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We continue the study of boundary classes for NP-hard problems and focus on seven 
NP-hard graph problems involving non-local properties: Hamiltonian Cycle, Hamiltonian 
Cycle Through Specified Edge, Hamiltonian Path, Feedback Vertex Set, Connected Vertex 
Cover, Connected Dominating Set and Graph VCcon Dimension. Our main result is the 
determination of the first boundary class for Feedback Vertex Set. We also determine 
boundary classes for Hamiltonian Cycle Through Specified Edge and Hamiltonian Path

and give some insights on the structure of some boundary classes for the remaining 
problems.
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1. Introduction

Many NP-hard graph problems remain NP-hard even for restricted classes of graphs, while they become polynomial-time 
solvable when further restrictions are applied. For example, the well-known graph problem Hamiltonian Cycle is NP-hard 
in general and it remains NP-hard for subcubic graphs (see, e.g., [26]). On the other hand, it is clearly trivial for graphs 
with maximum degree 2. It is therefore natural to ask when a certain “hard” graph problem becomes “easy”: Is there any 
“boundary” separating “easy” and “hard” instances? Alekseev [3] considered this question in the case the instances are 
hereditary classes of graphs. Given a graph problem �, a hereditary class of graphs X is �-hard if � is NP-hard for X , 
and �-easy if � is solvable in polynomial time for graphs in X . He introduced the notion of �-boundary class, playing 
the role of the “boundary” separating �-hard and �-easy instances, and showed that a finitely defined (hereditary) class is 
�-hard if and only if it contains a �-boundary class. Moreover, he determined a boundary class for Independent Set, the 
first result in the systematic study of boundary classes for NP-hard graph problems (see, e.g., [6,7,38,50,51]). Note that here 
and throughout the paper we tacitly assume that P �= NP, or else the notion of “boundary” becomes vacuous.

In this paper, we continue the study of boundary classes for NP-hard problems and focus on seven NP-hard graph prob-
lems involving non-local properties: Hamiltonian Cycle, Hamiltonian Cycle Through Specified Edge, Hamiltonian Path,
Feedback Vertex Set, Connected Vertex Cover, Connected Dominating Set and Graph VCcon Dimension. Our main result is 
the determination of the first boundary class for Feedback Vertex Set.

In a first attempt to answer the meta-question posed above, one might be tempted to consider maximal �-easy classes 
and minimal �-hard classes. In fact, the first approach immediately turns out to be meaningless: there are no maximal 
�-easy classes. Indeed, every �-easy class X can be extended to another �-easy class simply by adding to X a graph 
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G /∈ X together with all its induced subgraphs. Even the approach through minimal �-hard classes is not completely sat-
isfactory, as for some problems they might not exist at all: for any � ≥ 3, Hamiltonian Cycle is NP-hard for subcubic 
(C3, . . . , C�)-free graphs (see, e.g., [38]) and this gives an infinite decreasing sequence of hard classes. Many other examples 
of this kind are known for problems like Independent Set and Dominating Set [3,6]. In other situations, minimal �-hard 
classes indeed exist, as the following example due to Malyshev and Pardalos [52] shows. Consider the Traveling Salesman 
Problem: given a graph G , a weight function w : E(G) → R and a number s, does there exist a Hamiltonian cycle C of G
such that 

∑
e∈E(C) w(e) ≤ s? A simple reduction from Hamiltonian Cycle shows that the problem is NP-hard for the class 

of complete graphs. On the other hand, every proper hereditary subclass of the class of complete graphs is finite and so 
the problem can be clearly solved in polynomial time for such a subclass. This means that the class of complete graphs is a 
minimal (hereditary) hard class for the Traveling Salesman Problem.

The previous discussion suggests that the limit of a decreasing sequence of �-hard classes should play a role in the 
search of a “boundary” between easy and hard classes. Alekseev [3] formalised this intuition by introducing the notions of 
limit class and boundary class for Independent Set. In fact, these concepts are completely general1:

Definition 1 (Alekseev et al. [7]). Let � be an NP-hard graph problem and X a �-hard class of graphs. A class of graphs Y
is a limit class for � with respect to X ((�, X)-limit, in short) if there exists a sequence Y1 ⊇ Y2 ⊇ . . . of �-hard subclasses 
of X such that 

⋂
n≥1 Yn = Y . The class Y is a limit class for � (�-limit) if there exists a �-hard class X such that Y is 

(�, X)-limit.
An inclusion-wise minimal (�, X)-limit class is a boundary class for � with respect to X ((�, X)-boundary, in short). The 

class Y is a boundary class for � (�-boundary) if there exists a �-hard class X such that Y is (�, X)-boundary.

Note that Alekseev [3] originally defined a limit class and a boundary class for the Independent Set problem � as a 
(�, X)-limit class and a (�, X)-boundary class, respectively, where X is the set of all graphs.

