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Fig. 1. Successive steps during the visual analysis of the binding of Aspirin and the Phospholipase A2 protein. We compute and
visualize all essential interaction energies represented by 2D and 3D arrows. The orientation of the depicted arrows encodes the sign
of the energy, i.e., attracting vs. repelling force. The width of the arrows as well as the color of the residue’s silhouettes support energy
quantification. During the visual analysis, energies are computed and depicted on-the-fly to support interactive hypothesis testing (left),
and residues can be filtered based on energy and distance to obtain a more focused view (middle). Additionally, a 2D visualization
helps to obtain total energy values in an uncluttered manner (right).

Abstract—Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite
the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human
comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization
algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts.
There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly
restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not
provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved.
In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several
relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We
put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide
time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented
visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.

Index Terms—Molecular visualization, binding analysis.

1 INTRODUCTION

Molecular design procedures, such as drug design and protein engi-
neering, are complex processes, largely benefiting from computational
resources but also from human analysis. In drug design, for example, a
costly iterative loop involves simulations requiring long computation
times, followed by a data analysis phase, which is conducted by domain
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scientists using numerical analysis and visualization tools. Once some
clues favoring or hindering binding have been understood, the ligand
is modified by taking into account these clues, and another iteration
is performed. In typical cases, computer simulation times range from
hours to weeks, depending on the complexity of the molecules and
the methods used. Recent advances have led to a reduction in compu-
tation time by exploiting modern supercomputers [7] in combination
with modern simulation algorithms [33]. These advances in parallel
computation thus allow for the computation of many simulation paths
at the same time. This increase in available data also implies that the
requirements for analysis tools become more demanding.

As a result of the computational resources becoming more afford-
able, human resources are becoming more and more the limiting factor
in the computer-assisted molecular design process. In fact, most of the
data analysis is performed in meeting rooms where different specialists
discuss the outcomes of the simulation and the next design step. To
enable these experts during comprehension and decision making, it
is of great importance to provide effective data examination and vi-
sualization tools. In this paper we focus on one of the key aspects
required to make informed decisions in the molecular design process:
understanding which parts of the molecule influence the binding of
the ligand. This information is key, as it enables the domain expert
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to hypothesize which residues can be altered in the subsequent de-
sign process in order to improve the ligand’s affinity. Unfortunately,
communication of this information results in several challenges. First,
the binding information must be available instantly;for instance, if the
domain expert moves the ligand, this information must be updated.
Second, visual clutter, resulting from the multitude of displayed forces,
which especially arises when considering long range forces, needs to
be reduced. Third, domain experts must be able to identify the involved
residues and to quantify the related energies. When considering the
usually dense representation of complex molecules, it becomes clear
that a single 3D visualization will not be able to meet all these chal-
lenges. Therefore, we combine 2D and 3D visualizations together with
brushing-and-linking in order to communicate which residues influence
the ligand. Furthermore, we propose how to perform real-time com-
putations of the three main energy components, i.e., electrostatic, van
der Waals (vdW) and solvation, which enables the domain expert to
interactively explore entire trajectories consisting of multiple snapshots.
Furthermore, with the proposed brushing-and-linking setup, it becomes
possible for the first time to also analyze long-range interactions, which
play an important role when a ligand is initially approaching a molecule.
We not only hope that this long range analysis sheds new light on the
entire docking process, but also expect that it helps to reduce required
computation resources, as it allows for early intervention with the run-
ning simulation. Thus, we support a more effective, computer-based
molecular design process by making the following main contributions
in this paper:

• We propose visual analysis techniques for the real-time compu-
tation and inspection of interaction energies arising between a
molecule’s residues and the ligand.

• We propose a linked visualization setup communicating the com-
puted interaction energies, by reducing visual clutter and enabling
direct identification of the individual residues.

• We enable domain scientist through the means of brushing-and-
linking to explore the underlying interactions, which in particular
allows them for the first time to also inspect long range energies.

As illustrated in Figure 1, we combine these contributions, such that
the user can interact with the input data to gather new knowledge, to
formulate and assess hypotheses, and provide visual explanations of
the discoveries.

2 RELATED WORK

In this section we will discuss work related to our approach. We
first focus on visualization techniques used to communicate molecular
structures, before we address more relevant techniques visualizing
molecular interactions in 2D and 3D.
Molecular structure visualization. A lot of research has been
conducted to improve visualization of complex molecular struc-
tures [22, 11, 50, 4, 17, 37]. As discussing all these techniques would
be beyond the scope of this paper, we refer the interested reader to the
state-of-the-art report by Kozlı́ková et al. [25], and only focus on those
techniques directly related to the visualizations proposed in this paper.

Given the complexity of the molecular structures and the conse-
quent increase in polygon count when atoms are represented as spheres
or more complex shapes, effort was initially focused on their ef-
ficient rendering. The proposed algorithms span a wide range of
underlying concepts, such as level-of-detail [28, 31, 36], impostors
and glyphs [38, 48, 2, 14, 10] or geometric instancing [9, 32]. Of-
ten, geometry or tessellation shaders, provided by modern GPUs, are
also exploited to create spherical or ribbon-based representations of
molecules [26, 49, 20]. Furthermore, deferred shading is widely ap-
plied to accelerate shading of molecular models [15, 32, 10]. To realize
a more intuitive communication, also modified shading algorithms
are applied when visualizing complex molecular models. One of
the most popular techniques used in this context is ambient occlu-
sion [48, 27, 14, 24, 13, 19], but also contour lines [44, 28] or hatch-
ing [6, 30] have been applied.

