12 research outputs found

    Digital Processing for an Analogue Subcarrier Multiplexed Mobile Fronthaul

    Get PDF
    In order to meet the demands of the fifth generation of mobile communication networks (5G), such as very high bit-rates, very low latency and massive machine connectivity, there is a need for a flexible, dynamic, scalable and versatile mobile fronthaul. Current industry fronthaul standards employing sampled radio waveforms for digital transport suffer from spectral inefficiency, making this type of transport impractical for the wide channel bandwidths and multi-antenna systems required by 5G. On the other hand, analogue transport does not suffer from these limitations. It is, however, prone to noise, non-linearity and poor dynamic range. When combined with analogue domain signal aggregation/multiplexing, it also lacks flexibility and scalability, especially at millimetre wave frequencies. Measurements (matched in simulation) of analogue transport at millimetre wave frequencies demonstrate some of these issues. High data rates are demonstrated employing wide bandwidth channels combined using traditional subcarrier multiplexing techniques. However, only a limited number of channels can be multiplexed in this manner, with poor spectral efficiency, as analogue filter limitations do not allow narrow gaps between channels. To this end, over the last few years, there has been significant investigation of analogue transport schemes combined with digital channel aggregation/ de-aggregation (combining/ separating multiple radio waveforms in the digital domain). This work explores such a technique. Digital processing is used at the transmitter to flexibly multiplex a large number of channels in a subcarrier multiplex, without the use of combiners, mixers/ up-converters or Hilbert transforms. Orthogonal Frequency Division Multiplexing (OFDM) - derived Discrete Multi-Tone (DMT) and Single Sideband (SSB) modulated channels are integrated within a single Inverse Fast Fourier Transform (IFFT) operation. Channels or channel groups are mapped systematically into Nyquist zones by using, for example, a single IFFT (for a single 5G mobile numerology) or multiple IFFTs (for multiple 5G mobile numerologies). The analogue transport signal generated in this manner is digitally filtered and band-pass sampled at the receiver such that each corresponding channel (e.g. channels destined to the same radio frequency (RF)/ millimetre wave (mmW) frequency) in the multiplex is presented at the same intermediate frequency, due to the mapping employed at the transmitter. Analogue or digital domain mixers/ down-converters are not required with this technique. Furthermore, each corresponding channel can be readily up-converted to their respective RF/mmW channels with minimal per-signal processing. Measurement results, matched in simulation, for large signal multiplexes with both generic and 5G mobile numerologies show error-vector magnitude performance well within specifications, validating the proposed system. For even larger multiplexes and/or multiplexes residing on a higher IF exceeding the analogue bandwidth and sampling rate specifications of the ADCs at the receiver, the use of a bandwidth-extension device is proposed to extend the mapping to a mapping hierarchy and relax the analogue bandwidth and sampling rate requirements of the ADCs. This allows the receiver to still use digital processing, with only minimal analogue processing, to band-pass sample smaller blocks of channels from the larger multiplex, down to the same intermediate frequency. This ensures that each block of channels is within the analogue bandwidth specification of the ADCs. Performance predictions via simulation (based on a system model matched to the measurements) show promising results for very large multiplexes and large channel bandwidths. The multiplexing technique presented in this work thus allows reductions in per-channel processing for heterogeneous networking (or multi-radio access technologies) and multi-antenna configurations. It also creates a re-configurable and adaptable system based on available processing resources, irrespective of changes to the number of channels and channel groups, channel bandwidths and modulation formats

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Millimetre-wave radio-over-fibre supported multi-antenna and multi-user transmission