We remark that a �-hard class is by definition hereditary and this is a fundamental requirement. Note also that in the 
definition of a (�, X)-limit class, the �-hard subclasses of X in a sequence Y1 ⊇ Y2 ⊇ . . . need not be distinct. In particular, 
every �-hard subclass of X is (�, X)-limit. On the other hand, a �-limit class need not be �-hard. Indeed, consider again
Hamiltonian Cycle. Denoting by Y� the class of (C3, . . . , C�)-free graphs, we have that Hamiltonian Cycle is NP-hard for 
Y� , for any � ≥ 3. Moreover, Y� ⊇ Y�+1 and 

⋂
n≥1 Yn is the class of forests, for which the problem is clearly trivial. The 

following is another important remark (see also [7,38]):

Remark 2. A �-limit subclass of a �-hard class X is not necessarily (�, X)-limit. Indeed, let � be Hamiltonian Cycle. 
We have seen that this problem is NP-hard for graphs with arbitrarily large girth and that the class of forests is a �-limit 
class. Moreover, Müller [54] showed that the class X = Free(C3, C5, C6, . . . ) of chordal bipartite graphs is �-hard. The class of 
forests is clearly contained in X but it is not (�, X)-limit. Indeed, suppose there exists a sequence Y1 ⊇ Y2 ⊇ . . . of �-hard 
subclasses of X such that 

⋂
n≥1 Yn coincides with the class of forests. Clearly, there exists a class Yi not containing C4. But 

then Yi is the class of forests, which is �-easy, a contradiction.

The existence of a boundary class with respect to every �-hard class is guaranteed by the following theorem:

Theorem 3 (Alekseev et al. [7]). A class X is �-hard if and only if it contains a (�, X)-boundary class.

Note that the “if” direction in Theorem 3 is trivial: if Y ⊆ X is a (�, X)-boundary class, there exists a sequence Y1 ⊇
Y2 ⊇ . . . of �-hard subclasses of X and so � is NP-hard for X as well.

Theorem 3 shows that a boundary class with respect to a �-hard class represents indeed a meaningful notion of “bound-
ary” between �-hard and �-easy subclasses. Moreover, �-boundary classes can be used to characterise the finitely defined 
graph classes which are �-hard:

Theorem 4 (Alekseev et al. [7]). A finitely defined class is �-hard if and only if it contains a �-boundary class.

Alekseev [3] studied Independent Set and revealed the first boundary class for this problem: the class T of forests whose 
components have at most three leaves. This shows that Theorem 4 is not true in general: the class of forests contains T but 
it is easy for the problem. So far, T is the only known boundary class for Independent Set and in fact he conjectured no 
other boundary class exists. It is easy to see that this conjecture is equivalent to the following statement: for each G ∈ T ,
Independent Set is not NP-hard for Free(G). The conjecture seems to be very challenging since it is already a major open 
problem to determine whether Independent Set is NP-hard for Pk-free graphs with k > 6. On the other hand, Lokshantov 
et al. [43] showed that Independent Set is polynomial-time solvable for P5-free graphs and recently Lokshantov et al. [44]

1 We also invite the reader to notice that the notions of limit class and boundary class make sense for every partially ordered set (see, e.g., [37]).
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provided a quasipolynomial-time algorithm for P6-free graphs. Further evidence in favour of the conjecture is obtained 
when forbidding certain subdivisions of the claw (see, e.g., [5,47,49]).

Other problems have been studied in the context of boundary classes. For example, Alekseev et al. [6] revealed three 
boundary classes for Dominating Set, one of them being T , and Malyshev [51] found a fourth boundary class. Alekseev 
et al. [7] further emphasised the special role played by T and showed that it is boundary for Independent Dominating Set,
Induced Matching and Edge Dominating Set. On the other hand, T is not boundary for Hamiltonian Cycle and Korpelainen 
et al. [38] revealed two boundary classes for this problem. So far, the complete description of boundary classes has been 
obtained only for a single problem, the so-called List Edge-Ranking: Malyshev [50] showed it admits exactly ten boundary 
classes. Note that some problems may admit infinitely many boundary classes and it is known that there is a continuum 
set of boundary classes for Vertex k-Colouring [38,48].

In this paper, we consider seven NP-hard graph problems involving non-local properties. In Section 3, we show that the 
boundary class for Hamiltonian Cycle with respect to graphs with arbitrarily large girth determined in [38] is also boundary 
with respect to planar bipartite graphs. This is obtained by strengthening a complexity result in [38] which also allows us 
to determine a non-trivial limit class with respect to split graphs. In Sections 4 and 5, we provide the first boundary class 
for Hamiltonian Cycle Through Specified Edge and Hamiltonian Path. This class in fact coincides with the one obtained 
in Section 3 and our proofs follow the lines of [38]. We also show that the non-trivial limit class for Hamiltonian Cycle

with respect to split graphs is limit for Hamiltonian Cycle Through Specified Edge and Hamiltonian Path as well. In 
Section 6, we consider Feedback Vertex Set and prove our main result: the determination of the first boundary class for this 
problem (with respect to planar bipartite graphs with maximum degree 4). As the main tool for our proof, we show that
Feedback Vertex Set can be solved in polynomial time for graphs with maximum degree at most 4 and bounded number 
of 4-vertices. Moreover, we provide a non-trivial limit class with respect to line graphs. In Sections 7 to 9, we determine 
non-trivial limit classes for Connected Vertex Cover, Connected Dominating Set and Graph VCcon Dimension with respect 
to planar bipartite graphs and line graphs. Finally, in Section 10, we provide a complexity dichotomy for the closely related
Connected Dominating Set and Graph VCcon Dimension when restricted to classes of graphs defined by a single forbidden 
induced subgraph.

We conclude this section by recalling a series of results which will be used throughout the paper. We have already seen 
that, in general, a (�, X)-limit class is not �-hard. On the other hand, this is the case if the limit class is defined by finitely 
many forbidden induced subgraphs with respect to X :

Lemma 5 (Alekseev et al. [7]). If Y is a (�, X)-limit class which is defined by finitely many forbidden induced subgraphs with respect 
to X, then it is �-hard.

