8,936 research outputs found

    Recommending Items in Social Tagging Systems Using Tag and Time Information

    Full text link
    In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based CF. Within this ranking step we integrate the information of tag usage and time using the Base-Level Learning (BLL) equation coming from human memory theory that is used to determine the reuse-probability of words and tags using a power-law forgetting function. As the results of our extensive evaluation conducted on data-sets gathered from three social tagging systems (BibSonomy, CiteULike and MovieLens) show, the usage of tag-based and time information via the BLL equation also helps to improve the ranking and recommendation process of items and thus, can be used to realize an effective item recommender that outperforms two alternative algorithms which also exploit time and tag-based information.Comment: 6 pages, 2 tables, 9 figure

    From Vision Sensor to Actuators, Spike Based Robot Control through Address-Event-Representation

    Get PDF
    One field of the neuroscience is the neuroinformatic whose aim is to develop auto-reconfigurable systems that mimic the human body and brain. In this paper we present a neuro-inspired spike based mobile robot. From commercial cheap vision sensors converted into spike information, through spike filtering for object recognition, to spike based motor control models. A two wheel mobile robot powered by DC motors can be autonomously controlled to follow a line drown in the floor. This spike system has been developed around the well-known Address-Event-Representation mechanism to communicate the different neuro-inspired layers of the system. RTC lab has developed all the components presented in this work, from the vision sensor, to the robot platform and the FPGA based platforms for AER processing.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    Toward an object-based semantic memory for long-term operation of mobile service robots

    Get PDF
    Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability
    corecore