10 research outputs found

    Reducing Library Characterization Time for Cell-aware Test while Maintaining Test Quality

    Get PDF
    Cell-aware test (CAT) explicitly targets faults caused by defects inside library cells to improve test quality, compared with conventional automatic test pattern generation (ATPG) approaches, which target faults only at the boundaries of library cells. The CAT methodology consists of two stages. Stage 1, based on dedicated analog simulation, library characterization per cell identifies which cell-level test pattern detects which cell-internal defect; this detection information is encoded in a defect detection matrix (DDM). In Stage 2, with the DDMs as inputs, cell-aware ATPG generates chip-level test patterns per circuit design that is build up of interconnected instances of library cells. This paper focuses on Stage 1, library characterization, as both test quality and cost are determined by the set of cell-internal defects identified and simulated in the CAT tool flow. With the aim to achieve the best test quality, we first propose an approach to identify a comprehensive set, referred to as full set, of potential open- and short-defect locations based on cell layout. However, the full set of defects can be large even for a single cell, making the time cost of the defect simulation in Stage 1 unaffordable. Subsequently, to reduce the simulation time, we collapse the full set to a compact set of defects which serves as input of the defect simulation. The full set is stored for the diagnosis and failure analysis. With inspecting the simulation results, we propose a method to verify the test quality based on the compact set of defects and, if necessary, to compensate the test quality to the same level as that based on the full set of defects. For 351 combinational library cells in Cadence’s GPDK045 45nm library, we simulate only 5.4% defects from the full set to achieve the same test quality based on the full set of defects. In total, the simulation time, via linear extrapolation per cell, would be reduced by 96.4% compared with the time based on the full set of defects

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Figures of Merit to Characterize the Importance of On-Chip Inductance

    No full text
    A closed form solution for the output signal of a CMOS inverter driving an RLC transmission line is presented. This solution is based on the alpha power law for deep submicrometer technologies. Two figures of merit are presented that are useful for determining if a section of interconnect should be modeled as either an RLC or an RC impedance. The damping factor of a lumped RLC circuit is shown to be a useful figure of merit. The second useful figure of merit considered in this paper is the ratio of the rise time of the input signal at the driver of an interconnect line to the time of flight of the signals across the line. AS/X circuit simulations of an RLC transmission line and a five section RC PP circuit based on a 0.25 m IBM CMOS technology are used to quantify and determine the relative accuracy of an RC model. One primary result of this study is evidence demonstrating that a range for the length of the interconnect exists for which inductance effects are prominent. Furthermore, it..

    SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS

    Get PDF
    As the technologies scaling down, more transistors can be fabricated into the same area, which enables the integration of many components into the same substrate, referred to as system-on-chip (SoC). The components on SoC are connected by on-chip global interconnects. It has been shown in the recent International Technology Roadmap of Semiconductors (ITRS) that when scaling down, gate delay decreases, but global interconnect delay increases due to crosstalk. The interconnect delay has become a bottleneck of the overall system performance. Many techniques have been proposed to address crosstalk, such as shielding, buffer insertion, and crosstalk avoidance codes (CACs). The CAC is a promising technique due to its good crosstalk reduction, less power consumption and lower area. In this dissertation, I will present analytical delay models for on-chip interconnects with improved accuracy. This enables us to have a more accurate control of delays for transition patterns and lead to a more efficient CAC, whose worst-case delay is 30-40% smaller than the best of previously proposed CACs. As the clock frequency approaches multi-gigahertz, the parasitic inductance of on-chip interconnects has become significant and its detrimental effects, including increased delay, voltage overshoots and undershoots, and increased crosstalk noise, cannot be ignored. We introduce new CACs to address both capacitive and inductive couplings simultaneously.Quantum computers are more powerful in solving some NP problems than the classical computers. However, quantum computers suffer greatly from unwanted interactions with environment. Quantum error correction codes (QECCs) are needed to protect quantum information against noise and decoherence. Given their good error-correcting performance, it is desirable to adapt existing iterative decoding algorithms of LDPC codes to obtain LDPC-based QECCs. Several QECCs based on nonbinary LDPC codes have been proposed with a much better error-correcting performance than existing quantum codes over a qubit channel. In this dissertation, I will present stabilizer codes based on nonbinary QC-LDPC codes for qubit channels. The results will confirm the observation that QECCs based on nonbinary LDPC codes appear to achieve better performance than QECCs based on binary LDPC codes.As the technologies scaling down further to nanoscale, CMOS devices suffer greatly from the quantum mechanical effects. Some emerging nano devices, such as resonant tunneling diodes (RTDs), quantum cellular automata (QCA), and single electron transistors (SETs), have no such issues and are promising candidates to replace the traditional CMOS devices. Threshold gate, which can implement complex Boolean functions within a single gate, can be easily realized with these devices. Several applications dealing with real-valued signals have already been realized using nanotechnology based threshold gates. Unfortunately, the applications using finite fields, such as error correcting coding and cryptography, have not been realized using nanotechnology. The main obstacle is that they require a great number of exclusive-ORs (XORs), which cannot be realized in a single threshold gate. Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be bounded for both reliability and performance purpose. In this dissertation, I will present a majority-class threshold architecture of XORs with bounded fan-in, and compare it with a Boolean-class architecture. I will show an application of the proposed XORs for the finite field multiplications. The analysis results will show that the majority class outperforms the Boolean class architectures in terms of hardware complexity and latency. I will also introduce a sort-and-search algorithm, which can be used for implementations of any symmetric functions. Since XOR is a special symmetric function, it can be implemented via the sort-and-search algorithm. To leverage the power of multi-input threshold functions, I generalize the previously proposed sort-and-search algorithm from a fan-in of two to arbitrary fan-ins, and propose an architecture of multi-input XORs with bounded fan-ins