The following stronger version of Theorem 3 holds. It clearly implies Theorem 4.

Theorem 6 (Alekseev et al. [7]). A subclass Y ⊆ X defined by finitely many forbidden induced subgraphs with respect to X is �-hard 
if and only if Y contains a (�, X)-boundary class.

Proving the minimality of a certain limit class is in general not an easy task. Nevertheless, the following sufficient 
condition turns out to be useful and it will be employed in all our proofs:

Lemma 7 (Alekseev and Malyshev [4]). A (�, X)-limit class Y = Free(M) is (�, X)-boundary if for every G ∈ Y there exists a finite 
set of graphs A ⊆ M such that Free(A ∪ {G}) is a �-easy class.

Proof. Suppose Y is not (�, X)-boundary. This means there exists a (�, X)-limit class Z � Y and let G be a graph in Y \ Z . 
By assumption, there exists a finite set A ⊆ M such that Z ′ = Free(A ∪ {G}) is �-easy. Moreover, since Z is (�, X)-limit, 
there exists a sequence Z1 ⊇ Z2 ⊇ . . . of �-hard subclasses of X such that 

⋂
n≥1 Zn = Z . But then, for each n, we have that 

Z ′
n = Zn ∪ Z ′ is �-hard. Moreover, for each k, we have that Z ′

k ⊇ Z ′
k+1 and 

⋂
n≥1 Z ′

n = Z ′ . In other words, Z ′ is a �-limit 
class as well. Since the set of forbidden induced subgraphs for Z ′ = Free(A ∪ {G}) is finite, there exists a class Z ′

n which is 
A ∪ {G}-free. Therefore, Z ′

n is �-easy, a contradiction. �
2. Preliminaries

In this paper we consider only finite graphs. Given a graph G , we usually denote its vertex set by V (G) and its edge set 
by E(G) and we let n(G) = |V (G)| and m(G) = |E(G)|. A loop is an edge whose endpoints are equal and multiple edges are 
edges having the same pair of endpoints. For the most part of this paper, we consider only simple graphs, namely graphs 
with no loops and no multiple edges. However, in some parts of Sections 6.1 and 6.2, we allow loops and multiple edges 
and this will be explicitly mentioned whenever it is the case. In Section 3, we also consider digraphs. A digraph G is a triple 
consisting of a vertex set V (G), an edge set E(G) and a function assigning each edge an ordered pair of vertices. The first 
vertex of the ordered pair is the tail of the edge and the second is the head.
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Neighbourhoods and degrees. For a vertex v ∈ V (G), the neighbourhood NG(v) is the set of vertices adjacent to v in G . 
The degree dG (v) of a vertex v ∈ V (G) is the number of edges incident to v in G , with the exception that each loop counts 
as two edges. A k-vertex is a vertex of degree k. We refer to a 3-vertex as a cubic vertex and to a 0-vertex as an isolated
vertex. We denote by dk(G) the set of k-vertices of G . The maximum degree �(G) of G is the number max {dG (v) : v ∈ V (G)}
and G is subcubic if �(G) ≤ 3. Similarly, the minimum degree δ(G) of G is the quantity min {dG(v) : v ∈ V (G)}. If all the 
vertices of G have the same degree k, then G is k-regular and a cubic graph is a 3-regular graph. A k-factor of a graph is a 
spanning k-regular subgraph.

Given a vertex v of a digraph, the outdegree d+(v) is the number of edges with tail v and the indegree d−(v) is the 
number of edges with head v .

Paths and cycles. A path is a non-empty graph P = (V , E) with V = {x0, x1, . . . , xk} and E = {
x0x1, x1x2, . . . , xk−1xk

}
, 

and where the xi ’s are all distinct. The vertices x0 and xk are linked by P and they are called the ends of P . The vertices 
x1, . . . , xk−1 are the inner vertices of P . The length of a path is its number of edges and the path on n vertices is denoted 
by Pn . We refer to a path P by a natural sequence of its vertices: P = x0x1 · · · xk . Such a path P is a path between x0 and xk , 
or a x0, xk-path. If P = x0 · · · xk is a path and k ≥ 2, the graph with vertex set V (P ) and edge set E(P ) ∪ {xkx0} is a cycle. 
The cycle on n vertices is denoted by Cn . A Hamiltonian path of a graph G is a path of G which is spanning. A Hamiltonian 
cycle of G is a spanning cycle of G and a graph is Hamiltonian if it contains a Hamiltonian cycle.

Denoting by xi xi+1 the ordered edge with tail xi and head xi+1, the notions from the previous paragraph have obvious 
analogues for digraphs.

The distance dG(u, v) from a vertex u to a vertex v in a graph G is the length of a shortest path between u and v . If u
and v are not linked by any path in G , we set dG (u, v) = ∞. The radius of G is the quantity minx∈V (G) maxy∈V (G) dG(x, y). 
The girth of a graph containing a cycle is the length of a shortest cycle and a graph with no cycle has infinite girth.

Graph operations. Let G = (V , E) be a graph and V ′ ⊆ V and E ′ ⊆ E . The operation of deleting the set of vertices V ′
from G results in the graph G − V ′ = G[V \ V ′]. The operation of deleting the set of edges E ′ from G results in the graph 
G − E ′ = (V , E \ E ′). The complement of a simple graph G is the graph G with vertex set V (G) and such that uv ∈ E(G) if 
and only if uv /∈ E(G). The union of simple graphs G and H is the graph G ∪ H with vertex set V (G) ∪ V (H) and edge set 
E(G) ∪ E(H). If G and H are disjoint, their union is denoted by G + H and the union of k (disjoint) copies of G is denoted 
by kG . A k-subdivision of G is the graph obtained from G by adding k new vertices for each edge of G , i.e. each edge is 
replaced by a path of length k + 1.

