5 research outputs found

    Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart

    Get PDF
    Electrical stimulation (ES) of cells has been shown to induce a variety of responses, such as cytoskeleton rearrangements, migration, proliferation, and differentiation. In this study, we have investigated whether monophasic and biphasic pulsed ES could exert any effect on the proliferation and differentiation of human cardiac progenitor cells (hCPCs) isolated from human heart fragments. Cells were cultured under continuous exposure to monophasic or biphasic ES with fixed cycles for 1 or 3 days. Results indicate that neither stimulation protocol affected cell viability, while the cell shape became more elongated and reoriented more perpendicular to the electric field direction. Moreover, the biphasic ES clearly induced the upregulation of early cardiac transcription factors, MEF2D, GATA-4, and Nkx2.5, as well as the de novo expression of the late cardiac sarcomeric proteins, troponin T, cardiac alpha actinin, and SERCA 2a. Both treatments increased the expression of connexin 43 and its relocation to the cell membrane, but biphasic ES was faster and more effective. Finally, when hCPCs were exposed to both monophasic and biphasic ES, they expressed de novo the mRNA of the voltage-dependent calcium channel Cav 3.1(α(1G)) subunit, which is peculiar of the developing heart. Taken together, these results show that ES alone is able to set the conditions for early differentiation of adult hCPCs toward a cardiac phenotype

    Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform

    Get PDF
    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8V, 2ms, 1Hz) and biphasic (+4V, 1ms and -4V, 1ms; 1Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration

    Theory, modelling and applications of electrocardiographic mapping

    Get PDF
    In this thesis, the genesis and applications of electromagnetic signals from the human heart are investigated through theory, modelling, signal processing and clinical studies. One objective of the thesis was to develop and test signal processing methods that would be applicable to multichannel electro- and magnetocardiographic data. A signal processing method based on a type of neural networks called the self-organizing maps is introduced for spatiotemporal analysis of the body surface potential maps produced by the beating heart. This method is capable of utilizing both the spatial morphology of the potential distributions on the body surface as well as their temporal development. A signal processing method aimed at providing a reliable electric baseline for more traditional isointegral analysis of the body surface potential mapping (BSPM) data is also introduced. Another objective of the thesis was to show the utility of electrocardiographic mapping in clinical use. This was demonstrated by applying electro- and magnetocardiographic mapping to evaluation of the propensity to life-threatening arrhythmias in postinfarction patients. Electrocardiographic mapping was found to perform equally well compared to more traditional SA-ECG, but electrocardiographic mapping may be more robust against individual variability in anatomy. A third objective of the thesis was to build a computer model of the human heart that is capable of simulating the normal ventricular activation. The propagation model is based on a bidomain formulation of the cardiac tissue applied to realistic geometry of the ventricles. An anatomically accurate model of the human conduction system that reproduces measured activation sequence of the human heart was developed in this thesis. The body surface potentials and the magnetic fields computed from the simulated activation corresponded to recordings from normal subjects. In summary, the thesis demonstrates the utility of electrocardiographic mapping in clinical use and introduces new signal processing methods that can be applied to this use. Finally, a computer model of the human heart binds together the physiology and anatomy of the human heart and body, classical electromagnetic theory, and computer science to explain the genesis and characteristics of the electromagnetic signals from the human heart.reviewe

    Cardiomyocyten im Chaos: Makroskopische Untersuchungen kardialer Arrhythmien in-vitro unter dem Einfluss elektrischer Pulsfolgen und Parameteränderungen

    Get PDF
    Ein Charakteristikum für viele physiologische und pathologische Zustände in biologischen Systemen ist eine komplexe raum-zeitliche Dynamik. So wird z.B. bei kardialer Fibrillation die synchrone Kontraktion des Herzens durch wirbelartig rotierende Erregungswellen unterbrochen, welche oft zu chaotischer Erregungsweiterleitung führen. Gegenstand aktueller Forschung sind insbesondere die zugrunde liegenden Mechanismen der Entstehung und Terminierung solcher Turbulenzformen. Hier wurde ein experimenteller Versuchsaufbau etabliert, der die Untersuchung kardialer Musterbildung in der Zellkultur erlaubt.For many physiological and pathological states in biological systems a complex spatio-temporal dynamic is characteristic. For example during fibrillation, synchronous contraction of the heart is disrupted by vortex-like rotating waves, resulting in complex and often chaotic excitation patterns. One focus of research is the clearing of underlying mechanisms of development and termination of such turbulence. Here an experimental setup was established, which allows investigation of cardiac pattern formation in two dimensional cell cultures under several conditions
    corecore