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Caractérisation et modélisation d'interconnexions. Développement de nouvelles solutions pour la transmission d'informations au sein des cartes et puces électroniques.

    Get PDF
    Since the first IC in 1959 the performances and computing capacity of electronic devices have always grown, following thus the well-known empirical Moore’s law which says that the number of transistors in a dense integrated circuit doubles approximately every 18 months. This prevision is still verified even if some limitations appears like for example the limitation of the clock frequency which grow less than the projection that the ITRS (International Technology Roadmap for Semiconductors) has made in 2000. One of the stumbling point comes from interconnects which ensure the transmission of information inside electronic chips or cards. The interconnects imply delay, signal distortion, crosstalk and power dissipation and they now must be taken into account during electronic device design. So the researches depicted in this manuscript deal with the modelling of interconnect and study of new solutions to overcome problems due to classical interconnects. These works have been realized in Lab-STICC laboratory with the help of colleagues, post-doc, PhDs and Master Students. The manuscript include three chapters, the first one concerns researches on modelling aspects, the second is about alternative solutions to classical wired interconnects and to conclude the research projects for the next years are presented.The first chapter concern researches about modelling which aim to develop reliable models in view to simulate more quickly the electrical behavior of interconnects. Firstly the collaborations concerning the development of model-order reduction are presented. Then with the aim to evaluate the impact of inductive behavior, the current return patch problem and so the extraction of loop inductance is treated. The 3D discontinuities and 3D environment effects are presented in the third part of this chapter. For example the parallel grid influences on propagation are explored as well as the case of coupling between microvias and parallel-plates cavities inside multilayer PCB.The second chapter is about research of new solutions to overcome the limitation due to classical wired interconnects. A review of envisaged alternative solutions like for example optical interconnects and CNT (carbon Nano Tube) is first presented. Then a focus on RF guided interconnect is made and constraints in term of bandwidth are explained and some coupling techniques are explored. These studies naturally lead to exploration of the paradigm of wireless interconnects and the preliminary researches on radio transmission between two circuits placed on a PCB are shown. All these approaches of RF wireless interconnect are prelude to the research projects which are developed in a third chapter of the manuscript.The development of the draft over 4 years is based on the BBC project (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) funded by the Labex COMINLABS and which will begin in October 2016. The aims of this project are outlined as well as the aims of another project entitled “BROADWAYS” (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) which is currently in the second step of review by the ANR. To conclude this research part other embryonic researches are presented as well as long term researches envisaged like terahertz applications of the use of graphene for microwave applications.Depuis les premiers circuits intĂ©grĂ©s en 1959 les composants et les systĂšmes Ă©lectroniques n’ont cessĂ© de voir leurs performances augmenter suivant ainsi la loi empirique de Gordon Moore qui prĂ©voit un doublement de la complexitĂ© des circuits tous les 18 mois. Cette prĂ©vision reste aujourd’hui toujours vĂ©rifiĂ©e mĂȘme si nous constatons depuis une dizaine d’annĂ©es que les frĂ©quences d’horloges stagnent autour de 4-5 GHz alors que l’ITRS (International Technology Roadmap for