Graph classes and special graphs. If a graph does not contain induced subgraphs isomorphic to graphs in a set Z , it is 
Z -free and the set of all Z -free graphs is denoted by Free(Z). A class of graphs is hereditary if it is closed under deletions 
of vertices. It is well-known and easy to see that a class of graphs X is hereditary if and only if it can be defined by a set 
of forbidden induced subgraphs, i.e. X = Free(Z) for some set of graphs Z . The minimal set Z with this property is unique 
and it is denoted by Forb(X). If the set of minimal forbidden induced subgraphs for a hereditary class X is finite, then X
is finitely defined. If X ⊆ Y and Forb(X) \ Forb(Y ) is a finite set, then X is defined by finitely many forbidden induced subgraphs 
with respect to Y .

A complete graph is a graph whose vertices are pairwise adjacent and the complete graph on n vertices is denoted by Kn . 
A triangle is the graph K3. A graph G is r-partite, for r ≥ 2, if its vertex set admits a partition into r classes such that every 
edge has its endpoints in different classes. An r-partite graph in which every two vertices from different partition classes 
are adjacent is called complete and 2-partite graphs are usually called bipartite. A split graph is a graph whose vertices can be 
partitioned into a clique and an independent set (see below for the definitions of clique and independent set). A cograph (or 
complement reducible graph) is defined recursively as follows: K1 is a cograph, the disjoint union of cographs is a cograph, 
the complement of a cograph is a cograph. In fact, the class of cographs coincides with that of P4-free graphs.

Trees. A tree is a connected graph not containing any cycle as a subgraph and the vertices of degree 1 are its leaves. 
A spanning tree is a maximum leaf spanning tree (MLST) if there is no spanning tree with a larger number of leaves. Given 
a graph G , we denote by �(G) the number of leaves in a MLST of G . The Betti number μ(G) (also known as the cyclomatic 
number or the circuit rank) is the minimum number of edges that must be deleted from G in order to make it acyclic. It is 
easy to see that if G has c components, then μ(G) = |E(G)| − |V (G)| + c.

Graph parameters. A set of vertices or edges of a graph is minimum with respect to the property P if it has minimum 
size among all subsets having property P . The term maximum is defined analogously. In this paper we often consider the 
following parameters of a graph G .

An independent set of a graph is a set of pairwise non-adjacent vertices. A clique of a graph is a set of pairwise adjacent 
vertices.

A colouring of G is a partition of V (G) into independent sets and the minimum number of partition classes is the 
chromatic number χ(G). The graph G is k-colourable if χ(G) ≤ k.

A matching of a graph is a set of pairwise non-incident edges and the matching number α′(G) is the size of a maximum 
matching of G .
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A vertex cover of a graph is a subset of vertices containing at least one endpoint of every edge. The size of a minimum 
vertex cover of G is denoted by β(G). Clearly, S ⊆ V (G) is a vertex cover of G if and only if V (G) \ S is an independent set 
of G . A connected vertex cover of G is a vertex cover S of G such that G[S] is connected and we denote by βc(G) the size of 
a minimum connected vertex cover of G .

An edge cover of a graph G is a subset S ⊆ E(G) of edges such that every vertex of G is incident to an edge in S . 
We denote by β ′(G) the size of a minimum edge cover of G . A result known as one of the Gallai’s identities asserts that 
α′(G) + β ′(G) = |V (G)|, for any graph G without isolated vertices.

A dominating set of G is a subset D ⊆ V (G) such that each vertex in V (G) \ D is adjacent to a vertex in D . The size of 
a minimum dominating set of G is denoted by γ (G). A connected dominating set of G is a dominating set D of G such that 
G[D] is connected and we denote by γc(G) the size of a minimum connected dominating set of G .

A feedback vertex set of G is a subset T ⊆ V (G) such that G − T is acyclic and we denote by τc(G) the size of a minimum 
feedback vertex set of G .

A vertex triangle-transversal of G is a subset T ⊆ V (G) such that G − T is triangle-free and we denote by τ�(G) the size 
of a minimum vertex triangle-transversal of G .

A non-separating independent set of G is an independent set I ⊆ V (G) such that there is no X ⊆ I for which G − X has 
more components than G . Therefore, for a connected graph G , if I ⊆ V (G) is a non-separating independent set of G , then 
V (G) \ I is a connected vertex cover of G . We denote by z(G) the size of a maximum non-separating independent set of G .

Tree-width and clique-width. Graphs of bounded tree-width are particularly interesting from an algorithmic point of 
view: many NP-complete problems can be solved in linear time for them. The notion of tree-width was introduced by 
Robertson and Seymour [64] in their seminal work on graph minors:

A tree decomposition of a graph G = (V , E) is a pair (X, T ), where T = (I, F ) is a tree and X = {Xi : i ∈ I} is a family of 
subsets of V such that:

• ⋃
i∈I Xi = V ;

• for all edges v w ∈ E , there is an i ∈ I such that {v, w} ⊆ Xi ;
• for all vertices v ∈ V , the set {i ∈ I : v ∈ Xi} forms a connected subtree of T .