2D molecular interaction visualization. Many of the modern visu-
alizations proposed to communicate interaction energies exploit 2D
views. For example LigPlot+ generates 2D views of ligand-protein
interactions for a static frame [29], whereby some idioms are shown
in the 2D view to illustrate interaction forces. Similar results can be
obtained by using LeView [3], Maestro [43] or PoseView [47]. In all
cases, the outcome is based on a close contact analysis with little or
no interactivity. They do not allow filtering molecular interactions
by strength or distance. This forbids, for example, the exploration of
interactions outside the binding site (long range) and a comprehensive
study of the binding process through residue interactions. Further-
more, the projection techniques provided make mental linking to the
3D structures difficult.
3D molecular interaction visualization. While nowadays, most
molecular visualization techniques are able to communicate shapes
and spatial arrangements at interactive frame rates, molecular interac-
tions have received far less consideration in 3D despite their essential
role in molecular design. Such interactions, for example, help to under-
stand why a docking simulation succeeds or not, so their visualization
and biophysical basis, are essential for finding effective solutions. Also,
no previous 3D interactive framework provides filtering by strength or
distance. Visualizing the physics is also paramount in related fields,
such as materials science, where Grottel et al. [12] represent scalar
fields through color overlaid on the molecular surfaces, and represent
electrostatic dipoles with arrows. Similar representations using iso-
surfaces are common to other crystallography applications such as
Vesta [34, 35], where the overlaid color represents electrostatic po-
tential or hydrophobicity. Hyde [42] uses a similar representation to
code the total affinity energy contribution, whereby the process takes
several seconds. Cipriano and Gleicher [5] illustrate charges over the
molecular surface by stylizing both the surface shape and the charge
values. Günter et al. also focus on the atom level, where the signed
electron density and reduced gradient fields are computed and then sim-
plified to illustrate van der Waals and steric repulsion forces between
atoms [16]. By showing colored dots at the contact surface between
atoms, representing the van der Waals and hydrogen-bonding interac-
tions, Word et al. allow evaluation of atom packing in biomolecular
structures [52]. Another tool, LigandScout, exploits several views to
support drug designers when screening chemical databases [51]. It al-
lows for the interactive creation of so called pharmacophores (which are
based on known ligands) that act as templates for finding new ligands.
In the creation process, LigandScout highlights the ligands key features
that interact with the protein, and supports surface coloring based on
lipophilicity, hydrogen bonding or charge, using predefined scoring
functions. The PLIP system is a web service that generates 3D views
focused at the atom level and showing several interaction types [39].
However, as discussed later, no interaction nor filtering are supported
and it is not designed to deal with a sequence of frames. More recently,
Skanberg et al. have proposed to visualize energy interactions between
atoms through diffuse interreflections computed for the surfaces of the
atoms [46]. Falk et al. visualize molecule reactions by means of arrows
augmenting paths representing molecule trajectories [9]. Khazanov
and Carlson exploit tables to communicate molecule interactions [23].
They also communicate the interaction between ligand and binding site
through modification of color and van der Waals radii on an atom scale,
and indirectly address the residue scale by performing this depiction
individually for each amino acid. Sarikaya et al. also take into account
the residue scale, by visualizing classifier performance with respect to
protein chains on which a classifier has operated [40]. Finally, to com-
municate the differences of surface projected parameters, Scharnowski
et al. propose to use deformable models [41].

Unfortunately, these tools are restricted to the few close strong in-
teraction contacts between molecules, not allowing the detection of
long range interactions. These might, for example, guide the entrance
of the ligand to the binding site (electrostatic steering) or, by adding
up several weak interaction energies, contribute to the overall bind-
ing affinity. Although they deal with the main biophysical types of
interactions, usually in a geometric and quantitative way (hydrogen
bonds, van der Waals interactions), these tools do not allow a detailed



quantitative understanding of all the energy terms (including solvation)
on which those and other interaction types are based, and which are
the fundamental parts of the energy functions that guide the molecular
simulations. Moreover, without a dynamic view of the binding process,
these tools hinder a deeper understanding of the key actors (residues)
and their roles in the process. Our aim is thus to enable this fine grain
data analysis at the meaningful residue level, both for single frame stud-
ies and for the dynamic setting represented by a sequence of frames,
and with filtering tools to allow the exploration of the different energy
terms and interaction distances.

3 APPLICATION-DRIVEN VISUALIZATION DESIGN

In this section, we will provide the background for our application-
driven visualization design. Before we analyze the visualization design
requirements in Section 3.2, we discuss the application background.

3.1 Application Background

In computational drug design, as well as in other molecular modeling
areas, a key aspect is to estimate the interaction energy between the
protein and the ligand (or substrate in, e.g. enzymatic catalysis).

