52 research outputs found

    Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry

    Get PDF
    P pili are multisubunit fibers essential for the attachment of uropathogenic Escherichia coli to the kidney. These fibers are formed by the noncovalent assembly of six different homologous subunit types in an array that is strictly defined in terms of both the number and order of each subunit type. Assembly occurs through a mechanism termed “donor-strand exchange (DSE)” in which an N-terminal extension (Nte) of one subunit donates a β-strand to an adjacent subunit, completing its Ig fold. Despite structural determination of the different subunits, the mechanism determining specificity of subunit ordering in pilus assembly remained unclear. Here, we have used noncovalent mass spectrometry to monitor DSE between all 30 possible pairs of P pilus subunits and their Ntes. We demonstrate a striking correlation between the natural order of subunits in pili and their ability to undergo DSE in vitro. The results reveal insights into the molecular mechanism by which subunit ordering during the assembly of this complex is achieved

    Crystal Structure of the P Pilus Rod Subunit PapA

    Get PDF
    P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 β-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it. Author Summary. Bacterial adhesion to a host is a crucial step that determines the onset of bacterial infection. It is mediated through recognition of a receptor on the host cell surface by a protein called an adhesin displayed on the surface of the bacterium. Many adhesins are displayed at the tip of specialized organelles called pili, some of which are assembled by the ubiquitous chaperone-usher pathway. In this pathway, each pilus subunit is assisted in folding by a chaperone. The resulting chaperone-subunit complex is targeted to a pore located in the outer membrane, called the usher, that serves as assembly platform. There, pilus subunits dissociate from the chaperone and polymerize, resulting in a surface organelle, the pilus, that protrudes out of the usher. Here, we have determined the structure of the major subunit of the P pilus, PapA. The P pilus, produced in uropathogenic Escherichia coli, displays the adhesin PapG responsible for targeting the bacterium to the kidney epithelium. We have determined the structure of PapA either bound to its cognate chaperone, PapD, or bound to another PapA subunit. These structures provide a view of PapA before and after its assembly in the pilus and shed light on the mechanism of PapA assembly.National Institutes of Health (DE 09761, GM040388, DE 09161); Committee of Scientific Research (3 PO4A 003 24, 2 P05A 137 24); Foundation for Polish Science (SUBSYDIUM PROFESORSKIE award); Swedish Rheumatism Association; Nanna Svartz Foundation; King Gustaf V Foundatio

    Donor-strand exchange in chaperone-assisted pilus assembly revealed in atomic detail by molecular dynamics

    Get PDF
    Adhesive multi-subunit fibres are assembled on the surface of many pathogenic bacteria via the chaperone-usher pathway. In the periplasm, a chaperone donates a β-strand to a pilus subunit to complement its incomplete immunoglobulin-like fold. At the outer membrane, this is replaced with a β-strand formed from the N-terminal extension (Nte) of an incoming pilus subunit by a donorstrand exchange (DSE) mechanism. This reaction has previously been shown to proceed via a concerted mechanism, in which the Nte interacts with the chaperone:subunit complex before the chaperone has been displaced, forming a ternary intermediate. Thereafter, the pilus and chaperone β-strands have been postulated to undergo a strand swap by a ‘zip-in-zip-out’ mechanism, whereby the chaperone strand zips out, residue by residue, as the Nte simultaneously zips in. Here, molecular dynamics simulations have been used to probe the DSE mechanism during formation of the Salmonella enterica Saf pilus at an atomic level, allowing the direct investigation of the zip-inzip- out hypothesis. The simulations provide an explanation of how the incoming Nte is able to dock and initiate DSE due to inherent dynamic fluctuations within the chaperone:subunit complex. The chaperone donor-strand is shown to unbind from the pilus subunit residue by residue, in direct support of the zip-in-zip-out hypothesis. In addition, an interaction of a residue towards the Nterminus of the Nte with a specific binding pocket (P*) on the adjacent pilus subunit is shown to stabilise the DSE product against unbinding, which also proceeds by a zippering mechanism. Together, the study provides an in-depth picture of DSE, including the first insights into the molecular events occurring during the zip-in-zip-out mechanism

    The structure of the PapD-PapGII pilin complex reveals an open and flexible P5 pocket

    Get PDF
    P pili are hairlike polymeric structures that mediate binding of uropathogenic Escherichia coli to the surface of the kidney via the PapG adhesin at their tips. PapG is composed of two domains: a lectin domain at the tip of the pilus followed by a pilin domain that comprises the initial polymerizing subunit of the 1,000-plus-subunit heteropolymeric pilus fiber. Prior to assembly, periplasmic pilin domains bind to a chaperone, PapD. PapD mediates donor strand complementation, in which a beta strand of PapD temporarily completes the pilin domain's fold, preventing premature, nonproductive interactions with other pilin subunits and facilitating subunit folding. Chaperone-subunit complexes are delivered to the outer membrane usher where donor strand exchange (DSE) replaces PapD's donated beta strand with an amino-terminal extension on the next incoming pilin subunit. This occurs via a zip-in-zip-out mechanism that initiates at a relatively accessible hydrophobic space termed the P5 pocket on the terminally incorporated pilus subunit. Here, we solve the structure of PapD in complex with the pilin domain of isoform II of PapG (PapGIIp). Our data revealed that PapGIIp adopts an immunoglobulin fold with a missing seventh strand, complemented in parallel by the G1 PapD strand, typical of pilin subunits. Comparisons with other chaperone-pilin complexes indicated that the interactive surfaces are highly conserved. Interestingly, the PapGIIp P5 pocket was in an open conformation, which, as molecular dynamics simulations revealed, switches between an open and a closed conformation due to the flexibility of the surrounding loops. Our study reveals the structural details of the DSE mechanism