The width of the tree decomposition (X, T ) is maxi∈I |Xi | − 1 and the tree-width of a graph G is the minimum width 
among all tree decompositions of G . It is easy to see that forests have tree-width at most 1 and the tree-width measures, 
loosely speaking, how far a given graph is from a tree. In fact, the graphs having tree-width at most k are exactly the 
so-called partial k-trees (see, e.g., [11] for a proof and other characterisations).

The rough idea is that, for certain problems, once a tree decomposition of the input graph with small width is found, 
it can be used in a dynamic programming algorithm to solve the original problem (see, e.g., [23] for some examples). 
For a fixed k, it is in fact possible to test in linear time whether a graph has tree-width at most k and, if so, to find a 
tree-decomposition with width at most k [10]. A celebrated algorithmic meta-theorem of Courcelle [14] provides a way to 
quickly establish that a certain problem is decidable in linear time on graphs of bounded tree-width: all (graph) problems 
expressible in monadic second-order logic with edge-set quantification are decidable in linear time on graphs of bounded 
tree-width, assuming a tree decomposition is given (see also [8]). Let us briefly recall that monadic second-order logic is an 
extension of first-order logic by quantification over sets. The language of monadic second-order logic of graphs (MSO1 in short) 
contains the expressions built from the following elements:

• Variables x, y, . . . for vertices and X, Y , . . . for sets of vertices;
• Predicates x ∈ X and adj(x, y);
• Equality for variables, standard Boolean connectives and the quantifiers ∀ and ∃.

By considering edges and sets of edges as other sorts of variables and the incidence predicate inc(v, e), we obtain monadic 
second-order logic of graphs with edge-set quantification (MSO2 in short). A notion related to tree-width is that of clique-width, 
introduced by Courcelle et al. [16]. The clique-width of a graph G is the minimum number of labels needed to construct G
using the following operations:

• Creation of a new vertex v with label i;
• Disjoint union of two labelled graphs G and H ;
• Joining by an edge each vertex with label i to each vertex with label j;
• Renaming label i to j.

Every graph can be defined by an algebraic expression using these four operations and such an expression is a k-expression
if it uses k different labels. As shown by Courcelle and Olariu [15], every graph of bounded tree-width has bounded 
clique-width but there are graphs of bounded clique-width having unbounded tree-width (for example, complete graphs). 
Therefore, clique-width can be viewed as a more general concept than tree-width. An important class of graphs having 
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Fig. 1. A tribranch Yi, j,k .

Fig. 2. A caterpillar with hairs of arbitrary length.

bounded clique-width is that of cographs: it directly follows from the definition that cographs have clique-width at most 2. 
We refer to [34] for other examples of graph classes of bounded clique-width.

Similarly to tree-width, having bounded clique-width has interesting algorithmic implications. If a graph property is 
expressible in the more restricted MSO1, then Courcelle et al. [17] showed that it is decidable in linear time even for graphs 
of bounded clique-width, assuming a k-expression of the graph is explicitly given. On the other hand, for fixed k, Oum and 
Seymour [59] provided a polynomial-time algorithm that given a graph G either decides G has clique-width at least k +1 or 
outputs a 23k+2 − 1-expression. Therefore, a graph property expressible in MSO1 is decidable in polynomial time for graphs 
of bounded clique-width.

3. Hamiltonian Cycle

Hamiltonian Cycle is a well-known NP-complete graph problem which remains NP-hard even for subcubic graphs (see, 
e.g., [26]). Korpelainen et al. [38] determined the first boundary class for this problem (with respect to the class of subcubic 
graphs). In order to state their result, we have first to introduce some notation. For positive integers i, j and k, let Yi, j,k be 
the graph depicted in Fig. 1, called a tribranch. Moreover, let Yp = {Yi, j,k : i, j, k ≤ p} and Cp = {Ck : k ≤ p}. Finally, denote 
by Qp the class of subcubic Yp ∪ Cp-free graphs such that each cubic vertex has a non-cubic neighbour.

Korpelainen et al. [38] showed that the class Q = ⋂
p≥1 Qp is a boundary class for Hamiltonian Cycle:

Theorem 8 (Korpelainen et al. [38]). For any p ≥ 1, Hamiltonian Cycle is NP-complete for graphs in Qp . Moreover, Q is a boundary 
class for Hamiltonian Cycle.

The class Q is clearly contained in the class of forests and in fact it coincides with the class of graphs whose components 
are caterpillars with hairs of arbitrary length, where a caterpillar with hairs of arbitrary length is a subcubic tree in which all 
cubic vertices belong to a single path (see Fig. 2):

Lemma 9 (Korpelainen et al. [38]). A graph G belongs to Q if and only if each component of G is a caterpillar with hairs of arbitrary 
length.

Hamiltonian Cycle remains NP-hard for subcubic planar bipartite graphs (see, e.g., [2]) and in this section we show that 
the class Q is boundary for this problem even with respect to the class of subcubic planar bipartite graphs with arbitrarily 
large girth.

We denote by Qp the class of subcubic planar bipartite Yp ∪ Cp-free graphs such that each cubic vertex has a non-cubic 
neighbour. The following result strengthens Theorem 8 and implies that Q is limit for Hamiltonian Cycle with respect to 
the class of subcubic planar bipartite graphs with arbitrarily large girth. Its proof is inspired by [9].

