5 research outputs found

    Anchored Hyperspaces and Multigraphs

    Get PDF
    Consider a multigraph XX as a metric space and p \in X. The anchored hyperspace at pp is the set  Cp(X)=C_p(X) = {A \subseteq X : p \in A, A connected and compact}. In this paper we will prove that Cp(X)C_p(X) is a polytope if in this set is considered the Hausdorff's metric HH. Further we will show that, if XX is a locally connected compact metric space such that Cp(X)C_p(X) is a polytope for each p \in X, then XX must be a multigraph

    Size of the Largest Induced Forest in Subcubic Graphs of Girth at least Four and Five

    Full text link
    In this paper, we address the maximum number of vertices of induced forests in subcubic graphs with girth at least four or five. We provide a unified approach to prove that every 2-connected subcubic graph on nn vertices and mm edges with girth at least four or five, respectively, has an induced forest on at least n29mn-\frac{2}{9}m or n15mn-\frac{1}{5}m vertices, respectively, except for finitely many exceptional graphs. Our results improve a result of Liu and Zhao and are tight in the sense that the bounds are attained by infinitely many 2-connected graphs. Equivalently, we prove that such graphs admit feedback vertex sets with size at most 29m\frac{2}{9}m or 15m\frac{1}{5}m, respectively. Those exceptional graphs will be explicitly constructed, and our result can be easily modified to drop the 2-connectivity requirement

    Boundary classes for graph problems involving non-local properties

    Get PDF
    We continue the study of boundary classes for NP-hard problems and focus on seven NP-hard graph problems involving non-local properties: HAMILTONIAN CYCLE, HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE, HAMILTONIAN PATH, FEEDBACK VERTEX SET, CONNECTED VERTEX COVER, CONNECTED DOMINATING SET and GRAPH VCCON DIMENSION. Our main result is the determination of the first boundary class for FEEDBACK VERTEX SET. We also determine boundary classes for HAMILTONIAN CYCLE THROUGH SPECIFIED EDGE and HAMILTONIAN PATH and give some insights on the structure of some boundary classes for the remaining problems

    Complexity and algorithms related to two classes of graph problems

    Get PDF
    This thesis addresses the problems associated with conversions on graphs and editing by removing a matching. We study the f-reversible processes, which are those associated with a threshold value for each vertex, and whose dynamics depends on the number of neighbors with different state for each vertex. We set a tight upper bound for the period and transient lengths, characterize all trees that reach the maximum transient length for 2-reversible processes, and we show that determining the size of a minimum conversion set is NP-hard. We show that the AND-OR model defines a convexity on graphs. We show results of NP-completeness and efficient algorithms for certain convexity parameters for this new one, as well as approximate algorithms. We introduce the concept of generalized threshold processes, where the results are NP-completeness and efficient algorithms for both non relaxed and relaxed versions. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all cycles. We show that this problem is NP-hard even for subcubic graphs, but admits efficient solution for several graph classes. We study the problem of deciding whether a given graph admits a removal of a matching in order to destroy all odd cycles. We show that this problem is NP-hard even for planar graphs with bounded degree, but admits efficient solution for some graph classes. We also show parameterized results.Esta tese aborda problemas associados a conversões em grafos e de edição pela remoção de um emparelhamento. Estudamos processos f-reversíveis, que são aqueles associados a um valor de limiar para cada vértice e cuja dinâmica depende da quantidade de vizinhos com estado contrário para cada vértice. Estabelecemos um limite superior justo para o tamanho do período e transiente, caracterizamos todas as árvores que alcançam o transiente máximo em processos 2-reversíveis e mostramos que determinar o tamanho de um conjunto conversor mínimo é NP-difícil. Mostramos que o modelo AND-OR define uma convexidade sobre grafos. Mostramos resultados de NP-completude e algoritmos eficientes para certos parâmetros de convexidade para esta nova, assim como algoritmos aproximativos. Introduzimos o conceito de processos de limiar generalizados, onde mostramos resultados de NP-completude e algoritmos eficientes para ambas as versões não relaxada e relaxada. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos. Mostramos que este problema é NP-difícil mesmo para grafos subcúbicos, mas admite solução eficiente para várias classes de grafos. Estudamos o problema de decidir se um dado grafo admite uma remoção de um emparelhamento de modo a remover todos os ciclos ímpares. Mostramos que este problema é NP-difícil mesmo para grafos planares com grau limitado, mas admite solução eficiente para algumas classes de grafos. Mostramos também resultados parametrizados

    Advances in Discrete Applied Mathematics and Graph Theory

    Get PDF
    The present reprint contains twelve papers published in the Special Issue “Advances in Discrete Applied Mathematics and Graph Theory, 2021” of the MDPI Mathematics journal, which cover a wide range of topics connected to the theory and applications of Graph Theory and Discrete Applied Mathematics. The focus of the majority of papers is on recent advances in graph theory and applications in chemical graph theory. In particular, the topics studied include bipartite and multipartite Ramsey numbers, graph coloring and chromatic numbers, several varieties of domination (Double Roman, Quasi-Total Roman, Total 3-Roman) and two graph indices of interest in chemical graph theory (Sombor index, generalized ABC index), as well as hyperspaces of graphs and local inclusive distance vertex irregular graphs
    corecore