X̃0.

Lemma 5.2 For any x > 0, the set C(x) is convex, solid 2 and closed for the topology of conver-
gence in measure.

2A subset C ∈ L0
+(Ω, F , P) is called solid, if 0 � h � f and f ∈ C implies that h ∈ C.
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Proof. Note that the solidity of C(x) is rather obvious. It remains to prove its convexity.
Let S0W̃ 1 and S0W̃ 2 are two pair of processes in W(x). Taking any ζ1 = 1 − ζ2 ∈ [0, 1] and

defining the convex combinations

W̃ ∗ = ζ1W̃ 1 + ζ2W̃ 2

c̃∗ = ζ1c̃1 + ζ2c̃2

By the predictable convexity property on the set X̃ and the associativity of the stochastic integral
(see, e.g. Theorem 19 in Protter (1990) [P]), we find immediately that:

W̃ ∗ = x+ (ζ1W̃ 1
− • X̃1 + ζ2W̃ 2

− • X̃2)− c̃∗ • Λ

= x+ W̃ ∗− •
(
ζ1W̃ 1

−

W̃ ∗−
• X̃1 +

ζ2W̃ 2
−

W̃ ∗−
• X̃2

)
− c̃∗ • Λ

= x+ W̃ ∗− •X − (c̃∗ • Λ + W̃ ∗− •D)

� Ŵ , x+ W̃ ∗− •X − W̃ ∗− •D

with X ∈ X̃ , D ∈ O. Clearly Ŵ belongs to the set W̃(x) (corresponding to X). By the definition
of C(x), the convex combination S0W̃ ∗ is also in C(x), hence C(x) is convex.

Now let (Fn)n∈N be a sequence in C(x) converging to F ∈ L0
+(FT ) a.s. We will use lemma 5.1

to prove that F belong to the sets C(x).
Since all g ∈ D0(y) are dominated by Y ∈ Y(y) and all processes under consideration are

nonnegative, by Fatou’s lemma and by (27), we have:

sup
g∈D(1)

E[gF ] ≤ sup
Y ∈Y(1)

E[YTF ]

= sup
Z∈P∗(X̃b)

E
[

ZTF

E(AX̃b(Z)T )E(X̃0
T )S0

T

]
≤ sup

g∈D(1)

lim inf
n→∞

E
[

ZTF
n

E(AX̃b(Z)T )E(X̃0
T )S0

T

]
≤ xy.

This proves the closeness property of C(x) and completes the proof of the lemma. �

Remark 5.2 If we let the initial capital value in the market setting also change, then we shall
have:

〈ζ, C(x1)〉 ⊕ 〈(1− ζ), C(x2)〉 ⊂ C(ζx1 + (1− ζ)x2)

i.e.,
〈ζ, (Fx1 , fx1)〉+ 〈(1− ζ), (Fx2 , fx2)〉 ∈ C(ζx1 + (1− ζ)x2)

where (Fxi , fxi) ∈ C(xi), i = 1, 2.

Lemma 5.3 For any y > 0, the set D(y) is convex, solid and closed with respect to the topology
of convergence in measure.

Proof. First note that the closeness of D(y) follows immediately from its definition and the solidity
of D(y) is rather obvious. We now prove the remaining assertion.

Since 0 already belongs to the set D(y) and the convexity is preserved under weak convergence
so all we need to verify the convexity for g ∈ D0

+(y).
We first show that D0

+(y) is a convex set for all elements Y ∈ Y+(y), then the convexity of the
set D0

+(y) follows from the the solidity property of D0
+(y).
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Let Y 1 and Y 2 are processes in Y+(y). By the definition of Y+(y) and from (12), we shall have:

Y 1 = y
Z1

E(AX̃b(Z1))E(X̃0)S0
= y

E(N1)

E(AX̃b(Z1))E(X̃0)S0

Y 2 = y
Z2

E(AX̃b(Z2))E(X̃0)S0
= y

E(N2)

E(AX̃b(Z2))E(X̃0)S0

where Zi = E(N i) ∈ P∗(X̃b). Taking any ζ1 = 1−ζ2 ∈ (0, 1) and defining the convex combinations

Ŷ = ζ1Y 1 + ζ2Y 2 (33)

Notice that Ŷ is strictly positive. Let us fix some X̃b ∈ X̃b, and define a process A ∈ Op and a
P-local martingale N as follows:

A =
ζ1Y 1
−

Ŷ−
•AX̃b(Z1) +

ζ2Y 2
−

Ŷ−
•AX̃b(Z2) (34)

N =
ζ1Y 1
−

Ŷ−
•N1 +

ζ2Y 2
−

Ŷ−
•N2 (35)

We now check whether Ẑ , E(N) belongs to the set P∗(X̃b).
We shall show that Ẑ(X̃b − A) is a P-local supermartingale. Since AX̃b(Zi) are continuous

processes with finite variation, we deduce from I.4.34 c, and I.4.36 in Jacod and Shirayev (1987)
[J-S] that A is also a continuous process with finite variation. First, we prove that

