110 research outputs found

    Clustering based Feature Selection from High Dimensional Data

    Get PDF
    Data mining techniques have been widely applied to extract knowledge from large databases. Data mining searches for relationships and global patterns that exist in large databases that are ‘hidden’ among the huge data. Feature selection involves selecting the most useful features from the given data set and reduces dimensionality. Graph clustering method is used for feature selection. Features which are most relevant to the target class and independent of other are selected from the cluster. The feature subset obtained are given to the various supervised learning algorithms to increase the learning accuracy and obtain best feature subset. The feature selection can be efficient and effective using clustering approach. Based on the criteria of efficiency in terms of time complexity and effectiveness in terms of quality of data, useful features from the big data can be selected. DOI: 10.17762/ijritcc2321-8169.15061

    A New Approach Based on Quantum Clustering and Wavelet Transform for Breast Cancer Classification: Comparative Study

    Get PDF
    Feature selection involves identifying a subset of the most useful features that produce the same results as the original set of features. In this paper, we present a new approach for improving classification accuracy. This approach is based on quantum clustering for feature subset selection and wavelet transform for features extraction. The feature selection is performed in three steps. First the mammographic image undergoes a wavelet transform then some features are extracted. In the second step the original feature space is partitioned in clusters in order to group similar features. This operation is performed using the Quantum Clustering algorithm. The third step deals with the selection of a representative feature for each cluster. This selection is based on similarity measures such as the correlation coefficient (CC) and the mutual information (MI). The feature which maximizes this information (CC or MI) is chosen by the algorithm. This approach is applied for breast cancer classification. The K-nearest neighbors (KNN) classifier is used to achieve the classification. We have presented classification accuracy versus feature type, wavelet transform and K neighbors in the KNN classifier. An accuracy of 100% was reached in some cases

    Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis

    Full text link
    The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM- MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22

    Model-Based Feature Selection Based on Radial Basis Functions and Information Measures

    Get PDF
    In this paper the development of a new embedded feature selection method is presented, based on a Radial-Basis-Function Neural-Fuzzy modelling structure. The proposed method is created to find the relative importance of features in a given dataset (or process in general), with special focus on manufacturing processes. The proposed approach evaluates the impact/importance of processes features by using information theoretic measures to measure the correlation between the process features and the modelling performance. Crucially, the proposed method acts during the training of the process model; hence it is an embedded method, achieving the modelling/classification task in parallel to the feature selection task. The latter is achieved by taking advantage of the information in the output layer of the Neural Fuzzy structure; in the presented case this is a TSK-type polynomial function. Two information measures are evaluated in this work, both based on information entropy: mutual information, and cross-sample entropy. The proposed methodology is tested against two popular datasets in the literature (IRIS - plant data, AirFoil - manufacturing/design data), and one more case study relevant to manufacturing - the heat treatment of steel. Results show the good and reliable performance of the developed modelling structure, on par with existing published work, as well as the good performance of the feature selection task in terms of correctly identifying important process features

    A Proposed Frequency-Based Feature Selection Method for Cancer Classification

    Get PDF
    Feature selection method is becoming an essential procedure in data preprocessing step. The feature selection problem can affect the efficiency and accuracy of classification models. Therefore, it also relates to whether a classification model can have a reliable performance. In this study, we compared an original feature selection method and a proposed frequency-based feature selection method with four classification models and three filter-based ranking techniques using a cancer dataset. The proposed method was implemented in WEKA which is an open source software. The performance is evaluated by two evaluation methods: Recall and Receiver Operating Characteristic (ROC). Finally, we found the frequency-based feature selection method performed better than the original ranking method

    Delineating Knowledge Domains in Scientific Domains in Scientific Literature using Machine Learning (ML)

    Get PDF
    The recent years have witnessed an upsurge in the number of published documents. Organizations are showing an increased interest in text classification for effective use of the information. Manual procedures for text classification can be fruitful for a handful of documents, but the same lack in credibility when the number of documents increases besides being laborious and time-consuming. Text mining techniques facilitate assigning text strings to categories rendering the process of classification fast, accurate, and hence reliable. This paper classifies chemistry documents using machine learning and statistical methods. The procedure of text classification has been described in chronological order like data preparation followed by processing, transformation, and application of classification techniques culminating in the validation of the results
    • …
    corecore