Lemma 10. For any p ≥ 1, Hamiltonian Cycle is NP-complete for graphs in Qp .
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Fig. 3. Construction of the digraph G ′ in the proof of Lemma 10.

Fig. 4. Construction of the graph G ′′ in the proof of Lemma 10. Each vertex of G ′ is replaced by the gadgets depicted in (a), (b) and (c). Each vertex vei in 
a gadget corresponds to the directed edge ei incident to v in G ′ and vertices corresponding to the same directed edge are linked in G ′′ .

Proof. We reduce from Hamiltonian Cycle restricted to planar digraphs such that each vertex has either indegree 1 and 
outdegree 2 or indegree 2 and outdegree 1, shown to be NP-complete by Plesńik [63]. Given such a digraph G , we construct 
in two steps an undirected graph G ′′ as follows.

First, we replace each vertex v of G with two vertices v in and vout as depicted in Fig. 3. Clearly, the resulting digraph G ′
is planar and {v in : v ∈ V (G)} ∪ {vout : v ∈ V (G)} is a bipartition of V (G ′). Moreover, G ′ is Hamiltonian if and only if G is.

Now we replace each vertex of G ′ with the gadgets depicted in Fig. 4. The gadgets in Figs. 4(a) and 4(b) are obtained 
from a 2p-subdivision of a claw by adding 2p + 1 paths of length 2p + 2 (in Fig. 4, we have p = 1), while the gadget in 
Fig. 4(c) is a path of length 2(2p + 1). Note that each vertex vei in a gadget corresponds to the directed edge ei incident 
to v in G ′ . The undirected graph G ′′ is then obtained by adding edges between the vertices vei corresponding to the same 
directed edge in G ′ . Clearly, G ′′ is subcubic, planar and Cp -free. Moreover, each cubic vertex has a non-cubic neighbour. Now 
note that G ′′ is obtained from the bipartite graph G ′ by a 2(2p + 1)-subdivision and then by adding disjoint paths of length 
2p + 2 between vertices belonging to the same bipartition class. Therefore, G ′′ is bipartite as well. Finally, it is easy to see 
that G ′′ is Yp-free and so G ′′ ∈Qp .

We now claim that G is Hamiltonian if and only if G ′′ is. Note that each vertex v of G is incident to an edge belonging 
to every Hamiltonian cycle (if any): the edge with head v , if d−(v) = 1, or the edge with tail v , if d+(v) = 1.

Suppose first G is Hamiltonian. Then G ′ has clearly a Hamiltonian cycle C . Moreover, each (directed) edge e = u → v
of G ′ corresponds to the edge ue ve of G ′′ and we select the edges of G ′′ corresponding to those in E(C). Finally, we 
select all the edges of G ′′ inside gadgets corresponding to vertices v with d−(v) = d+(v) = 1 and those edges inside gadgets 
corresponding to vertices v with d−(v) +d+(v) = 3 as depicted in Fig. 5. The selected edges clearly constitute a Hamiltonian 
cycle of G ′′ .

Suppose now G ′′ is Hamiltonian and let C be a Hamiltonian cycle. It is easy to see that, for each gadget corresponding 
to a vertex v ∈ V (G ′) with d−(v) + d+(v) = 3, the cycle C can travers its vertices in exactly two ways, as depicted in Fig. 5. 
This means that, for each vertex v ∈ V (G ′) with d−(v) + d+(v) = 3, exactly two edges of the form veue belong to E(C). 
Therefore, we select the two corresponding directed edges of G ′ . In this way, we can easily obtain a Hamiltonian cycle of G ′
and then a Hamiltonian cycle of G . �
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Fig. 5. The two possible ways a Hamiltonian cycle traverses a gadget in G ′′ corresponding to a vertex v ∈ V (G ′) with d−(v) + d+(v) = 3.

The fact that Q is a minimal limit class for Hamiltonian Cycle with respect to the class of subcubic planar bipartite 
graphs with arbitrarily large girth follows by Theorem 8:

Theorem 11. Q is a boundary class for Hamiltonian Cycle with respect to the class of subcubic planar bipartite graphs with arbitrarily 
large girth.

In [7,38] it was observed that Hamiltonian Cycle admits a boundary class with respect to the class of split graphs. With 
the aid of Lemma 10, we can now determine a non-trivial limit class for the problem with respect to the class of split 
graphs. The result is based on the following operation: Given a bipartite graph G , a clique implant of G is the operation 
replacing one bipartition class of G with a clique. Given a subclass X of bipartite graphs, we denote by S(X ) the class of 
graphs obtained from every possible clique implant of graphs in X . Clearly, if X is hereditary, S(X ) is hereditary as well. 
Moreover, it is easy to see that the following holds:

Lemma 12 (Folklore). Let G be a bipartite graph having bipartition classes of equal size and G ′ be a graph obtained from a clique 
implant of G. We have that G is Hamiltonian if and only if G ′ is.

Since a bipartite graph has a Hamiltonian cycle only if the two bipartition classes have equal size, Lemmas 12 and 10
immediately implies the following:

Lemma 13. For any p ≥ 1, Hamiltonian Cycle is NP-complete for graphs in S(Qp).

Remark 14. Note that the boundary class C whose existence is guaranteed by Lemma 13 is distinct from Q. Indeed, C
is a subclass of split graphs which must contain K3 or else, by Theorem 6, Hamiltonian Cycle would be NP-hard for 
triangle-free split graphs.