ζ1Z1

E(AX̃b(Z1))
+

ζ2Z2

E(AX̃b(Z2))
=

Ẑ

E(A)
, Ŷ0 (36)

For convenience, denote Y i0 , Y
iS0E(X̃0). Hence we have:

Y i0 = E(N i −AX̃b(Zi)) = 1 + Y i0 • (N i −AX̃b(Zi)), i = 1, 2

Therefore,

Ŷ0 = E(N̂ −AX̃b(Ẑ)) = 1 + Ŷ0 • (N̂ −AX̃b(Ẑ))

= 1 + ζ1Y 1
0 • (N1 −AX̃b(Z1)) + ζ2Y 2

0 • (N1 −AX̃b(Z1))
= ζ1Y 1

0 + ζ2Y 2
0

and we get (36).
Recall the exponential semimartingales of Doléans-Dade have the following properties (see, e.g.

Kallsen and Shirayev (2002) [K-Sh])

E(X) = 1 + E(X)− •X

X = X0 +
1

E(X)−
• E(X)

From (35) and using the properties of the Doléans-Dade exponential semimartingales, we deduce
that:

Ẑ =
ζ1Y 1
−Ẑ−

Ŷ−Z1
−
• Z1 +

ζ2Y 2
−Ẑ−

Ŷ−Z2
−
• Z2 (37)

For convenience, we denote

ζ
1
,

ζ1Y 1Ẑ

Ŷ Z1

ζ
2
,

ζ2Y 2Ẑ

Ŷ Z2
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From (37) we have

[Ẑ, X̃b −A] = ζ1 • [Z1, X̃b −AX̃b(Z1)] + ζ2 • [Z2, X̃b −AX̃b(Z2)] +

+ ζ1 • [Z1, AX̃b(Z1)] + ζ2 • [Z2, AX̃b(Z2)]− [Ẑ, A] (38)

Recall that we have:

Zi(X̃b −AX̃b(Zi)) = (X̃b −AX̃b(Zi))− • Zi + Zi− • (X̃b −AX̃b(Zi)) +

+ [Zi, X̃b −AX̃b(Zi)]

X̃b −A =
ζ1Y 1
−

Ŷ−
• (X̃b −AX̃b(Z1)) +

ζ2Y 2
−

Ŷ−
• (X̃b −AX̃b(Z2))

Using Ito’s lemma and after some straightforward calculations we obtain:

Ẑ(X̃b −A) = (X̃b −A)− • Ẑ + Ẑ− • (X̃b −A) + [Ẑ, X̃b −A]

= (X̃b −A)− • Ẑ + ζ
1

−Z
1
− • (X̃b −AX̃b(Z1))−

− ζ
1

−(X̃b −AX̃b(Z1))− • Z1 +

+ ζ
2

−Z
2
− • (X̃b −AX̃b(Z2))−

− ζ
2

−(X̃b −AX̃b(Z2))− • Z2 + ζ
1

− • [Z1, AX̃b(Z1)] +

+ ζ
2

− • [Z2, AX̃b(Z2)]− [Ẑ, A] (39)

By the definition of P∗(X̃b) then we have Zi(X̃b − AX̃b(Zi)), i = 1, 2 is a P-local supermartin-
gale. Moreover, since Zi, Ẑ are P-local supermartingale, AX̃b(Zi) and A are predictable processes
with finite variation, then Theorem VII.36 in Dellacherie and Mayer (1982) [De-Ma] implies that
[Zi, AX̃b(Zi)] and [Ẑ, A] are P-local martingale. Therefore (39) imples that Ẑ(X̃b−A) is a P-local
supermartingale.

We conclude that Ẑ belongs to the set P∗(X̃b) with the uppervariation process AX̃b(Ẑ), which
is continuous and satisfies

AX̃b(Ẑ) � A
Since then, we have:

Ŷ = y

(
ζ1Z1

E(AX̃b(Z1))E(X̃0)S0
+

ζ2Z2

E(AX̃b(Z2))E(X̃0)S0

)
= y

Ẑ

E(A)E(X̃0)S0

� Y , y
Ẑ

E(AX̃b(Ẑ))E(X̃0)S0
∈ Y(y) ⊂ D0(y)

As a result, we have proved the convexity property of D(y). This completes the proof of the lemma.
�

6 The Primal Problem - Existence and Uniqueness

We next formulate a lemma in the line of the work of Pham and Mnif (2002) [Ph-M]. We refer the
reader to their work for the proof.

Lemma 6.1
u(x) = sup

F∈C(x)

E[U(F )] = sup
F∈C(x)

E[U(F ∧W )] x > 0 (40)

(i) If W ∗ ∈ W(x) solves (21), then F ≡W ∗T ∈ C(x) solves (40),
(ii) Conversely, if F ∗ ∈ C(x) solves (40), then W ∈ C(x), such that F ∗ ≤WT , solves (21).
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In this section, we focus on the existence and uniqueness of a solution to the primal optimization
problem (21) and (40).

