100,759 research outputs found

    A Non-Parametric Learning Approach to Identify Online Human Trafficking

    Full text link
    Human trafficking is among the most challenging law enforcement problems which demands persistent fight against from all over the globe. In this study, we leverage readily available data from the website "Backpage"-- used for classified advertisement-- to discern potential patterns of human trafficking activities which manifest online and identify most likely trafficking related advertisements. Due to the lack of ground truth, we rely on two human analysts --one human trafficking victim survivor and one from law enforcement, for hand-labeling the small portion of the crawled data. We then present a semi-supervised learning approach that is trained on the available labeled and unlabeled data and evaluated on unseen data with further verification of experts.Comment: Accepted in IEEE Intelligence and Security Informatics 2016 Conference (ISI 2016

    "Gangnam Mom": A Qualitative Study on the Information Behaviors of Korean Helicopter Mothers

    Get PDF
    This study investigates information seeking, sharing, and managing behaviors of “Gangnam mothers,” a group of dedicated Korean mothers who invest significant time and effort to micro- manage their child’s academic needs. These mothers’ vibrant and sophisticated information seeking and managing loads of education-related information sources is worthy of attention from information behavior research. To learn about their information behavior, field observations and interviews with mothers of school-aged children in Gangnam, the southern part of Seoul, have been conducted. The findings show that Gangnam mothers are personal information experts who heavily utilize human channels of information and employ local, group and personal filtering strategies. The fascinating information ecology of mothers in their diverse strategies for navigating and filtering information, coupled with the unique information environment in Gangnam, makes the flood of education-related information surprisingly manageable.ye

    Physics-based visual characterization of molecular interaction forces

    Get PDF
    Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts. There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved. In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.Peer ReviewedPostprint (author's final draft

    Social Turing Tests: Crowdsourcing Sybil Detection

    Full text link
    As popular tools for spreading spam and malware, Sybils (or fake accounts) pose a serious threat to online communities such as Online Social Networks (OSNs). Today, sophisticated attackers are creating realistic Sybils that effectively befriend legitimate users, rendering most automated Sybil detection techniques ineffective. In this paper, we explore the feasibility of a crowdsourced Sybil detection system for OSNs. We conduct a large user study on the ability of humans to detect today's Sybil accounts, using a large corpus of ground-truth Sybil accounts from the Facebook and Renren networks. We analyze detection accuracy by both "experts" and "turkers" under a variety of conditions, and find that while turkers vary significantly in their effectiveness, experts consistently produce near-optimal results. We use these results to drive the design of a multi-tier crowdsourcing Sybil detection system. Using our user study data, we show that this system is scalable, and can be highly effective either as a standalone system or as a complementary technique to current tools
    corecore