    Get PDF
    In this thesis, various features of the RoF supported mmW communication for future wireless systems have been analysed including photonic generation of mmW for MIMO operation, performance analysis of mmW MIMO to achieve spatial diversity and spatial multiplexing with analog RoF fronthaul, and multi-user transmission in the 60 GHz-band using multiplexing-over-fibre transport and frequency-selective antenna. A low cost mmW generation system for two independent MIMO signals has been presented, consisting of a single optical Phase Modulator (PM). The different aspects of experimental analysis on RoF-supported mmW MIMO in this thesis, which were not considered before, include use of specific MIMO algorithm to understand the amount of improvement in coverage and data rate for a particular MIMO technique, performance comparison with SISO at several user locations, and verification of optimum RAU physical spacing for a particular transmission distance with the theoretical results. The results show that flexible and wider RAU spacings, required to obtain optimum performance in a mmW MIMO system, can be achieved using the proposed analog RoF fronthaul. The investigation was extended to verification of a method to individual measurement of mmW channel coefficients and performing MIMO processing, which shows that mmW channels are relatively static and analysis can be extended to much longer distances and making projections for NĂ—N MIMO. For mmW multi-user transmission, a novel low cost, low complexity system using single RoF link and single RF chain with single transmitting antenna has been presented and characterized, which was based on large number of RF chains and multiple antenna units previously. The setup involves generation and RoF transport of a composite SCM signal, upconversion at the RAU and transmission of different frequency channels towards spatially distributed users using a frequency-selective Leaky-Wave-Antenna (LWA), to convert Frequency Division Multiplexing (FDM) in to Spatial Division Multiple Access (SDMA). Analysis on low user-signal spacing for the SCM shows the feasibility to serve a large number of users within a specific transmission bandwidth and experimental demonstration to achieve sum rate of 10Gb/s is shown by serving 20 users simultaneously. Furthermore, investigation on SNR degradation of high bandwidth signals due to beamsteering effect of the LWA and theoretical calculations of the sum data rate for different number of users is performed, which shows that the proposed system can provide much higher sum rates with high available SNR. It was also experimentally demonstrated that improvement in coverage and spectral efficiency is obtained by operating multiple LWAs using single RF chain. Finally, an experimental demonstration of a DWDM-RoF based 60 GHz multi-user transmission using single LWA is presented to show the feasibility to extend the setup for a multiple RAU based system, serving each at distinct optical wavelength and performing direct photonic upconversion at the RAU for low cost mmW generation

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Live streaming of uncompressed HD and 4K videos using terahertz wireless links

    Get PDF
    RÉSUMÉ: Taming the Terahertz waves (100 GHz-10 THz) is considered the next frontier in wireless communications. While components for the ultra-high bandwidth Terahertz wireless communications were in rapid development over the past several years, however, their commercial availability is still lacking. Nevertheless, as we demonstrate in this paper, due to recent advances in the microwave and infrared photonics hardware, it is now possible to assemble a high-performance hybrid THz communication system for real-life applications. As an example, in this paper, we present the design and performance evaluation of the photonics-based Terahertz wireless communication system for the transmission of uncompressed 4K video feed that is built using all commercially available system components. In particular, two independent tunable lasers operating in the infrared C-band are used as a source for generating the Terahertz carrier wave using frequency difference generation in a photomixer. One of the IR laser beams carries the data which is intensity modulated using the LiNbO 3 electro-optic modulator. A zero bias Schottky diode is used as the detector and demodulator of the data stream followed by the high-gain and low-noise pre-amplifier. The Terahertz carrier frequency is fixed at 138 GHz and the system is characterized by measuring the bit error rate for the pseudo random bit sequences at 5.5 Gbps. By optimizing the link geometry and decision parameters, an error-free (BER <; 10 -10 ) transmission at a link distance of 1 m is achieved. Finally, we detail the integration of a professional 4K camera into the THz communication link and demonstrate live streaming of the uncompressed HD and 4K video followed by the analysis of link quality

    On the efficiency of dynamic licensed shared access for 5G/6G wireless communications