To exclude the trivial case, we shall assume throughout the paper

Standing Assumption 6.1

u(x) <∞, for some x > 0. (41)

We make the following assumption for utility functions.

Assumption 6.1 We have either
(i) U is bounded, or
(ii) there exist λ ∈ (0, 1), Y ∈ Y(1) such that

1
Y T
∈ Lp(P), for some p >

λ

1− λ
, (42)

x0 ∈ dom (U) satisfying U(x0) ∈ Lp(P), where p = p
λ(1+p) and Υ ∈ Lp(P), k ∈ L∞(P) such that

U+(x) ≤ kxλ + Υ ∀ x ∈ dom (U) ∩ [x0,∞) (43)

Remark 6.1 The above assumptions are very similar to Assumption 4.1 in Pham and Mnif
(2002). However, there is a minor error in Pham and Mnif (2002). In the context of their
paper, these authors should make the assumption S0

T

ZT
∈ Lp(P) in order to get the desired result.

Lemma 6.2 Under Assumption 6.1, the family
{
U+(F ), F ∈ C(x)

}
is uniformly P-integrable.

Proof. The arguments are similar to the proof in Lemma 4.3 in Pham and Mnif (2002), we include
it for completeness.

If the function U is bounded, then this assertion is trivial.
Otherwise, for any F ∈ C(x), there exists a wealth process W ∈ W(x) dominating F in a sense

of (23).

E[Fλp] ≤ (E[Y TF ])λp
(

E
[
Y
− λp

1−λp
T

])1−λp

≤
(

E[Y TF ]
)λp(

E[Y
−p
T ]
)1−λp

≤ xλp
(

E[Y
−p
T ]
)1−λp

< ∞ (44)

where the first inequality is followed by applying Hölder’s inequality, the second and third inequality
follow from Lemma 5.1 and (42).

Since U is increasing on its domains, there exists a positive constant such that for all F ∈ C(x):

E[U+(F )p] = E[U+(F )p1F≤x0 ] + E[U+(F )+1F>x0 ]

≤ E[U+(x0)p] + (const) (E[(kHλ)p] + E[Υp]
)

By (44) and assumptions on k and Υ, this proves the Lp(P)-boundedness of the family{
U+(F )p, F ∈ C(x)

}
and therefore its uniform integrability under P. �
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Theorem 6.1 Under Assumption 6.1,
(i) the optimal solution F ∗ ∈ C(x) to problem (40) exits for all x > 0, and W is a solution to

(40) for x ≥ υ(W ). Moreover, it is unique if U is strictly concave on its domains,
(ii) the function u is nondecreasing and concave, on (0,∞) and equal to E[U(W ) on (υ(W ).

Moreover if U(W ) < U(W ), then u is strictly increasing on [0, υ(W ] and υ(F ∗) = x for any
x ∈ [0, υ(W ], and if U is strictly concave on its domains, then u is strictly concave on [0, υ(W )].

Since the proof is straightforward, let us omit it and refer the reader to paper of Pham and
Mnif (2002) for discussion.

7 The Dual Problem

The main result below proves that under certain conditions, the value of the primal problem,
expressed as a supremum over some set, is equal to the value of the dual problem, expressed as
an infimum over some other set. The result presented here adopts the argument of Kramkov and
Schachermayer (1999) [K-Sch].

We now consider the following optimization problem:

ũ(y) = inf
g∈D(y)

J̃(y; g) , inf
g∈D(y)

E[Ũ(g)] (45)

= inf
g∈D(1)

E[Ũ(yg)] (46)

where
Ũ(y) = sup

x>0
[U(x)− xy], y > 0

In order to proceed, we shall need the following standing assumption

Standing Assumption 7.1

ũ(y) <∞, for some y > 0 (47)

Assumption 7.1 (i) There exists an x0 ∈ dom (U) with x0
T

S0
T
∈ L∞(P) and U(x0

T ) ∈ L1(P), λ ∈
(0, 1), Υ ∈ L1(P), such that:

xU ′(x) ≤ λU(x) + Υ,

P–a.s., for all x ∈ dom (U)) ∩ [x0,∞),
(ii) ∀ ζ > 0,∃ δζ real-valued in [0, ζ], such that

δζE(X̃0
T )E(AX̃b(Z)T )S0

T ∈ dom (U)

U(δζE(X̃0
T )E(AX̃b(Z)T )S0

T ) ∈ L1(P), ∀ Z ∈ P∗(X̃b)

Assumption 7.1 (i) is equivalent to the asymptotic elasticity condition of Kramkov and
Scharchermayer (1999) [K-Sch], we refer the reader to Remark 5.1 in Pham and Mnif [Ph-M]
for discussion. Since then it is a sufficient condition for Standing Assumption 7.1 (see Note 2 in
Kramkov and Scharchermayer (2001) [K-Sch]).

Theorem 7.1 If Assumption 6.1 and Assumption 7.1 hold true, then in addition to the assertions
in Theorem 6.1 we have:

(i) For any y > 0, the optimal solution yg∗ ∈ D(y) to the problem (45) exists. Moreover, the
differentiability of U implies the strict convexity of Ũ , which in turn implies uniqueness of this
solution.