    Structural and functional studies of Escherichia coli Aggregative Adherence Fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding

    Get PDF
    Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAF

    Structural and functional studies of Escherichia coli aggregative adherence fimbriae (AAF/V) reveal a deficiency in extracellular matrix binding

    Get PDF
    Enteroaggregative Escherichia coli (EAEC) is an emerging cause of acute and persistent diarrhea worldwide. The pathogenesis of different EAEC stains is complicated, however, the early essential step begins with attachment of EAEC to intestinal mucosa via aggregative adherence fimbriae (AAFs). Currently, five different variants have been identified, which all share a degree of similarity in the gene organization of their operons and sequences. Here, we report the solution structure of Agg5A from the AAF/V variant. While preserving the major structural features shared by all AAF members, only Agg5A possesses an inserted helix at the beginning of the donor strand, which together with altered surface electrostatics, renders the protein unable to interact with fibronectin. Hence, here we characterize the first AAF variant with a binding mode that varies from previously described AAF

    Toxins and Secretion Systems of Photorhabdus luminescens

    Get PDF
    Photorhabdus luminescens is a nematode-symbiotic, gram negative, bioluminescent bacterium, belonging to the family of Enterobacteriaceae. Recent studies show the importance of this bacterium as an alternative source of insecticides, as well as an emerging human pathogen. Various toxins have been identified and characterized in this bacterium. These toxins are classified into four major groups: the toxin complexes (Tcs), the Photorhabdus insect related (Pir) proteins, the “makes caterpillars floppy” (Mcf) toxins and the Photorhabdus virulence cassettes (PVC); the mechanisms however of toxin secretion are not fully elucidated. Using bioinformatics analysis and comparison against the components of known secretion systems, multiple copies of components of all known secretion systems, except the ones composing a type IV secretion system, were identified throughout the entire genome of the bacterium. This indicates that Photorhabdus luminescens has all the necessary means for the secretion of virulence factors, thus it is capable of establishing a microbial infection

    The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS

    Get PDF
    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species

    Salmonella Fimbriae: What is the Clue to Their Hairdo?

    Get PDF
    Fimbriae are important virulence factors for Salmonella pathogenesis. They mediate adhesion to host cells (including plants), food, stainless steel and much more. The fimbrial systems are organised in gene clusters of four to fifteen genes that code for structural, assembly and regulatory proteins. There are three kinds of fimbriae depending on their mode of assembly. The chaperone/usher (CU) fimbriae use a dedicated chaperone and usher protein to coordinate the subunit biogenesis on the cell surface. The curli fimbriae are assembled by nucleation/precipitation pathway. The type IV fimbria assembly requires a transmembrane apparatus and ATP to energise the reaction. Several fimbriae are conserved among Salmonella serovars, while some are present in a limited set or only specific serovars. Expression and regulation of fimbrial genes are not well understood, and most Salmonella fimbriae are poorly expressed during in vitro culture, which further complicates research concerning their regulation and role during infection. However, Salmonella fim gene cluster, coding for type-1 fimbriae, was widely studied and presents its own set of regulators. Investigating fimbrial distribution, expression and regulation will further elucidate their roles in bacterial pathogenesis and host specificity. Furthermore, fimbriae are important for developing efficient diagnostic tests and antimicrobial strategies against Salmonella

    Expression of Pseudomonas aeruginosa CupD Fimbrial Genes Is Antagonistically Controlled by RcsB and the EAL-Containing PvrR Response Regulators

    Get PDF
    Pseudomonas aeruginosa is a gram-negative pathogenic bacterium with a high adaptive potential that allows proliferation in a broad range of hosts or niches. It is also the causative agent of both acute and chronic biofilm-related infections in humans. Three cup gene clusters (cupA-C), involved in the assembly of cell surface fimbriae, have been shown to be involved in biofilm formation by the P. aeruginosa strains PAO1 or PAK. In PA14 isolates, a fourth cluster, named cupD, was identified within a pathogenicity island, PAPI-I, and may contribute to the higher virulence of this strain. Expression of the cupA genes is controlled by the HNS-like protein MvaT, whereas the cupB and cupC genes are under the control of the RocS1A1R two-component system. In this study, we show that cupD gene expression is positively controlled by the response regulator RcsB. As a consequence, CupD fimbriae are assembled on the cell surface, which results in a number of phenotypes such as a small colony morphotype, increased biofilm formation and decreased motility. These behaviors are compatible with the sessile bacterial lifestyle. The balance between planktonic and sessile lifestyles is known to be linked to the intracellular levels of c-di-GMP with high levels favoring biofilm formation. We showed that the EAL domain-containing PvrR response regulator counteracts the activity of RcsB on cupD gene expression. The action of PvrR is likely to involve c-di-GMP degradation through phosphodiesterase activity, confirming the key role of this second messenger in the balance between bacterial lifestyles. The regulatory network between RcsB and PvrR remains to be elucidated, but it stands as a potential model system to study how the equilibrium between the two lifestyles could be influenced by therapeutic agents that favor the planktonic lifestyle. This would render the pathogen accessible for the immune system or conventional antibiotic treatment
    corecore