The free energy G of the protein-ligand system is a powerful tool
to understand the binding process and, by computing ∆Gbind, the dif-
ference of free energy between the bound state and the unbound state
where the protein and ligand stay free in the solvent, we can know the
binding strength or affinity (more negative values of the energy mean
a stronger binding). Typical energy models are additive, allowing to
understand the main contributions to binding or the key interactions
that would favor (or disfavor) ligand binding.

The energy model we follow is based on three terms:

• Van der Waals interaction energy, Einter,VDW, which shows how
well the protein and ligand molecules pack together.

• Electrostatic interaction energy (the interaction in vacuum plus
the solvent screening), Einter,ele, which shows the strength of the
interaction between the protein and ligand charges, screened by
the effect of the solvent.

• Change in solvation energy, which includes a polar (∆Gpol) and a
non-polar term (∆Gnp). It shows how much the protein and ligand
prefer to be bound together, instead of being free in the solvent,
regarding exclusively the interaction with the solvent molecules,
and including entropy.

So the energies computation results in

∆Gbind ≈ Einter,VDW +Einter,ele +∆Gpol +∆Gnp (1)

To compute the energy of a given protein-ligand conformation the 
application needs the atomic 3D coordinates and a table of parameters 
per atom type (such as the van der Waals radius or electrostatic charge) 
as input. Besides the ligand atoms, which are typically user-provided, 
these parameters are standard for the models used. Refer to the supple-
mentary materials for details on the computation of the energy terms. 
Here it suffices to know that the computation cost of O(N2), where N 
is the number of atoms.

When representing the electrostatic interaction energy, we calculate 
the sum of the actual Einter,ele plus the screening due to the ∆Gpol energy 
term assignable to the specific studied interaction. Interaction energies 
(the electrostatic ones including the screening) are thus represented 
for given interacting pairs of atoms or residues (one atom or residue 
from the protein, and the other from the ligand, considered as a single 
residue). However, we assign solvation energies to individual atoms 
or residues. Since some terms used in the calculation of the solvation 
energies involve a pair of atoms, we have assigned half that energy to 
one of the atoms and the other half to the other atom.

3.2 Design Requirements
In this paper, we propose visualizations which have been developed
with the goal to help domain experts understand the forces acting
in molecular design, through analyzing the main components of the
binding energy. In drug design, for example, domain experts need
to analyze whether the ligand will or will not dock at the intended
position. To answer this question, domain experts have to inspect the
numerical results of the main interaction energy components which
are usually provided in result tables. While such a table could be
analyzed for a single ligand, comparing them for several ligands is
not practical. However, since it is often necessary to study more than
one bound structure, as an ensemble of structures will aid in a better
characterization of the bound complex, domain experts need to be able
to effectively analyze this type of data. In addition, studying the drug
migration pathway, from the solvent to the bound complex, might better
help in addressing the binding (or its absence) mechanism and locate
key interactions that could facilitate (or hinder) binding [8]. Similar
conclusions can be observed in enzymatic catalysis [1]. The detailed
mechanistic knowledge provided by the binding energy analysis should
locate those parts of the molecule/receptor that enhance or prevent
docking, facilitating the following design steps.

The interaction of molecules is atom-based, but atoms group nat-
urally into residues or chemical groups accountable of collective re-
sponses —such as ionic groups (carboxylic groups, etc.), aromatic
groups (phenyl, etc.) or an entire residue— for which one is often
interested in the whole group interaction. This is the reason why we
analyze interaction energies in chemical groups and/or residues, not
single atoms.

In a cooperation between domain researchers and visualization ex-
perts, we have identified the following questions as being essential to
be answered in the visual analysis process:

• Q1: Which are the most active groups in the interactions between
molecules?

• Q2: Which are the most powerful binding energy components at
a certain simulation configuration?

• Q3: Is the proximity of the drug causing instability in any residue
of the protein?

• Q4: Is the ligand solvation force favouring or rejecting binding?

• Q5: Which residues (if any) prevent drug delivery?

By creating a visualization method that illustrates the different com-
ponents of the molecular interaction energies, we enable domain experts
to answer these and other questions, thus gaining a detailed knowledge
on the binding mechanism. Importantly, our system not only computes
the energy components on the fly, but also provides a series of filters
that let the user select distances or energy ranges to inspect them in fine
detail. To support such an interactive visual analysis, besides effective
visualizations, an efficient implementation is essential. Therefore, we
exploit a data structure computed by the GPU that facilitates queries
such that residues and groups can be filtered in real-time for all ele-
ments of interest. The thus filtered information is then communicated
using the proposed visualization techniques. This way we can provide
an interactive visual analysis system, that lets the user inspect the set of
energies that are interacting at any time in a simulation. In the following
sections, we will describe this system by focusing on the two main
parts:

Interaction energy calculation: To compute the interaction energies
on the fly, a GPU-based set of programs is used that computes
an array of energies for each residue (and for each atom in the
case of solvation energy), each time a new step of the simulation
is selected (or a structure is loaded). Furthermore, a specialized
energy data structure is used to accelerate the queries issued by
the domain expert through the visualization front end.



Fig. 2. Overview of the data flow underlying our application. When the current step or the configuration change, the system automatically computes
the forces being exerted by each residue in a compute shader (left). When the user modifies the filters, the selected residues are quickly gathered
from the indexing data structure computed by the compute shaders (center ) and then used to render the 3D or the 2D abstract views (right).

