20,068 research outputs found

    Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations

    Full text link
    Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems, based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose - to the best of our knowledge - the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin

    Delay-Based Controller Design for Continuous-Time and Hybrid Applications

    Get PDF
    Motivated by the availability of different types of delays in embedded systems and biological circuits, the objective of this work is to study the benefits that delay can provide in simplifying the implementation of controllers for continuous-time systems. Given a continuous-time linear time-invariant (LTI) controller, we propose three methods to approximate this controller arbitrarily precisely by a simple controller composed of delay blocks, a few integrators and possibly a unity feedback. Different problems associated with the approximation procedures, such as finding the optimal number of delay blocks or studying the robustness of the designed controller with respect to delay values, are then investigated. We also study the design of an LTI continuous-time controller satisfying given control objectives whose delay-based implementation needs the least number of delay blocks. A direct application of this work is in the sampled-data control of a real-time embedded system, where the sampling frequency is relatively high and/or the output of the system is sampled irregularly. Based on our results on delay-based controller design, we propose a digital-control scheme that can implement every continuous-time stabilizing (LTI) controller. Unlike a typical sampled-data controller, the hybrid controller introduced here -— consisting of an ideal sampler, a digital controller, a number of modified second-order holds and possibly a unity feedback -— is robust to sampling jitter and can operate at arbitrarily high sampling frequencies without requiring expensive, high-precision computation

    Frequency response modeling and control of flexible structures: Computational methods

    Get PDF
    The dynamics of vibrations in flexible structures can be conventiently modeled in terms of frequency response models. For structural control such models capture the distributed parameter dynamics of the elastic structural response as an irrational transfer function. For most flexible structures arising in aerospace applications the irrational transfer functions which arise are of a special class of pseudo-meromorphic functions which have only a finite number of right half place poles. Computational algorithms are demonstrated for design of multiloop control laws for such models based on optimal Wiener-Hopf control of the frequency responses. The algorithms employ a sampled-data representation of irrational transfer functions which is particularly attractive for numerical computation. One key algorithm for the solution of the optimal control problem is the spectral factorization of an irrational transfer function. The basis for the spectral factorization algorithm is highlighted together with associated computational issues arising in optimal regulator design. Options for implementation of wide band vibration control for flexible structures based on the sampled-data frequency response models is also highlighted. A simple flexible structure control example is considered to demonstrate the combined frequency response modeling and control algorithms

    Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants

    Get PDF
    This paper presents a method for the design of PID-type controllers, including those augmented by a filter on the D element, satisfying a required gain margin and an upper bound on the (complementary) sensitivity for a finite set of plants. Important properties of the method are: (i) it can be applied to plants of any order including non-minimum phase plants, plants with delay, plants characterized by quasi-polynomials, unstable plants and plants described by measured data, (ii) the sensors associated with the PI terms and the D term can be different (i.e., they can have different transfer function models), (iii) the algorithm relies on explicit equations that can be solved efficiently, (iv) the algorithm can be used in near real-time to determine a controller for on-line modification of a plant accounting for its uncertainty and closed-loop specifications, (v) a single plot can be generated that graphically highlights tradeoffs among the gain margin, (complementary) sensitivity bound, low-frequency sensitivity and high-frequency sensor noise amplification, and (vi) the optimal controller for a practical definition of optimality can readily be identified

    Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks

    Get PDF
    A new design technique for linear-phase FIR filters, based on maximally flat buildiing blocks, is presented. The design technique does not involve iterative approximations and is, therefore, fast. It gives rise to filters that have a monotone stopband response, as required in some applications. The technique is partially based on an interpolative scheme. Implementation of the obtained filter designs requires a much smaller number of multiplications than maximally flat (MAXFLAT) FIR filters designed by the conventional approach. A technique based on FIR spectral transformations to design new multiplierless FIR filter structures is then advanced, and multiplierless implementations for sharp cutoff specifications are included

    Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks

    Get PDF
    A new design technique for linear-phase FIR filters, based on maximally flat buildiing blocks, is presented. The design technique does not involve iterative approximations and is, therefore, fast. It gives rise to filters that have a monotone stopband response, as required in some applications. The technique is partially based on an interpolative scheme. Implementation of the obtained filter designs requires a much smaller number of multiplications than maximally flat (MAXFLAT) FIR filters designed by the conventional approach. A technique based on FIR spectral transformations to design new multiplierless FIR filter structures is then advanced, and multiplierless implementations for sharp cutoff specifications are included

    Application of optimization techniques to the design of a flutter suppression control law for the DAST ARW-2

    Get PDF
    The design of a candidate flutter suppression (FS) control law for the symmetric degrees of freedom for the DAST ARW-2 aircraft is discussed. The results illustrate the application of several currently employed control law design techniques. Subsequent designs, obtained as the mathematical model of the ARW-2 is updated, are expected to employ similar methods and to provide a control law whose performance will be flight tested. This study represents one of the steps necessary to provide an assessment of the validity of applying current control law synthesis and analysis techniques in the design of actively controlled aircraft. Mathematical models employed in the control law design and evaluation phases are described. The control problem is specified by presenting the flutter boundary predicted for the uncontrolled aircraft and by defining objectives and constraints that the controller should satisfy. A full-order controller is obtained by using Linear Quadratic Gaussian (LQG) techniques. The process of obtaining an implementable reduced-order controller is described. One example is also shown in which constrained optimization techniques are utilized to explicitly include robustness criteria within the design algorithm

    Active vibration control techniques for flexible space structures

    Get PDF
    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted
    corecore