(ii) The value functions u and ũ are conjugate,

ũ(y) = sup
x>0

[u(x)− xy], y > 0, (48)

u(x) = inf
y>0

[ũ(y) + xy], x > 0, (49)
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and there exists an optimal solution y∗ to the problem (49) for all x ∈ (0, υ(W ). The function u
is continuously differentiable on (0,∞) and the function ũ is strictly convex on (ũ <∞).

(iii) If y∗g∗ ∈ D(y∗), is the optimal solution to the problem ũ(y∗) in (45), then the solution to
the optimization problem (40) is given by:

F ∗ = I(y∗g∗) (50)

and the solution to (21) W ∗ satisfies:
E[g∗W ∗T ] = x (51)

for all t ∈ [0, T ]. Moreover, if g∗ belongs to D0(1) then we also have:

E[Y ∗TW
∗
T ] = x (52)

for any Y ∗ = Z∗

E(X̃0)E(AX̃b (Z∗))S0
∈ Y(1) that dominates g∗ in a sense of (24). If in addition,

Z∗ ∈ P∗(X̃b) then the wealth process W ∗ can be determined as follows:

W ∗t = S0
t

(
E(X̃0

t )E(AX̃b(Q∗)t)EQ∗
[

A∗T

E(AX̃b(Q∗)T )

∣∣∣∣Ft]) (53)

where A∗T defined as

A∗T =
F ∗

E(X̃0)TS0
T

The proof of Theorems 7.1 is broken into several lemmas. Some lemmas are slightly modified
results of that of Kramkov and Schachermayer (1999) [K-Sch], which we include for completeness.

Lemma 7.1 Under Assumption 7.1, the family
{
Ũ−(g); g ∈ D(y)

}
is uniformly integrable.

Proof. We suppose that Ũ(∞) < 0, otherwise there is nothing to prove, and let
φ : (−Ũ(0),−Ũ(∞))→ (0,∞) denote the convex increasing inverse of −Ũ , and and by the Remark
5.1 we shall have

E[φ(Ũ−(g))] ≤ E[φ(−Ũ(g))] + φ(0)
= E[g] + φ(0)
< ∞,

By (18) and l’Hospital rule,

lim
x→−Ũ(∞)

φ(x)
x

= lim
g→∞

g

−Ũ(g)
= lim
g→∞

1
I(g)

=∞

where I(g) , −Ũ(g). By applying the de la Vallée-Poussin theorem, the sequence (Ũ−(gn))n≥1 is
uniformly integrable follows from noting that (gn)n≥1 remains finite in L1(P) (see Remark 5.1).
�

The next corollary is a useful result from the last lemma.

Corollary 7.1 For any y > 0, there is some g∗ ∈ D(y) for which the infimum defining in (45) is
attained. Differentiability of U implies strict convexity of Ũ , which in turn implies uniqueness of
the minimizing g∗.

Proof. We take a minimizing sequence gn ∈ D(y) such that:

ũ(y) ≤ E
[
Ũ(gn)

]
≤ ũ(y) + n−1. (54)
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By lemma A.1.1 of Delbaen and Schachermayer [D-Sch], there exists a sequence gn1 ∈
conv(gn, gn+1, · · · )n≥1, that are P–almost surely convergent to limit g∗. We may suppose that
g∗ still satisfies the inequality (54). Since D(y) is convex and closed, then (gn)n≥1 ∈ D(y) con-
verges almost surely to g∗ ∈ D(y). By lemma 7.1 and by applying Fatou’s lemma to the sequence
(Ũ+(gn1 ))n≥1, and to the right-hand side of the inequality (54) we obtain:

ũ(y) ≥ lim inf
n→∞

E[Ũ(gn1 ] ≥ E[Ũ(g∗)] ≥ ũ(y) (55)

The uniqueness assertion is immediated by general duality results (see Theorem V.26.3 in Rock-
afellar (1970) [R]). �

Let us fix n ∈ N and introduce the sets:

Bn(x) , {C(x) ∈ L∞+ (P) : 0 ≤ F ≤ n ∀ t ∈ [0, T ]} (56)

then Bn(x) is convex and compact in the topology σ(L∞, L1).

Lemma 7.2 Under the conditions stated in Theorem 7.1, the functions u and ũ are dual:

ũ(y) = sup
x>0

[u(x)− xy], y > 0,

u(x) = inf
y>0

[ũ(y) + xy], x > 0,

The function u is continuously differentiable on (0,∞) and the function ũ is strictly convex on
(ũ <∞).