Interaction energy visualization: During the visualization phase, the
domain expert can interact with the data by means of widgets.
These provide several visualization motifs and filters that facilitate
the data analysis and inspection, as well as data presentation.

4 INTERACTION ENERGY CALCULATION

Given a configuration of the molecules, the computation of the energies 
involved is not inexpensive. Some of the quantities involved – the 
Born radii and the per-atom solvation energy change due to interacting 
charges (∆Gpol in Equation (1)) – have a cost which is quadratic in 
the number of atoms. Since we want our application to be able to 
adapt to changes in the configuration (because of user interactions or 
a change of frame in a simulation trajectory) interactively, we employ 
GPU computation at each change. Therefore, when the user selects a 
new step of the simulation, first we dispatch the computation of the 
Born radii to a compute shader. In order to compute the Born radius 
of each atom, we must visit all other atoms in the molecule, yielding a 
quadratic cost. Each thread of our compute shader calculates 16 of these 
interactions and adds the result to a shader storage buffer using atomic 
operations. After computing the Born radii, our system computes the 
solvation energy term for each atom. Again, this requires N2 separate 
operations, so we execute another compute shader to perform this task
—assigning 16 of these computations to each thread as in the Born radii 
calculation. When all of these parameters have been computed for all 
atoms, we launch another compute shader that computes the VDW and 
Electrostatic terms and the final value of the energy between the ligand 
and the atom groups. With this strategy we are able to compute the 
energy of the system more than 20 times per second for molecules up 
to 18k atoms –using a computer with a processor Quad Core i7 at 3.7 
GHz, 16Gb of RAM and a GeFroce GTX 980.

Once the energies have been computed for each group, and to enable 
the interactive modification of filters by the user and their reflection on 
the visualization, we build an auxiliary data structure that allows us to 
find the selected groups in constant time. Each time the configuration 
changes, or the user shifts his attention to a different aspect —turning 
on or off some energy component— the array holding the energies 
of all the groups is sorted according to a key made up of the sum

of the chosen energies and the distance to the ligand. Both energy 
levels and distances are discretized into 128 possible segments with 
an energy range of [-3.0, 3.0] and a distance range of [0, 50]. With 
those parameters we assure a fixed number of groups per cell for all 
the examples we have tried. Then the sorting key of each group is 
constructed concatenating the energy and the distance bucket index 
(this is represented by the bottom portion of the “New step” box in 
Figure 2). The sort is carried out using a radix sort implemented in 
four compute shaders corresponding to the three steps in [18] plus an 
additional step to build an index table that holds in each cell the start 
and end position in the buffer of the entries corresponding to that cell. 
The table is indexed by the same 128 intervals of energy or distance.

Once the sort is complete, the results obtained are downloaded to the 
CPU. When the user modifies some of the filter ranges (“Filter update” 
box in Figure 2), the cells containing the chosen ranges are determined, 
and using the index table, all the groups in those cells are checked for 
the current filter ranges (as the cells will contain some neighbor values 
as well, because of the discretization). The groups thus filtered are 
made visible, and are given an identifier according to their energy level, 
to determine the appropriate colors of the silhouette. The start and end 
points of the connection arrows are also uploaded to the GPU with the 
same identifier that will determine their color.

5 INTERACTION ENERGY VISUALIZATION

The usual workflow of the users is this (see Figure 2 ): They open a 
file that contains a  structure or a  simulation p ath. At this point and 
every time the user switches between path frames (“New step” box), the 
GPU updates the energies-distances data structure and downloads it to 
the CPU. Then, the user may freely update the filters. When those are 
changed, the data structure is queried (“Filter update” box) to determine 
active groups, energies, and so on. The user can then freely inspect 
the 3D and 2D views or update the filters a gain. All of this happens 
in realtime. In this section we describe how the visualization tool has 
been designed and implemented.



Fig. 3. The snapshot corresponds to the docking position of an artificial 
substrate, ABTS, to the Manganase Peroxidase 4. In Figure 4 the docking 
path is illustrated. This zoomed view shows the main idioms used to 
communicate energy: cones for direction of forces, their thickness and 
color to encode energy and intensity, and colored highlights of residues 
as described in Section 5.

