271,409 research outputs found

    Σχεδιασμός κοχλιοφόρου αντλίας κονιαμάτων με μεταβλητή διατομή

    Get PDF
    Crop growth simulation models require robust ecophysiological functionality to support credible simulation of diverse genotype × management × environment (G × M × E) combinations. Most efforts on modeling the nitrogen (N) dynamics of crops use a minimum, critical, and maximum N concentration per unit biomass based empirically on experimental observations. Here we present a physiologically more robust approach, originally implemented in sorghum, which uses the N content per unit leaf area as a key driver of N demand. The objective was to implement the conceptual framework of the APSIM sorghum nitrogen dynamics model in APSIM maize and to validate the robustness of the model across a range of G × M × E combinations. The N modelling framework is described and its parameterisation for maize is developed based on three previously reported detailed field experiments, conducted at Gatton (27°34'S, 152°20'), Queensland, Australia, supplemented by literature data. There was considerable correspondence with parameterisation results found for sorghum, suggesting potential for generality of this framework for modelling crop N dynamics in cereals. Comprehensive model testing indicated accurate predictions at organ and crop scale across a diverse range of experiments and demonstrated that observed responses to a range of management factors were reproduced credibly. This supports the use of the model to extrapolate and predict performance and adaptation under new G × M × E combinations. Capturing this advance with reduced complexity compared to the N concentration approach provides a firm basis to progress the role of modelling in exploring the genetic underpinning of complex traits and in plant breeding and crop improvement generally

    A comprehensive investigation into the hydrodynamic and capture/retention performance of a gross pollutant trap

    Get PDF
    A novel and comprehensive testing approach to examine the performance of gross pollutant traps (GPTs) was developed. A proprietary GPT with internal screens for capturing gross pollutants—organic matter and anthropogenic litter—was used as a case study. This work is the first investigation of its kind and provides valuable practical information for the design, selection and operation of GPTs and also the management of street waste in an urban environment. It used a combination of physical and theoretical models to examine in detail the hydrodynamic and capture/retention characteristics of the GPT. The results showed that the GPT operated efficiently until at least 68% of the screens were blocked, particularly at high flow rates. At lower flow rates, the high capture/retention performance trend was reversed. It was also found that a raised inlet GPT offered a better capture/retention performance. This finding indicates that cleaning operations could be more effectively planned in conjunction with the deterioration in GPT’s capture/retention performance

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    MolMod – an open access database of force fields for molecular simulations of fluids

    Get PDF
    The MolMod database is presented, which is openly accessible at http://molmod.boltzmann-zuse.de and contains intermolecular force fields for over 150 pure fluids at present. It was developed and is maintained by the Boltzmann-Zuse Society for Computational Molecular Engineering (BZS). The set of molecular models in the MolMod database provides a coherent framework for molecular simulations of fluids. The molecular models in the MolMod database consist of Lennard-Jones interaction sites, point charges, and point dipoles and quadrupoles, which can be equivalently represented by multiple point charges. The force fields can be exported as input files for the simulation programmes ms2 and ls1 mardyn, GROMACS, and LAMMPS. To characterise the semantics associated with the numerical database content, a force field nomenclature is introduced that can also be used in other contexts in materials modelling at the atomistic and mesoscopic levels. The models of the pure substances that are included in the database were generally optimised such as to yield good representations of experimental data of the vapour–liquid equilibrium with a focus on the vapour pressure and the saturated liquid density. In many cases, the models also yield good predictions of caloric, transport, and interfacial properties of the pure fluids. For all models, references to the original works in which they were developed are provided. The models can be used straightforwardly for predictions of properties of fluid mixtures using established combination rules. Input errors are a major source of errors in simulations. The MolMod database contributes to reducing such errors.BMBF, 01IH16008E, Verbundprojekt: TaLPas - Task-basierte Lastverteilung und Auto-Tuning in der PartikelsimulationEC/H2020/694807/EU/Enrichment of Components at Interfaces and Mass Transfer in Fluid Separation Technologies/ENRICOEC/H2020/760907/EU/Virtual Materials Market Place (VIMMP)/VIMM

    PhoSim-NIRCam: Photon-by-photon image simulations of the James Webb Space Telescope's Near-Infrared Camera

    Full text link
    Recent instrumentation projects have allocated resources to develop codes for simulating astronomical images. Novel physics-based models are essential for understanding telescope, instrument, and environmental systematics in observations. A deep understanding of these systematics is especially important in the context of weak gravitational lensing, galaxy morphology, and other sensitive measurements. In this work, we present an adaptation of a physics-based ab initio image simulator: The Photon Simulator (PhoSim). We modify PhoSim for use with the Near-Infrared Camera (NIRCam) -- the primary imaging instrument aboard the James Webb Space Telescope (JWST). This photon Monte Carlo code replicates the observational catalog, telescope and camera optics, detector physics, and readout modes/electronics. Importantly, PhoSim-NIRCam simulates both geometric aberration and diffraction across the field of view. Full field- and wavelength-dependent point spread functions are presented. Simulated images of an extragalactic field are presented. Extensive validation is planned during in-orbit commissioning
    corecore