4. Hamiltonian Cycle Through Specified Edge

In this section, we provide the first boundary class for Hamiltonian Cycle Through Specified Edge:

Hamiltonian Cycle Through Specified Edge

Instance: A graph G = (V , E) and e ∈ E .
Question: Does G contain a Hamiltonian cycle through e?

Hamiltonian Cycle Through Specified Edge is NP-complete for subcubic graphs (see, e.g., [57]) and we indeed begin 
this section by determining a boundary class with respect to the class of subcubic graphs. In fact, adapting the reasoning 
of Korpelainen et al. [38], we show that Q is a boundary class also for Hamiltonian Cycle Through Specified Edge (see 
Section 3 for the definition of Q). We first show it is a limit class:

Lemma 15. For any p ≥ 1, Hamiltonian Cycle Through Specified Edge is NP-complete for graphs in Qp .

Proof. We reduce from Hamiltonian Cycle for graphs in Qp , which is NP-complete by Lemma 10. Given an instance G ∈ Qp
of Hamiltonian Cycle, we construct an instance of Hamiltonian Cycle Through Specified Edge as follows. Clearly, we may 
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assume G contains a cubic vertex v and no 1-vertex. Since each cubic vertex of G has a non-cubic neighbour, v has a 
neighbour v ′ with d(v ′) = 2. Therefore, we simply let G ′ = G and e = v v ′ be an instance of Hamiltonian Cycle Through 
Specified Edge. Clearly, G has a Hamiltonian cycle if and only if G ′ has a Hamiltonian cycle through e. �
Remark 16. The proof of Lemma 15 shows that Hamiltonian Cycle Through Specified Edge remains NP-hard for graphs in 
Qp even when the edge e = uv in the instance is such that d(u) = 3 and d(v) = 2. This fact will be used in the proof that
Hamiltonian Path is NP-hard for graphs in Qp (Lemma 19).

We now show that Q is a minimal limit class. The idea is to use Lemma 7. More precisely, we show that for every G ∈Q
there exists a constant p such that Free(M ∪ {G}) is an easy class for Hamiltonian Cycle Through Specified Edge, where M
is the set with Qp = Forb(M). The applicability of Lemma 7 follows from the fact that Qp is finitely defined. Indeed, the set 
of forbidden induced subgraphs for Qp contains finitely many cycles and tribranches. Similarly, the conditions that every 
graph in Qp is subcubic and that every cubic vertex has a non-cubic neighbour can be expressed by finitely many forbidden 
induced subgraphs.

Theorem 17. Q is a boundary class for Hamiltonian Cycle Through Specified Edge.

Proof. As remarked above, it is enough to show that for every G ∈Q there exists a constant p such that Hamiltonian Cycle 
Through Specified Edge is solvable in polynomial time for G-free graphs in Qp .

We say that an edge of a graph G is good if it belongs to every Hamiltonian cycle of G (if any), whereas it is bad if it 
does not belong to any Hamiltonian cycle of G . Korpelainen et al. [38] showed that, for each G ∈ Q, there exists a constant 
p′ such that the following holds: given a G-free graph G ′ ∈ Qp′ , for any cubic vertex v ∈ V (G ′), there is a polynomial-time 
algorithm that labels at least two edges incident to v as good, or it returns as output that the graph has no Hamiltonian 
cycle.

We claim it is enough to take the constant p′ . In other words, we show that for every G ∈ Q, Hamiltonian Cycle 
Through Specified Edge is solvable in polynomial time for G-free graphs in Qp′ . Therefore, consider an input of this problem 
consisting of a G-free graph G ′ in Qp′ and an edge e ∈ E(G ′). Clearly, we may assume G ′ has no vertices of degree 1, or else 
G ′ has no Hamiltonian cycle. But then every vertex of G ′ has degree 2 or 3 and we can clearly label all the edges incident 
to vertices of degree 2 as good. Now, for each cubic vertex, we simply run the algorithm mentioned above, thus obtaining a 
labelling of the edges of G ′ . If e is labelled bad, then G ′ has no Hamiltonian cycle through e. Therefore, suppose e is labelled 
good. If there exists v ∈ V (G ′) incident to three good edges, then G ′ has no Hamiltonian cycle. Otherwise, each vertex of G ′
is incident to exactly two good edges and these edges induce a collection of disjoint cycles. If the collection contains exactly 
one cycle, then there exists a Hamiltonian cycle in G ′ through e. On the other hand, if the collection contains more than 
one cycle, then G ′ contains no Hamiltonian cycle at all. �

The existence of a boundary class for Hamiltonian Cycle Through Specified Edge with respect to the class of split graphs 
is guaranteed by the following result similar to Lemma 13:

Lemma 18. For any p ≥ 1, Hamiltonian Cycle Through Specified Edge is NP-complete for graphs in S(Qp).

Proof. Let G be a bipartite graph having bipartition classes of equal size and G ′ be a graph obtained from a clique implant 
of G . It is easy to see that G has a Hamiltonian cycle through e ∈ E(G) if and only if G ′ has a Hamiltonian cycle through 
the corresponding edge e ∈ E(G ′). The fact that, for any p ≥ 1, Hamiltonian Cycle Through Specified Edge is NP-complete 
for graphs in Qp (Lemma 15) completes the proof of the lemma. �
5. Hamiltonian Path

In this section, we provide the first boundary class for Hamiltonian Path. This problem is NP-complete for subcubic 
planar bipartite graphs [57] and in fact we show that, similarly to Hamiltonian Cycle and Hamiltonian Cycle Through 
Specified Edge, the class Q defined in Section 3 is boundary for Hamiltonian Path as well.