Proof. Since D(y) is a closed convex subset of L1(P). By the Minimax Theorem (see, e.g., Aubin
and Ekeland (1984) [A-E], or Rogers (2001) [RG]) we then have:

sup
F∈Bn(x)

inf
g∈D(y)

E[U(F )− gF ] = inf
g∈D(y)

sup
F∈Bn(x)

E[U(F )− gF
]

It follows that:

lim
n→∞

sup
F∈Bn(x)

inf
g∈D(y)

E[U(F )− gF ] = sup
x>0

sup
F∈C(x)

inf
g∈D(y)

(
E[U(F )]−E[gF ]

)
= sup

x>0
[u(x)− xy]

= ũ(y) (57)

where the last equality follows from Lemma 5.1.
Now let

Ũn(g) , sup
0≤F≤n

[U(F )− Fg]

and ũn(y) , infg∈D(y) E[Ũn(g)]. From (57), it is clear that the proof will be complete provided we
can prove that

lim
n→∞

ũn(y) = ũ(y), y > 0.

Evidently, we have ũn ≤ ũ. We now proceed to prove the inverse inequality.
Suppose that gn ∈ D(y) are such that

ũn(y) ≤ E[Ũn(gn)] ≤ ũn(y) + n−1.

Since D(y) is a closed and convex set, then by using again Lemma A.1.1 of Delbaen and Schacher-
mayer in [D-Sch], we can find a sequence gn1 ∈ conv(gn, gn+1, · · · )n≥1 in D(y) which converges
almost surely to a variable g ∈ D(y). From the properties of utility functions, it is immediate that
Ũn(g) = Ũ(g) for U ′(n) ≤ g. Notice that U ′1 and U ′ are decreasing functions, we deduce from
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Lemma 7.1 that the sequence (Ũn)−(gn1 )n≥1 is uniformly integrable. Similarly as in the proof of
the previous lemma, the convexity of Ũn and Fatou’s lemma now imply:

ũn(y) ≥ lim
n→∞

E[Ũn(gn)] ≥ lim inf
n→∞

E[Ũn(gn1 ] ≥ E[Ũ(g)] ≥ ũ(y),

as required.
Since function U is differentiable, the conjugate function Ũ are strictly convex by general duality

results (see, Theorem V.26.3 in Rockafellar (1970) [R]). Using the strict convexity of Ũ we can
easily deduce that ũ is also a strict convex function on (ũ < ∞). Therefore, the continuously
differentiability of the dual function u of ũ follows by using again Theorem V.26.3 in Rockafellar
(1970) [R]. �

We prove the following results for later use.

Lemma 7.3 Under Assumption 7.1 (ii), then for all x ∈ (0, υ(W )), there exists an optimal solu-
tion y∗ > 0 to the optimization problem (49).

Proof. Fix any x > 0. Under assumption 7.1 (ii), there exists δx real-valued in [0, x] such that:

δxE(X̃0
T )E(AX̃b(Z)T )S0

T ∈ dom (U) ∀ Z ∈ P∗(X̃b)

U(δxE(X̃0
T )E(AX̃b(Z)T )S0

T ) ∈ L1(P), ∀ Z ∈ P∗(X̃b)

By definitions of Ũ1, Ũ , and from (12), we have

Ũ(yg) ≥ U(δxE(X̃0
T )E(AX̃b(Z)T )S0

T )− yδxZT , ∀ y > 0,∀ g ∈ D(1)

By definition of J̃(y, g) in (45) and since E[ZT ] ≤ 1 we get

J̃(y; g) ≥ U(δxE(X̃0
T )E(AX̃b(Z)T )S0

T )− yδx,

for all y > 0 and g ∈ D(1).
Taking infimum in this last inequality over g ∈ D(1) implies:

ũ(y) + xy ≥ U(δxE(X̃0
T )E(AX̃b(Z)T )S0

T ) + y(x− δx),

for all y > 0 and g ∈ D(1).
Since

U(δxE(X̃0
T )E(AX̃b(Z)T )S0

T ) > −∞
and (x−δx) ≥ 0, we deduce that y → ũ(y)+xy is a proper convex function. Moreover, ũ(y)+xy →
∞ as y →∞, this shows that the infimum ũ(y) + xy is attained in y∗ ∈ R+.

To prove that y∗ > 0, we assume the contrary, then:

ũ(0) = inf
g∈D(1)

J̃(0, g) ≤ E[Ũ(yg)] + xy, ∀ y > 0. (58)

By the properties of utility functions, we have:

Ũ(yg) + ygI(yg) ≤ ũ(0) (59)

Plugging (59) into (58) and dividing by y > 0, we obtain for all y > 0, g ∈ D(1):

E[gI(yg)] ≤ x

By the properties of utility functions (see Section 4) and our model setting, as y → 0 and
I(yg)→W . We get by Fatou’s lemma

E[gW ] ≤ x, ∀ g ∈ D(1)

This implies υ(W ) ≤ x the contradiction since x < υ(W ) and this completes the proof of the
lemma. �

The following Lemma is taken from Pham and Mnif (2002).
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Lemma 7.4 Under Assumption 7.1 (i), there exist α ∈ (0, 1), c > 0 and Γ ∈ L1(P), such that:

gI(αg) ≤ c
[
Ũ(g)1g≤U ′(x0) + U(x0)1g>U ′(x0)

]
+ Γ

P–a.s. for all g > 0.

Proof. Take α ∈ (λ, 1) and consider the case g ≤ U ′(x0). By assumption 7.1 (i), the definitions
and properties of Ũ (see Section 4 (17), (18) and (19)), we have:

αI(αg) = I(αg)U ′(I(αg))
≤ λU(I(αg)) + Υ

≤ λ(Ũ(g) + gI(αg)) + Υ

Therefore we obtain:
gI(αg) ≤ λ

α− λ
Ũ(g) +

Υ
α− λ

(60)

for all 0 < g ≤ U(x0
t , .).

In the case U(x0) < g, since I are strictly decreasing, by using (60) we get

gI(αg) ≤ gI(αU ′(x0))

≤ cŨ(U ′(x0))) + Γ
≤ cU(x0) + Γ (61)

with c = λ
α−λ and Γ = Υ

α−λ , where the last inequality comes from the following properties of utility
function:

Ũ(U ′(x)) = U(I(U ′(x)))− U ′(x)I(U ′(x))
≤ U(I(U ′(x)))
= U(x)

From (60) and (61) we get the desired result. �

Lemma 7.5 Under Assumption 7.1 (i), suppose that the optimal solution to the problem (45) for
some y > 0 be yg∗ ∈ D(y) then ũ(y) is differentiable in y and we have:

ũ′(y) = E[−g∗I(yg∗)]. (62)

Moreover, if in addition g∗ ∈ D0(1) then

ũ′(y) = E[−Y ∗T I(yg∗)] (63)

for any Y ∗ ∈ Y(1) that dominates g∗ as in (24).

Proof. From Corollary 7.1 we know that, under Assumption 7.1 the optimal solution to the
problem (45) exists. Now fix any δ sufficiently small, we will show that

lim inf
δ↓0

− ũ(y + δ)− ũ(y)
δ

≥ E[g∗I(yg∗)] (64)

and

lim sup
δ↑0

− ũ(y + δ)− ũ(y)
δ

≤ E[g∗I(yg∗)] (65)

Let δ > 0. By using successively the definition of ũ(y) in (40), the convexity of Ũ1, Ũ and its
properties (see Section 4: equation (18)) we obtain:

− ũ(y + δ)− ũ(y)
δ

≥ E
[
Ũ((y + δ)g∗)− Ũ(yg∗)

−δ

]
≥ E[g∗I((y + δ)g∗)]
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We then deduce by monotone convergence theorem:

lim inf
δ↓0

− ũ(y + δ)− ũ(y)
δ

≥ E[g∗I(yg∗)] (66)

By the same arguments in the case δ < 0, with y + δ > 0, we obtain:

− ũ(y + δ)− ũ(y)
δ

≤ E[g∗I((y + δ)g∗)] (67)

Under Assumption 7.1 (i) and by lemma 7.4, we have for δ < 0 sufficiently small:

0 ≤ g∗I((y + δ)g∗) ≤ Γ + c

[
Ũ(yg∗)1yg∗≤U ′(x0) + U(x0)1yg∗>U ′(x0)

]
(68)

We first show that the right-hand side in (68) is integrable.
Since ũ(y) <∞, we already have:

E[Ũ(yg∗)] <∞ (69)

By definition of Ũ we have:
Ũ(yg∗) ≥ U(x0)− yx0g∗ (70)

The right-hand side of the (70) is integrable with respect to P by Assumption 7.1 (i), and Remark
5.1(ii), hence

E[Ũ(yg∗)] > −∞ (71)

By (69), (71) and Assumption 7.1 (i) we deduce that the right-hand side in (68) is integrable.
Therefore we can apply the dominated convergence theorem to (67) and obtain:

lim sup
δ↑0

− ũ(y + δ)− ũ(y)
δ

≤ E[g∗I(yg∗)] (72)

From (66), (72) and the convexity of ũ(y) we get:

−ũ′(y) = E[g∗I(yg∗)] (73)

Now suppose that g∗ ∈ D0(1). Since there exists a process Y ∗ ∈ Y(1) such that g∗ ≤ Y ∗T , we then
have:

−ũ′(y) ≤ E[Y ∗T I(yg∗)] (74)

To prove the converse inequality, we take an arbitrary element g ∈ D(1), let δ ∈ (0, 1) and consider
the process:

gδ = (1− δ)g∗ + δg

which also belongs to the set D(1). Notice also that limδ→0 g
δ = g∗. Since yg∗ solves ũ(y), then

we have:
E[Ũ(yg∗)] ≤ E[Ũ(ygδ)] (75)

Recall that for any convex function Ũ

Ũ(x) ≥ Ũ(y) + (x− y)Ũ ′(y),

Then by the convexity of Ũ , we have:

Ũ(yg∗) ≥ Ũ(ygδ) + (yg∗ − ygδ)Ũ ′(ygδ)
≥ Ũ(ygδ) + δy(g − g∗)I(ygδ) (76)

Plugging (76) to (75) and dividing by δ, we obtain:

E[yg∗I(ygδT )] ≥ E[ygI(ygδT )] (77)
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Since gδ ≥ (1− δ)g∗, then by Lemma 7.4 we have:

0 ≤ E[yg∗I(ygδT )
]
≤ c
[
Ũ(yg∗)1yg∗≤U ′(x0) + U(x0)1yg∗>U ′(x0)

]
+ Γ

for some c > 0 and Γ ∈ L1(P). By the same arguments as in (68), we apply the dominated
convergence theorem to the left-hand side of (77), Fatou’s lemma to the right-hand side and using
(73) we get:

−ũ′(y) ≥ E[gI(yg∗)], ∀ g ∈ D(1) (78)
≥ E[Y ∗T I(yg∗)] (79)

where the last inequality follows from the fact that Y ∗T belongs to D(1).
From (74) and (79) we get the desired result. �
We now turn to proof of Theorem 7.1.

Proof of Theorem 7.1
Lemma 7.1, 7.2, 7.3 and corollary 7.1 already verified assertion (i) and (ii) of Theorem 7.1. Now
we will show the validity of the remaining assertion.

Suppose that y∗ is an optimal solution to problem (49), its existence follows from Lemma 7.3.
We deduce from Corollary 7.1 that there exists an optimal solution y∗g∗, with g∗ ∈ D(1), to a
problem ũ(y∗) in (45). Moreover, as a result of the last lemma, ũ is differentiable at y∗ and we
shall have:

−ũ′(y∗) = E[g∗I(y∗g∗)] = x (80)

Let us define F ∗ , I(y∗g∗). We will show that F ∗ is a unique solution to the optimization problem
(40).

From (78), Lemma 5.1 and (80) we deduce that F ∗ belong to the set C(−ũ′(y∗)) ≡ C(x).
Now, for an arbitrary pair F ∈ C(x) we have:

U(F ) ≤ Ũ(y∗g∗) + y∗g∗F

≤ U(I(y∗g∗) + y∗g∗F − y∗g∗I(y∗g∗)

≤ U(F ∗) + (y∗g∗F − y∗g∗F ∗
)

where the second inequality follows from the definition of Ũ .
Taking expectation, we obtain:

E[U(F )] ≤ E[U(F ∗)] + y∗E[g∗F − x]
≤ E[U(F ∗)]

The last inequality follows from the property (26) of F ∈ C(x).
This proves the optimality of F ∗, since F is an arbitrary element of C(x).

Now let W ∗ ∈ W(x) be a element that dominates F ∗ in a sense of (23). By (80) and (26) we
have:

x = E[g∗F ∗] ≤ E[g∗WT ] ≤ x
and this proves (51).

Now suppose that g∗ ∈ D0(1), and let Y ∗ ∈ D(1) be a element that dominates g∗ in a sense of
(24). By (80) and (26) we have:

x = E[g∗F ∗] ≤ E[g∗W ∗T ] ≤ E[Y ∗TW
∗
T ] ≤ x

and this proves (52).
By the same arguments as in the proof to the sufficient condition of the Lemma 5.1 we get

the formula for the optimal solution W ∗ (53) to the primal optimization problem (21) and this
completes the proof of the Theorem 7.1. �



22

8 Concluding Remarks

This paper has examined the individual’s investment problem for an agent, whose wealth processes
belong to some predictably convex sets of semimartingales. The framework incorporates many
financial models such as with labor income, non-linearity of wealth processes (large investor) and
constrained proportion of portfolio choice. The above analysis makes sense since the Standing
Assumption 2.1 is only a mild condition, which almost every models analyzed in the financial
literature satisfy. We omit this issue in this paper, since it has been extensively carried out in
Pham and Mnif (2002) [Ph-M] and Pham (2002) [Ph], we then refer the reader to their papers for
examples and discussion.
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Appendix: A Stochastic Control Lemma

The result presented here is a slight modification of Lemma A.1 [F-K], which we need in the
context of this paper.

Let X̃b be a family of semimartingales, which are locally bounded from below. Let us introduce
the class P∗(X̃b) of all probability Q ∼ P , such that any Xb ∈ X̃b is a special semimartingale under
Q with the following property: There exists a process A ∈ Op - the set of nondecreasing predictable
processes with A0 = 0, such that Xb − A is a local supermartingale under Q for any Xb ∈ X̃b.
Assume that P∗(X̃b) 6= ∅ and we denote by AX̃b(Q) the upper variation process of X̃b with respect
to Q ∈ P∗(X̃b). Tt denotes the set of stopping times T with values in [t, T ], and T ≡ T0. Notice
that the below result still holds true with T replaced by∞. As before, all processes are assumed to
be real-valued, càdlàg and to be adapted with respect to the given filtration (Ft)t≥0. For simplicity
we assume hereafter that the initial σ-field F0 is trivial.

Lemma A.1 Let (ft)t≥0 be a nonegative process such that

sup
Q∈P∗(X̃b)

sup
T∈T

EQ

[
fT

E(AX̃b(Q))T

]
< +∞, (81)

There exists a nonnegative process (Vt)t≥0 such that for t ≥ 0

Vt = ess sup
Q∈P∗(X̃b),T∈Tt

E(AX̃b(Q))tEQ

[
fT

E(AX̃b(Q))T

∣∣∣∣Ft]

almost surely. Moreover, for any Q ∈ P∗(X̃b) the process V

E(AX̃b (Q))
is a Q-supermartingale.