5.1 Idioms and Filters
In order to support domain experts in answering the questions listed 
in Section 3.2, we have developed interactive visualizations communi-
cating the real-time computed binding energy factors. By employing 
filtering, we can ensure that only residues currently of interest appear 
in the view. The visualization of these elements is then enhanced with 
visual idioms that provide information so that domain experts can easily 
understand the important forces in the current step of the simulation 
path. We have realized this interactive visual analysis by including the 
following visual idioms: filtering, focus and context, feature enhance-
ment, and interaction. Most of them are illustrated in Figure 3 
Filtering. In several cases the interaction energies are omnipresent, 
despite the fact that for several groups the absolute energy is rather 
low, e.g., the ligand will have electrostatic interactions with most of 
the groups of the protein. If all these energies were communicated, 
our visualization would suffer from cluttering. Therefore, we support 
filtering t o r estrict t he e nergies a nd t he g roups t o b e v isualized to 
those which fulfill certain criteria. Currently, we support three types of 
filters: i) distance filtering, ii) energy level filtering, and iii) energy type 
filtering. Thus, by selecting any (or all) of the energy types, changing 
the range of distances at which interactions are considered and the 
amount of energy, the user can finely a nalyze i ndividual o r group 
interactions. In Figure 1 we have applied distance filtering to confine 
the visualized residues to those having a short distance interaction with 
the ligand only.
Focus and context. The central entity that guides any exploration 
within our application is the energy enhancement. As a result, we 
always enhance the groups that are active, i.e., whose energy is between 
the limits determined by the used energy level filter. H owever, to 
embed the currently selected groups, it is important to add context 
to the focused elements. Therefore, we provide the visual context in 
two flavors: i) Eliding information using a user-defined clipping plane, 
and ii) Superimposing a layer that renders, using semi-transparency 
and silhouette enhancement, the information concerning the non-active 
groups. We allow the user to define the plane direction by selecting the 
current view orientation, and, once the plane direction has been fixed, 
the user is able move the plane along it using a slider. Moreover, the 
parts of the molecule that are hidden by the plane, are then rendered 
using the semi-transparent layer.
Feature enhancement. In order to facilitate comprehension of the 
affecting energies, we color code the dominant type of energy on

Fig. 4. The interaction through the 2D views (top left, top right, bottom left 
and bottom right indicate four steps of the interaction) visually explains 
the docking procedure of the ABTS, an artificial substrate to the Man-
ganase Peroxidase 4. Once the Histidine 220 (H220) has stablished an 
attraction connection (top left), the substrate does not leave the surface 
of the protein and finally docks (bottom right) also attracted by another 
Histidine (H142). This can be seen interactively by hoping between path 
steps.

the silhouettes of the respective groups (see Figure 3), where each 
energy type is coded using a color scale with two different hues –which 
represent the positive and negative ranges. Further communication of 
the energy and sign is provided by means of arrows, drawn along the 
axis that links the ligand with the active group. These cones are color 
coded with the hue of the energy type, and indicate the direction in 
which the ligand would move due to a single interaction. The size of 
their base also encodes the amount of total energy, so harder interactions 
are more likely to stand out in cluttered scenes where many groups are 
active. For an individual energy analysis or only repulsion/attraction 
analysis, the user could also modify the application to only highlight the 
total energy using a color scale with two hues, where one hue represents 
the positive range and the other the negative.
Interaction. During the whole visual analysis process, the user may 
freely inspect the 3D view by modifying the viewpoint, zoom, pan, and 
so on. Filters can also be changed interactively. And the path step can 
be manually selected or an animation can be triggered to see the full 
path when analyzing a docking simulation path. To support a more 
exact quantification, a 2D view, with details on the amino acids is also 
provided. This view is created by projecting all active residues in a 
circular layout around the ligand. By exploiting linking, we ensure that 
when filters are updated or the step of the path changes, the view is 
updated accordingly. Figure 4 shows the last steps of the docking path 
of an artificial substrate.

5.2 3D Visualization

To provide visual cues for the users to understand the energies in-
volving each residue at any point in the simulation path, we need to 
visualize both, the binding energy and the elements affecting it. There-
fore, we choose a default representation that lets the user identify the 
groups and facilitates the incorporation of energy information around 
the molecules.
Atom representation. We chose to render the active elements using 
a licorice visualization, with thin cylinders and atoms to reduce the 
footprint on the screen. This representation is a good balance between 
space occupied and information. Since the cylinders are coded with the 
traditional colors of the atoms, they are easy to identify, and additional 
information is communicated via a thick silhouette around them. To



(a) Initial exploration step. (b) Energy restriction to absolute value below -5 kcal/mol.

Fig. 5. Interaction between the palmitate ligand and the intestinal fatty acid protein. Initial exploration does not let us see the important interactions
happening close to the palmitite acid. By carefully filtering energy terms larger than -5 kcal/mol, we can see how palmitite interacts strongly at
electrostatic level (dark green interactions) with several residues, notably with arginines (R126 and very strongly with R106) as shown in the image.
The values between parentheses indicate the total energy.

reduce clutter, only the active residues or groups are shown, and to 
provide 3D context, the rest of the molecule is visualized using semi-
transparent van der Waals surfaces.
Energy representation. Energies are typically signed, so we will use 
diverging hue representations to show them. The hues for the range 
selections fulfill the following r equirements: i) Avoid blue-red hues, 
since these are commonly used for polarization, ii) Avoid the colors 
commonly used to represent proteins (e.g. some grey, red and blue 
hues), iii) enhance color distinction by reducing the amount of tones 
and using perception-based selections, iv) avoid the repetition of hues 
to make them unambiguous. Under these conditions, we decided to rep-
resent the dominant energy of each interaction with a 7-point diverging 
hue scale where white represents neutral or close to neutral values. We 
selected green-brown for electrostatic energies (typically spread in both 
sign directions), violet-yellow hues for van der Waals energies keeping 
the violet hues for negative, far more common in vdW than positive val-
ues. Finally, a grey-desaturated red scale was used for solvation energy. 
The solvation energy is encoded in the color of the silhouette of the 
ligand, since it is an important information that communicates whether 
the ligand is comfortable in the solvent or uncomfortable, which might 
favor binding. Although having the same neutral color for all the energy 
types might seem confusing, the energies represented by these colors 
are not relevant for the understanding of the simulation as their magni-
tudes are small (Fig 5). This guides the attention of the domain experts 
to the groups with high magnitudes, as they are represented with highly 
saturated colors. These magnitudes are also communicated through 
other more precise means (see Visualization Configuration below, and 
the 2D view described in Section 5.3).

In all cases, the energy magnitudes are rendered as a thick silhouette 
around the licorice representations of the active bonds. These color 
combinations and molecular representations result in a quite under-
standable way to encode interactions, facilitating the comprehension of 
simulation results. The main idea behind this is to avoid the require-
ment of checking other regions of the screen (tabular representations of 
values are also commonly used) and thus keeping the attention of the 
user onto the task.
Visualization configuration. To f urther g uide t he a ttention o f the 
users to active groups, we also highlight the interactions with geometric 
elements that go from the center of the ligand to the center of the group 
of interest. The user can freely toggle these elements on or off. These 
cones indicate the direction the ligand would move as consequence of 
the influence of the corresponding group of i nterest. The cones have

base areas proportional to the total energy level.

5.3 2D Visualization
When generating a 2D projection of the groups of interest, it is impor-
tant to facilitate an easy mental linking with the 3D visualization. As
a consequence, our proposed algorithm for generating the 2D visual-
izations takes into account the 3D arrangement, and exploits the same
connections (cones or cylinders) as used in the 3D view, as well as the
same color coding for the silhouettes of the groups. The individual
steps of the algorithm can be summarized as follows:

1. Calculate the vector that goes from the center of the ligand to the
center of the scene. This vector is then used as the direction of
the virtual viewing plane of step 4.

2. Determine the number of active groups.

3. Subdivide the virtual space around the ligand in as many equal
sectors as there are active groups.

4. For each group, calculate the projection to a virtual viewing plane
centered in the ligand, and exploit clockwise sorting to assign the
respective partition.

5. Project the residues at a fixed distance from the center, and cen-
tered in their sector, maximizing the projected area.

To facilitate the interpretation of the projected groups, we project
each residue to the 2D view with a (different) projection direction that
maximizes its area. The optimal direction is achieved by performing a
Principal Component Analysis of the group’s atoms’ positions, whereby
the smaller eigenvector of the matrix determines the optimal projection
direction. With this strategy, we achieve an ordering of the residues
that is directly related to their 3D position in space, thus facilitating the
inspection in both 2D and 3D views at the same time.

6 APPLICATION CASES

The proposed visual analysis techniques have been integrated into an
application which is flexible and offers a large range of features, and
thus allows to analyze different aspects of biomolecular interactions,
with applications, for example, in drug design and protein engineering
processes. We can analyze data from the point of view of the agnostic
scientist, just trying to gather new knowledge, or we can use it to assess



Fig. 6. Interaction of the palmitate ligand with several Leucines and
Phenilananines residues at vdW level. Note the strong yellow silhouettes
that indicate strong interactions.

some hypothesis. Usually, hypothesis testing will lead to simpler sce-
narios because we already have an initial guess about which parameters
to analyze. In the following subsections, we will discuss application
cases describing how the presented visual analysis techniques enable
new insights. We will start by discussing a single conformation analy-
sis process, before discussing the insights achieved when applying our
approach to a more complex trajectory analysis.

6.1 Single Conformation Analysis
An initial scenario where we can use our visualization is to understand
which molecular forces are predominant at a given structure, such as
the bound conformation obtained from measurements or simulations.
The proposed visualizations enable to spot key residues and chemical
groups in the interaction between protein and ligand, both enhancing
or opposing binding. This information is paramount for the scientist in
order to understand the binding mechanism, as well as to choose ligand
groups in drug design or protein amino acids in enzyme engineering
for mutation, whereby the mutations are performed with the goal to
improve or disfavor molecular interaction. Suggested changes can later
be confirmed or discarded by analyzing a new simulation with the
modified protein-ligand system.

With the following example, investigating the binding of Palmitate, a
fatty acid ligand, to the intestinal fatty acid-binding protein, we further
illustrate how we can quickly assess molecular interaction hypotheses
from a crystal structure inspection. The bound structure was obtained
from a Nuclear Magnetic Resonance Spectroscopy (NMR) experiment
(PDB id 1ure, [21]), after minimization with the OPLS-AA force field
using the PELE software [33]. This system is interesting since Palmi-
tate’s binding could show important contributions from the electrostatic,
vdW and solvation energy terms, and our analysis is focused on ques-
tion Q1, asking for the most active groups. Thus, the first hypothesis is
that several Arginine (Arg or R) residues, which are positively charged
amino acids, should have an important role at the electrostatic level
because they are in the vicinity of the negative polar extreme of the fatty
acid, a carboxylic group. We can verify this assumption in Figure 5,
where we checked all Coulomb contributions lower than -5 kcal/mol.
Through the visual analysis, three Arginines having large electrostatic
stabilizing contributions can be clearly identified, whereby the strength
directly correlates with the cone radii. This is also seen in Figure 5,

Fig. 7. The solvation term in the Palmitate ligand, when inside the protein,
indicates that, contrary to the hypothesis, it does not favor binding. Note
the high energy value color coded in its silhouette. Being a fatty molecule,
the expected value would be low (grey).

where the numerical value for each contribution indicates that Arg106,
the one closer to the polar ligand group, is the main stabilizing residue.