Semiconductors) prĂ©voyait dans les annĂ©es 2000 des frĂ©quences de travail pouvant atteindre 40 GHz pour 2016. L’un des facteurs limitant la progression des performances vient des interconnexions mĂ©talliques servant au transport de l’information au sein des systĂšmes Ă©lectroniques. Les travaux de recherche prĂ©sentĂ©s dans le cadre de l’obtention de l‘habilitation Ă  diriger des recherches concernent d’une part les travaux rĂ©alisĂ©s sur la modĂ©lisation des interconnexions et d’autre part ceux sur l’étude de solutions alternatives Ă  ces interconnexions classiques. Ces travaux ont Ă©tĂ© rĂ©alisĂ©s au sein du Lab-STICC en collaboration avec plusieurs collĂšgues et lors de l’encadrement de plusieurs post-doctorants, doctorants et stagiaires de master recherche. Le mĂ©moire comporte trois chapitres principaux, le premier concerne les travaux sur la modĂ©lisation des interconnexions, le second porte sur l’étude de solutions alternatives Ă  ces interconnexions classiques et le dernier permet la prĂ©sentation des projets de recherches pour les prochaines annĂ©es.L’objectif de nos travaux sur la modĂ©lisation des interconnexions consiste au dĂ©veloppement de modĂšles fiables permettant d’apprĂ©hender leurs effets sur les signaux. Dans un premier temps, les travaux portant sur l’obtention de modĂšles Ă  complexitĂ© rĂ©duite sont prĂ©sentĂ©s. Puis, afin d’évaluer l’impact des effets inductifs des interconnexions, nous prĂ©sentons les travaux sur l’identification des chemins de retours du courant dans un rĂ©seau comprenant plusieurs lignes et qui sont nĂ©cessaires pour dĂ©terminer les inductances de boucles. La prise en compte de l’environnement 3D des interconnexions fait l’objet de la troisiĂšme partie de ce chapitre. Nous traitons ainsi de l’influence de diffĂ©rentes discontinuitĂ©s et nous prĂ©sentons des rĂšgles de design permettant la limitation des risques de conversion de mode de propagation. Dans le cadre de structures multicouches, nous abordons l’influence de grilles mĂ©talliques placĂ©es au voisinage d’une ligne sur la propagation des signaux. Enfin nous traitons des risques de couplage entre des vias et les modes de cavitĂ©s au sein des structures PCB multicouches.La seconde thĂ©matique dĂ©veloppĂ©e dans ce mĂ©moire porte sur le dĂ©veloppement de solutions alternatives aux interconnexions classiques. AprĂšs avoir listĂ© certaines de ces solutions telle que les interconnexions optiques ou les nanotubes de carbone, nous prĂ©sentons plus particuliĂšrement les interconnexions RF qui vĂ©hiculent l’information numĂ©rique sur porteuse Ă  haute frĂ©quence. Dans un premier temps nous analysons les interconnexions RF guidĂ©es qui utilisent une ligne de transmission comme support pour transporter l’information. A partir de l’étude des modes d’accĂšs multiples nous montrons que les canaux doivent ĂȘtre large bande et nous explorons diverses façons de transmettre l’énergie Ă  la ligne de transmission. Enfin nous prĂ©sentons quelques exemples de performances obtenues Ă  l’aide de dĂ©monstrateurs numĂ©riques. Ces Ă©tudes des interconnexions RF guidĂ©es nous ont naturellement amenĂ© Ă  considĂ©rer les possibilitĂ©s de transmission par voie hertzienne des informations au sein des cartes et puces Ă©lectroniques. Nous avons ainsi analysĂ© Ă  l’aide de dĂ©monstrateurs trĂšs simples les niveaux de transmission entre deux circuits placĂ©s sur une mĂȘme carte PCB (Printed Circuit Board).Ces Ă©tudes initiales sur les interconnexions radios ou sans fils servent de point d’appui aux projets de recherche prĂ©sentĂ©s Ă  la fin de ce manuscrit. La philosophie du projet BBC (wireless interconnect network on chip or in board for Broadcast-Based parallel Computing) financĂ© par le Labex COMINLABS Ă  partir d’octobre est prĂ©sentĂ© de mĂȘme que celle du projet ANR Broadways (Broadcast-Based new paradigms of ubiquitous memory mapping, bandwidth allocation and parallel programing made possible by Radio Network On Chip) en seconde phase d’étude auprĂšs de l’ANR

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore