406 research outputs found

    System level simulation for femtocellular networks

    Full text link
    © 2014 IEEE. LTE is an emerging wireless data communication technology to provide broadband ubiquitous Internet access. Femtocells are included in 3GPP since Release 8 to enhance the indoor network coverage and capacity. System level simulation is used for performance evaluation of LTE-Femtocellular networks. Research works on performance optimization could not be justified since there was no common reference simulator to do so until the inception of LTE-Sim. The simulation scenarios for Femtocells in LTE-Sim encompasses two-tier macro-femto scenario but to the best of our knowledge there is no published work on coding and scripting of femtocell scenario in LTE-Sim. In this paper, the development of a femtocell scenario is discussed with simulation outcomes

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Performance Analysis Of Resource Scheduling In LTE Femtocells Networks

    Full text link
    3GPP has introduced LTE Femtocells to manipulate the traffic for indoor users and to minimize the charge on the Macro cells. A key mechanism in the LTE traffic handling is the packet scheduler which is in charge of allocating resources to active flows in both the frequency and time dimension. So several scheduling algorithms need to be analyzed for femtocells networks. In this paper we introduce a performance analysis of three distinct scheduling algorithms of mixed type of traffic flows in LTE femtocells networks. The particularly study is evaluated in terms of throughput, packet loss ratio, fairness index and spectral efficiencyComment: 11 pages, 9 figures, 3 tables, The Sixth International Conference on Networks & Communications (NETCOM - 2014

    Improving Third-Party Relaying for LTE-A: A Realistic Simulation Approach

    Full text link
    In this article we propose solutions to diverse conflicts that result from the deployment of the (still immature) relay node (RN) technology in LTE-A networks. These conflicts and their possible solutions have been observed by implementing standard-compliant relay functionalities on the Vienna simulator. As an original experimental approach, we model realistic RN operation, taking into account that transmitters are not active all the time due to half-duplex RN operation. We have rearranged existing elements in the simulator in a manner that emulates RN behavior, rather than implementing a standalone brand-new component for the simulator. We also study analytically some of the issues observed in the interaction between the network and the RNs, to draw conclusions beyond simulation observation. The main observations of this paper are that: ii) Additional time-varying interference management steps are needed, because the LTE-A standard employs a fixed time division between eNB-RN and RN-UE transmissions (typical relay capacity or throughput research models balance them optimally, which is unrealistic nowadays); iiii) There is a trade-off between the time-division constraints of relaying and multi-user diversity; the stricter the constraints on relay scheduling are, the less flexibility schedulers have to exploit channel variation; and iiiiii) Thee standard contains a variety of parameters for relaying configuration, but not all cases of interest are covered.Comment: 17 one-column pages, 9 figures, accepted for publication in IEEE ICC 2014 MW
    • …
    corecore