57 research outputs found

    TV white space and LTE network optimization toward energy efficiency in suburban and rural scenarios

    Get PDF
    The radio spectrum is a limited resource. Demand for wireless communication services is increasing exponentially, stressing the availability of radio spectrum to accommodate new services. TV white space (TVWS) technologies allow a dynamic usage of the spectrum. These technologies provide wireless connectivity, in the channels of the very high frequency and ultra high frequency television broadcasting bands. In this paper, we investigate and compare the coverage range, network capacity, and network energy efficiency for TVWS technologies and LTE. We consider Ghent, Belgium, and Boyeros, Havana, Cuba, to evaluate a realistic outdoor suburban and rural area, respectively. The comparison shows that TVWS networks have an energy efficiency 9-12 times higher than LTE networks

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Coexisting analysis of 5G waveforms with ISDB-T system in tv white spaces

    Get PDF
    The efficient use of the electromagnetic spectrum becomes increasingly necessary due to the increase number of cellular devices. One possible solution is the opportunistic spectrum use in the VHF and UHF bands, allocated for television broadcasting. Therefore, it is necessary to evaluate the concurrent operation of broadcasting and mobile communication systems. This work aims to identify, analyze and measure the interoperability between those systems, by evaluating the feasibility of coexistence of different types of services. In this article, evaluations were made on two major candidates for the next cellular generation, the GFDM and the F-OFDM, operating along with the Integrated Services Digital Broadcasting Terrestrial – ISDB-T standard. The results show the flexibility of the GFDM and F-OFDM waveforms over the OFDM waveform, thus enabling opportunistic use of the spectrum over licensed and unlicensed users.Agência 1O uso eficiente do espectro eletromagnético torna-se cada vez mais necessário devido a o aumento do número de aparelhos celulares. Uma solução possível é o espectro oportunista utilização nas faixas de VHF e UHF, destinadas à difusão televisiva. Portanto, é necessário avaliar a operação simultânea de radiodifusão e comunicação móvel sistemas. Este trabalho tem como objetivo identificar, analisar e medir a interoperabilidade. entre esses sistemas, avaliando a viabilidade de coexistência de diferentes tipos de serviços. Neste artigo, as avaliações foram feitas em dois grandes candidatos para o próximo celular geração, o GFDM e o F-OFDM, operando em conjunto com os Serviços Integrados Radiodifusão Digital Terrestre - padrão ISDB-T. Os resultados mostram a flexibilidade do Formas de onda GFDM e F-OFDM sobre a forma de onda OFDM, permitindo assim uso do espectro sobre usuários licenciados e não licenciados

    Reti Wireless Cognitive Cooperanti su TV White e Grey Spaces

    Get PDF
    Wireless networks rapidly became a fundamental pillar of everyday activities. Whether at work or elsewhere, people often benefits from always-on connections. This trend is likely to increase, and hence actual technologies struggle to cope with the increase in traffic demand. To this end, Cognitive Wireless Networks have been studied. These networks aim at a better utilization of the spectrum, by understanding the environment in which they operate, and adapt accordingly. In particular recently national regulators opened up consultations on the opportunistic use of the TV bands, which became partially free due to the digital TV switch over. In this work, we focus on the indoor use of of TVWS. Interesting use cases like smart metering and WiFI like connectivity arise, and are studied and compared against state of the art technology. New measurements for TVWS networks will be presented and evaluated, and fundamental characteristics of the signal derived. Then, building on that, a new model of spectrum sharing, which takes into account also the height from the terrain, is presented and evaluated in a real scenario. The principal limits and performance of TVWS operated networks will be studied for two main use cases, namely Machine to Machine communication and for wireless sensor networks, particularly for the smart grid scenario. The outcome is that TVWS are certainly interesting to be studied and deployed, in particular when used as an additional offload for other wireless technologies. Seeing TVWS as the only wireless technology on a device is harder to be seen: the uncertainity in channel availability is the major drawback of opportunistic networks, since depending on the primary network channel allocation might lead in having no channels available for communication. TVWS can be effectively exploited as offloading solutions, and most of the contributions presented in this work proceed in this direction

    Software defined radio testbed of television white space for video transmission

    Get PDF
    Recently, television white space (TVWS) has grabbed a lot of attention from researchers in the Cognitive Radio (CR) area. This underutilized spectrum is one of the possible solutions for spectrum scarcity problem in wireless communication. Thus, many research works have been carried out in order to find a suitable method to utilize this spectrum in an efficient manner. Nevertheless, the actual hardware implementation on utilizing this spectrum is still lacking. Therefore, in this research, an Orthogonal Frequency Division Multiplexing (OFDM) real-time video transmission is proposed using software defined radio (SDR) platform. Two modulation schemes are used namely Phase-shift keying (PSK) with its Binary-PSK (BPSK) and Quadrature-PSK (QPSK) and Quadrature amplitude modulation (QAM) with 16QAM and 64QAM modes. The free channel used in this work is selected under ultra high frequency (UHF) band based on the energy detection, which is either on channel 54 or channel 56. The proposed system is developed with the physical (PHY) layer design of the transmitter and receiver in GNU Radio and integration of medium access control (MAC) layer functionality. Video capture and display programs are designed based on OpenCV modules. The performance of this design is evaluated based on two types of environment, indoor and outdoor, with packet delivery ratio (PDR) and end-to-end delay (EED) as the performance metrics. Three types of video motion are used in the experimentation which are fast (mobile), medium (foreman) and slow (akiyo). Under allocated bandwidth of 1.0 MHz, optimal performances of PDR and EED for both scenarios are shown. In the indoor scenario, QPSK½ exhibits the best performance with 0.92 of PDR and 24.7 seconds of EED for akiyo. Meanwhile for foreman and mobile, BPSK¾ achieves the best performance with PDR of 0.96 and 0.95 and EED of 33.2 seconds and 35.0 seconds, respectively. In the outdoor scenario, the best performance of PDR is achieved by 16QAM½ with 0.9 and 23.5 seconds of EED for akiyo. For foreman and mobile, QPSK½ exhibits the best performance with 0.94 and 0.9 of PDR and 31.2 seconds and 32.5 seconds of EED, respectively. In conclusion, the proposed design exhibits promising solutions for the OFDM real-time video transmission over TVWS

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity
    corecore