    Get PDF
    The licensed shared access (LSA) is a spectrum licensing scheme authorizing additional new users (the licensees) to dynamically share the same spectrum with the old users (the incumbents). Contained in the terms of the spectrum usage authorization is a set of strict protective measures for the incumbent system which introduce extra restrictions on the licensee operations. Such measures imply that the licensee’s access to the spectrum can be revoked or restricted at any time which may result in the degradation of critical performance metrics of the latter. Addressing this issue and the accompanying challenges as we enter the 5G zettabytes era motivates the research problems addressed in this thesis. A vertical LSA spectrum sharing involving a mobile network operator (MNO) as the licensee and two categories of incumbent including the aeronautical telemetry, and a group of terrestrial public and ancillary wireless services is adopted in this thesis. Firstly, an analytical examination of the uplink and downlink licensee’s transmit power, when its spectrum access right is revoked (i.e., the limited transmit power) is done. Then a power allocation scheme that maximizes the energy efficiency (EE) of the licensee when it is operating with limited transmit power is proposed. Simulation results reveal the impact of the LSA spectrum access revocation on the allowable transmit power of the licensee as a function of the effect of different interference propagation path and the transmission direction. A comparison of the proposed optimal power allocation method with the equal power allocation (EPA) method further shows considerable improvement in the achievable EE of the licensee. Furthermore, in the LSA, the achievable spectrum efficiency (SE) of the licensee is limited by the interference threshold constraint set by the incumbent’s protective measures. Consequent on this, we propose an SE maximization of the licensee’s system subject to the incumbent interference threshold constraint. Furthermore, the LSA band spectral utilization was characterised as a function of the licensee’s achievable SE and the statistics of the LSA spectrum availability. The obtained results provide quantitative insights for practical system design and deployment of the LSA system, especially when compared to the results obtained in the maximization of the EE. In particular, the effect of variations in critical operational parameters throws up interesting network design trade-off challenge, worthy of consideration. This informs the subsequent multi objective optimization of the EE-SE trade-off investigated next. Interestingly, the obtained results indicate that with careful selection of the licensee eNodeB coverage radius, transmit power, and number of user equipment per eNodeB coverage area, one can engineer the best possible trade-off between the spectrum and energy efficiency in practical LSA deployment. A major LSA feature is guaranteeing predictable quality of service (QoS) for both the incumbent and the licensee systems. In terrestrial implementation, the reduction in the achievable data rate caused by the incumbents’ protective measures, may violate guaranteed QoS in the licensee system. To address this issue, we propose a LSA - based hybrid aerialterrestrial system with drone base station (D-BS). Simulation results show that using the proposed scheme, the licensee, when operating under the incumbents’ imposed restrictions, is able to achieve the QoS data rate requirements of the users on its network. In conclusion, the findings in this research indicates that the dynamic LSA is a practically viable solution to the spectrum management requirements of the emerging vertical wireless technologies in 5G and beyond

    Measurement techniques for the characterization of radio frequency gallium nitride devices and power amplifiers

    Get PDF
    The rapid growth of mobile telecommunications has fueled the development of the fifth generation (5G) of standards, aiming to achieve high data rates and low latency. These capabilities make use of new regions of spectrum, wider bandwidths and spectrally efficient modulations. The deployment of 5G relies on the development of radio-frequency (RF) technology with increased performance. The broadband operation at high-power and high-frequency conditions is particularly challenging for power amplifiers (PA) in transmission stages, which seek to concurrently maximize linearity and energy efficiency. The properties of Gallium Nitride (GaN) allow the realization of active devices with favorable characteristics in these applications. However, GaN high-electron mobility transistors (HEMTs) suffer from spurious effects such as trapping due to physical defects introduced during the HEMT growth process. Traps dynamically capture and release mobile charges depending on the applied voltages and temperature, negatively affecting the RF PA performance. This work focuses on the development of novel measurement techniques and setups to investigate trapping behavior of GaN HEMTs and PAs. At low-frequency (LF), charge dynamics is analyzed using pulsed current transient characterizations, identifying relevant time constants in state-of-the-art GaN technologies for 5G. Instead, at high-frequency, tailored methods and setups are used in order to measure trapping effects during the operation of HEMTs and PAs in RF modulated conditions. These RF characterizations emulate application-like regimes, possibly involving the control of the device’s output load termination. Therefore, an innovative wideband active load pull (WALP) setup is developed, using the acquisition capabilities of standard vector-network-analyzers. Moreover, the implications of performing error-vector-magnitude characterizations under wideband load pull conditions are studied. Finally, an efficient implementation of a modified-Volterra model for RF PAs is presented, making use of a custom vector-fitting algorithm to simplify the nonlinear memory operators and enable their realization in simulation environments

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    corecore