A second hypothesis that can be easily tested is the nature of some
of the vdW interactions. Since Palmitate has a long aliphatic tail, some
hydrophobic residues should have important vdW interactions, such as
leucines (Leu or L) and phenilananines (Phe or F). We can assess this
by inspecting the vdW energies as shown in Figure 6. Here, several
contributions can be identified, and we can see the interacting residues,
i.e., leucines L36sc, L38sc, L72bb, and L72sc, and phenilananines
F62sc and F55sc. Interestingly, we can observe a strong destabiliz-
ing vdW component from arginine 106 (R106), induced by the large
ionic attraction seen above. This example constitutes a nice (didactic)
illustration of force field terms balance, and is directly related to our
question Q2 asking which ones are the most powerful binding energy
components.

We can see another example of how the visualization can help to
confirm or reject hypothesis. In this case, related to question Q4,
questioning the solvation force, the fatty acid has a long aliphatic chain.
Consequently, it is expected that removing it from a water environment,
which is polar, and placing it in its bound protein conformation would
be associated to a (de)solvation energy gain. However, when using the
visualization to assess the results, the domain experts were surprised by
a dessolvation loss instead. As a consequence, further detailed study
was triggered and then it was discovered that the charged Carboxylate
group in the ligand actually opposes this, and the total effect is a
dessolvation energy loss. This finding could be made by referring to
Figure 7, where all the energies are removed except the solvation force
that is encoded in the silhouette of the ligand. We can observe that
the energy is strongly positive, and can thus reject the hypothesis that
solvation energy terms would facilitate Palmitate’s binding.

6.2 Trajectory Analysis

A more complex scenario involves the analysis of multiple structures,
obtained, for example, from molecular dynamics or Monte Carlo Sim-
ulations. We can run the whole ligand migration path, asking the
application to highlight residues with dominating interaction energies
at each frame of the simulation by simply stepping through simulation
time. Note, that the term frame usually refers to a step in the simula-
tion performed for the study of the protein-ligand binding. Similarly,
multiple experimental structures can be analyzed simultaneously.

Figure 8 shows three different snapshots along the Aspirine migra-
tion simulation in the Phospholipase A2 protein. The top left image
shows the ligand in the bulk solvent, far from the protein surface, where
no energies acting on the ligand are detected. The top right image
illustrates the ligand approaching the surface and how our visualiza-
tion shows the initial protein-ligand recognition forces, two long-range
electrostatic contributions that guide the ligand towards the protein.
Coulomb forces are dominant usually when the ligand is relatively
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Fig. 8. Three different stages of a path of aspirin docking to the phospholipase A2 protein. The top left image shows the aspirin in the bulk solvent,
so no energies are exerted. The top right image shows the ligand closer to the protein, thus electrostatic energies appear, and finally, the bottom left
image shows a frame near the docking position. At this point, the calcium is strongly attracting the aspirin (green thick cones), where other groups
exhibit repulsive electrostatic energies (brown cones). Bottom right shows the abstract view with all the active residues uncluttered.

far from the protein. This is one example of question Q1 mentioned
earlier. Here we also observe again the key stabilizing role of the
calcium ion (green cones) together with some minor destabilizing elec-
trostatic contributions (brown cones) from other calcium coordinated
groups (having the same sign as Aspirine). This partially deals with our
questions Q2 and Q3, asking for the most powerful binding energy com-
ponent and about drug-induced instability. In addition we can clearly
observe some vdW smaller interactions from hydrophobic residues
with the aromatic group of the Aspirine ligand. This addition of van
der Waals forces only appears at short range interactions. Finally, the
bottom left image shows the ligand close to the docking position. We
observe a strong interaction between the Aspirin ligand and a Calcium
ion associated to the protein.

The crystal structure of the complex (PDB id 1oxr, [45]) shows, from
a structural perspective, that this interaction exists. Our application
enriches this information from an energetic point of view, as well as it
allows to relate, in a qualitatively manner, the strength of this interaction
with that of the Aspirin to other important interacting residues, such as
histidine and aspartic acid residues. The calcium ion is clearly visible
as the green sphere in the middle of the protein. An inspection of the
abstract view (bottom right) reveals all the interacting residues, and
we can see clearly how histidine (H48sc and H48bb) and aspartic acid
(D42sc, D49sc, and D94sc) are also interacting, as predicted. It can
be further conclude, that some of these strong electrostatic attractive
contributions, importantly, from the active site calcium (Ca) ion (with
and overall +2 charge), are responsible for driving the ligand to its final
bound position. Thus, this study constitutes a nice example of how this
tool allows studying the ligand binding mechanism at atomic detail.

As we could show in the discussed application cases, the proposed
visual analysis techniques can be used to answer the stated questions Q1

to Q4. Unfortunately, we could not discuss any application case, where 
we could answer question Q5, asking for residues preventing drug 
delivery. This is due to the fact, that the simulation data analyzed in 
this paper has already been analyzed before with conventional methods. 
Accordingly, only those simulations resulting in a successful binding 
were at our disposal.

6.3 Evaluation
The development of the system has been in close collaboration with 
domain experts. However, we also asked other experts external to our 
team in order to gather opinions on the design and implementation of 
our visualization tool.

We also asked the opinion of two more experts, a chemist that 
works in protein engineering, and a computational chemist working in 
computer aided drug design. We provided them a small demo of the 
tool and then let them play for thirty to forty minutes. During and after 
the session, we gathered their comments.

Both of them found the tool very useful and found that it may be 
useful for protein engineering tasks (e.g. to inspect the result of pro-
tein mutations and analyzing protein-protein interactions), molecular 
dynamics (to better understand the molecules behavior), electrostatic 
steering (in order to analyze the effect of electrostatic fields in guid-
ing the ligand’s path), and also enzyme engineering. Moreover, they 
also found the application useful for results presentation, to help other 
collaborators ”understand what is really happening”. They also com-
mented on the interface, where they referred to it as ”very intuitive”, 
since the interacting groups are easily identified. Finally, the semi-
transparent visualization of the molecule was deemed very interesting, 
since it helps grasping how the ligand is getting close to the molecule 
without rendering it completely.



(a) Maestro (b) PLIP

Fig. 9. Visual results obtained from Maestro (a) and PLIP (b) when using 
the systems to visualize the binding of Aspirin and the Phospholipase 
A2 protein. In comparison to our system, no linked views, no interactive 
exploration and no long range interaction analysis is support.

From the design point of view, the use of cones of different sizes was 
found appealing because the users can simply identify the interactions 
and infer its strength quite simply. Furthermore, the domain experts 
valued very positively the possibility of filtering the energy magnitudes, 
energy types, and distances.

6.4 Comparison with other methods
The benefits of our system stand out when we compare our results 
to the ones obtained by two popular systems that visualize molecu-
lar interaction forces, Maestro [43] (see Figure 9 (a)) and PLIP [39]
(Figure 9 (b)) with the same simulations. Besides the different visual-
ization design communicating interaction intensity and signage, three 
conceptual differences immediately become clear. First, while our 
system employs linked views in order to communicate the interaction 
forces, Maestro and PLIP use a single view only. Interestingly, Maestro 
uses a 2D visualization, while PLIP uses a 3D visualization. We see 
this as an indicator, that both 2D and 3D have their benefits, and that 
our design considering the linking of a 2D and a 3D view might be 
helpful. Furthermore, we believe that having two linked views makes 
it more intuitive to map the binding information to the 3D structure 
of a molecule. The second major difference is the consideration of 
time-varying data. While Maestro and PLIP show a single frame only, 
our system enables domain experts to interactively explore arbitrary 
frames in a time-varying data set – an essential prerequisite for under-
standing protein dynamics. Finally, in contrast to Maestro and PLIP, 
we support a full interactive analysis. Thus, the outcome is not only 
based on a close contact analysis, but molecular interactions can also 
be filtered by strength or distance, and visualizations are updated in 
real-time. This enables for instance for the first time the exploration of 
long range interactions.

The supplementary material shows larger views of those two soft-
ware packages that include all the text that usually appears in the 
working window.

7 CONCLUSIONS AND FUTURE WORK

In this paper we have presented visualization concepts developed for 
the analysis of binding forces in drug design and protein engineering. 
The proposed visual analysis workflow provides domain experts with 
several tools that let them perform a detailed analysis of the most 
relevant energies that intervene in a docking simulation: electrostatic 
energies, van der Waals energies, and solvent energies. This way, it 
becomes possible to gain an understanding on how simulations perform, 
why a ligand is getting or not getting to the docking position, and which 
are the residues crucial to such reactions. We have discussed the 
interaction computations used, outlined how to visualize the obtained 
results, and showed how filtering c an h elp i n t he a nalysis process. 
We have further shown examples where domain experts can see at 
a glance which are the dominant energies throughout the simulation, 
or how easy it is to determine the strongest interactions at a certain 
point of the path. Through the filtering, the system instantly highlights 
the important residues and the energies can be seen as color-coded to 
indicate their relevance. Thanks to our GPU-based energy calculation,

which evaluates the binding equations in real-time, we may extend the
application to any simulation path generated by other systems. The only
necessary changes would be in the input files. In contrast to current
approaches, our approach is able to deal with full simulation paths,
instead of only single frames. Moreover, we may deal with information
by residue, as well as per atom. This facilitates the analysis, since most
forces are exerted at residue level. Moreover, we have a set of widgets
that further facilitate the inspection, such as user-defined colors and
transparency, configurable clipping plane, high quality illumination,
and different rendering modes to add contextual information to the
selected view.

In the future, we see several opportunities for future research. One
direct extension could be to also consider regions of the ligand, and
show the respective energies per region. The ligand could also be
broken into groups, to separately show the interactions of its different
parts. While this would increase the complexity of the visualization, it
would also allow for a more detailed inspection. Furthermore, we plan
to extend our visualization approaches to other molecular simulation
problems.
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