169 research outputs found

    Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    Full text link
    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the beta-delta sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted to Solar Physic

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    Relationship between eruptions of active-region filaments and associated flares and CMEs

    Full text link
    To better understand the dynamical process of active-region filament eruptions and associated flares and CMEs, we carried out a statistical study of 120 events observed by BBSO, TRACE, and t(SOHO/EIT) from 1998 to 2007 and combined filament observations with the NOAA's flare reports, MDI magnetograms, and LASCO data, to investigate the relationship between active-region filament eruptions and other solar activities. We found that 115 out of 120 filament eruptions are associated with flares. 56 out of 105 filament eruptions are found to be associated with CMEs except for 15 events without corresponding LASCO data. We note the limitation of coronagraphs duo to geometry or sensitivity, leading to many smaller CMEs that are Earth-directed or well out of the plane of sky not being detected by near-Earth spacecraft. Excluding those without corresponding LASCO data, the CME association rate of active-region filament eruptions clearly increases with X-ray flare class from about 32% for C-class flares to 100% for X-class flares. The eruptions of active-region filaments associated with Halo CMEs are often accompanied by large flares. About 92% events associated with X-class flare are associated with Halo CMEs. Such a result is due to that the Earth-directed CMEs detected as Halo CMEs are often the larger CMEs and many of the smaller ones are not detected because of the geometry and low intensity. The average speed of the associated CMEs of filament eruptions increases with X-ray flare size from 563.7 km/s for C-class flares to 1506.6 km/s for X-class flares. Moreover, the magnetic emergence and cancellation play an important role in triggering filament eruptions. These findings may be instructive to not only in respect to the modeling of active-region filament eruptions but also in predicting flares and CMEs.Comment: 19 Pages, 7 figures, Accepted for publication in MNRA

    Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    Full text link
    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \AA, and Hα\alpha from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as ∼\sim215 km s−1^{-1} in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in Hα\alpha and TRACE 171 \AA\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be the driver of a radial velocity pulse outwards that accelerates this plasma blob in the solar atmosphere. In support of identification of the possible driver of the observed eruption, we solve the two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed supersonic plasma blob. The numerical modelling closely match the observed velocity, evolution of multi-temperature plasma, and quick vanishing of the blob found in the observations. Under typical coronal conditions, such blobs may also carry an energy flux of 7.0×106\times10^{6} ergs cm−2^{-2} s−1^{-1} to re-balance the coronal losses above active regions.Comment: Solar Physics; 22 Pages; 8 Figure

    Heliophysics Event Knowledgebase for the Solar Dynamics Observatory and Beyond

    Get PDF
    The immense volume of data generated by the suite of instruments on SDO requires new tools for efficient identifying and accessing data that is most relevant to research investigations. We have developed the Heliophysics Events Knowledgebase (HEK) to fill this need. The HEK system combines automated data mining using feature-detection methods and high-performance visualization systems for data markup. In addition, web services and clients are provided for searching the resulting metadata, reviewing results, and efficiently accessing the data. We review these components and present examples of their use with SDO data.Comment: 17 pages, 4 figure
    • …
    corecore