Proof. We have to show that V

E(AX̃b (Q))
is a Q-supermartingale and that V admits an càdlàg

modification. We will mimic an argument by Föllmer and Kramkov (1997) [F-K].
Let the probability measure P be an element of P∗(X̃b). In the sequel, we identify a probability

Q ∈ P∗(X̃b) with its density process z = (zt)t≤T , zt = E[dQ/dP|Ft]. For t ≥ 0 we denote by Zt
the set of density processes z which are equal to 1 on the interval [0, t]. Throughout we will use
the notation

AX̃b(z) = AX̃b(Q),

for any z ∈ Zt, corresponds to Q ∈ P∗(X̃b). Since AX̃b(z) = AX̃b(P) on [0, t], we get

Vt = ess sup
z∈Zt,T∈Tt

E(AX̃b(P)t)E
[

zT fT

E(AX̃b(P))T

∣∣∣∣Ft]
Let z1, z belong to Zt and T1, T be in Tt, and set

K =
{
ω : E

[
z1T1

fT1

E(AX̃b(P))T1

∣∣∣∣Ft] ≥ E
[

z2T fT

E(AX̃b(P))T

∣∣∣∣Ft]},
T = T11K + T1Kc

z = z11K + z1Kc .

Because A ∈ Ft, the process z belongs to Zt and the random time T is a stopping time. In
particular, we have

AX̃b(z) = AX̃b(z1)1A +AX̃b(z)1Ac

E
[

zT fT

E(AX̃b(P))T

∣∣∣∣Ft] = E
[

z1T1
fT1

E(AX̃b(P))T1

∣∣∣∣Ft]∨E
[

z2T fT

E(AX̃b(P))T

∣∣∣∣Ft]
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i.e., the family
{

E
[

zT fT

E(AX̃b (P))T

∣∣∣∣Ft]}
T∈Tt

is closed under pairwise maximization. Note that we also

have:

E(AX̃b(P)t)E
[

zT fT

E(AX̃b(P))T

∣∣∣∣Ft] ≥ 0

Proposition D.2 in Appendix D from Karatzas and Shreve (1998) [Ka-S] imply that for all t ∈ T
and any s ≤ t, the assumption (81) guarantees

E[Vt|Fs] <∞,

moreover

E[Vt|Fs] = ess sup
z∈Zt,T∈Tt

E(AX̃b(P)t)E
[

zT fT

E(AX̃b(P))T

∣∣∣∣Fs] (82)

Since Tt ⊂ Ts and Zt ⊂ Zs, it follows that:

E
[

Vt

E(AX̃b(P)t)

∣∣∣∣Fs] ≤ ess sup
z∈Zs,T∈Ts

E
[

zT fT

E(AX̃b(P))T

∣∣∣∣Fs]
=

Vs

E(AX̃b(P)s)

Hence V/E(AX̃b(P)) is a supermartingale.
To finish the proof we must show that the process V admits an càdlàg modification, or equiv-

alently, there must exist a modification for a supermartingale Ṽ = V/E(AX̃b(P)). This is the case
if and only if the function (E[Ṽt])t≥0 is right-continuous.

When s = 0, the equality (82) takes the form

E[Ṽt] = sup
z∈Zt,T∈Tt

E
[

zT fT

E(AX̃b(P))T

]
(83)

Let t, (tn)n≥1 be positive numbers such that tn ↓ t, n→ +∞, and tn < t+ 1, n ≥ 1. Since Ṽ is a
supermartingale, we have

E[Ṽt] ≥ lim
n→+∞

E[Ṽtn ]. (84)

To prove the reverse inequality, we fix ε > 0 choose a process z = z(ε) ∈ Zt and a stopping time
T (ε) ∈ Tt such that

E[Ṽt] < E
[

zT fT

E(AX̃b(P))T

]
+ ε, P (T > t) = 1 (85)

This is possible by (83) and the right-continuity of the processes under consideration. For n ≥ 1
we define the stopping time Tn and the process zn as follows:

Tn =

{
T, if T ≥ tn,
t+ 1, if T < tn,

znu =

{
zu/ztn , if T ≥ tn and u ≥ tn
1, if T < tn or u < tn

We have zn ∈ Ztn , Tn ∈ Ttn . Moreover Tn → T and znTn → zT almost surely as n tends to ∞.
Now we deduce from Fatou’s lemma and (83) and (85) that

E[Ṽt] ≤ lim inf
n→+∞

E
[

znTnfTn

E(AX̃b(P))Tn

]
+ ε ≤ lim

n→+∞
E[ṼTn ] + ε

Since ε is an arbitrary positive number and by (84) that the function (E[Ṽt])t≥0 is a right-continuous
functions. This completes the proof of the lemma. �
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