We denote by Rp the subclass of Qp consisting of the (C4, . . . , C2p+2)-free graphs G with δ(G) ≥ 2. The following lemma 
implies that Q is a limit class for Hamiltonian Path:

Lemma 19. For any p ≥ 1, Hamiltonian Path is NP-complete for graphs in Rp .

Note that the reason for the apparently useless restriction to Rp will appear in Lemma 34.

Proof. We reduce from Hamiltonian Cycle Through Specified Edge for graphs in Q2p+3, which is NP-complete by 
Lemma 15. Let G = (V , E) and uv ∈ E be an instance of this problem, where G ∈ Q2p+3. Clearly, we may assume δ(G) ≥ 2
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Fig. 6. Construction of the graph G ′ , for p = 1, in the proof of Lemma 19.

and, by Remark 16, we may further assume that d(u) = 3 and d(v) = 2. We construct a graph G ′ = (V ′, E ′) as follows (see 
Fig. 6). Set first V ′ = V ∪ {a1, a2, a3, a4, b1, b2, b3, b4}, where each ai and bi is a new vertex, and

E ′ = (E \ {uv}) ∪ {a1u,b1 v,a1a2,a1a4,a2a3,a2a4,a3a4,b1b2,b1b4,b2b3,b2b4,b3b4}.
Finally, subdivide each edge in {a1u, b1 v, a1a4, a2a3, b1b4, b2b3} with 2p +1 new vertices and each edge in {a3a4, b3b4} with 
2p new vertices (thus belonging to V ′). Note that the cubic vertices in V ′ \ V are exactly the vertices in {a1, a2, a4, b1, b2, b4}.

Clearly, G ′ is a subcubic planar bipartite C2p+2-free graph with δ(G ′) ≥ 2. Moreover, it is easy to see that each cubic 
vertex of G ′ has a non-cubic neighbour.

Suppose now G ′ contains an induced tribranch Yi, j,k with i, j, k ≤ p. Since G does not contain a tribranch in Yp (even 
as a subgraph), we have that Yi, j,k is not contained in G − uv ⊆ G ′ and so it must contain at least one vertex in V ′ \ V . On 
the other hand, it is easy to see that no vertex in V ′ \ V can be a cubic vertex of Yi, j,k and so it must be that the unique 
vertex x in NG ′ (u) \ V is a 1-vertex of Yi, j,k and V (Yi, j,k) ∩ (V ′ \ V ) = {x}. Moreover, if v does not belong to Yi, j,k , then 
G contains a subgraph in Yp (just replace x with v), a contradiction. Therefore, v belongs to Yi, j,k . But then the distance 
between u and v in G ′ is at most 2p + 1 and so, since uv ∈ E , we have that G contains a cycle of length at most 2p + 2, a 
contradiction. This implies that G ′ ∈Rp .

Finally, we claim that G has a Hamiltonian cycle through uv if and only if G ′ has a Hamiltonian path. Suppose first G ′
has a Hamiltonian path P . It is easy to see that a1 is a 2-vertex of P and so a vertex in the gadget attached to u is a 
1-vertex of P . Similarly, a vertex in the gadget attached to v is a 1-vertex of P . Therefore, there exists a Hamiltonian path 
in G between u and v and so a Hamiltonian cycle through uv . Conversely, it is easy to see that if G has a Hamiltonian cycle 
through uv , then G ′ has a Hamiltonian path between a2 and b2. �

We now show the minimality of Q. Our proof is based again on Lemma 7 and it is inspired by the proof in [38] that Q
is boundary for Hamiltonian Cycle. The following special graphs in Q play a role in our arguments: for d ≥ 2, the graph Td
is the caterpillar consisting of a path of length 2d and 2d − 1 consecutive hairs of lengths 1, 2, . . . , d − 1, d, d − 1, . . . , 2, 1
(the caterpillar in Fig. 2 is in fact T3). Clearly, every graph in Q is an induced subgraph of some Td:

Observation 20 (Korpelainen et al. [38]). Every graph in Q is an induced subgraph of Td, for some d ≥ 2.

The idea is that for every G ∈ Q, we can carefully choose a constant p such that a G-free graph in Qp is “locally” a 
graph in Q. This allows to implement a labelling procedure as in the proof of Theorem 17. To determine the local structure, 
we make use of the following elementary result whose proof can be found in [18]:

Lemma 21. If G is a graph of radius at most r and maximum degree at most k ≥ 3, then |V (G)| < k
k−2 (k − 1)r .

Theorem 22. Q is a boundary class for Hamiltonian Path.

Proof. As remarked above, we show that for every G ∈ Q there exists a constant p such that Hamiltonian Path is solvable 
in polynomial time for G-free graphs in Qp . By Lemma 7, this would conclude the proof.

Consider a graph G ∈Q. By Observation 20, we have that G is an induced subgraph of Td , for some d ≥ 2, and we define 
p = 3 · 2d . We claim we can decide in polynomial time whether a Td-free graph in Qp contains a Hamiltonian Path. This 
would clearly imply the assertion in the paragraph above, thus concluding the proof. Therefore, let G ′ be a Td-free graph in 
Qp . For each pair of vertices u and v of G ′ and edges uu′ and v v ′ , we show that it is possible to check in polynomial time 
whether there exists a Hamiltonian u, v-path containing uu′ and v v ′ . The conclusion would then follow by repeating this 
procedure O (|V (G ′)|2) times.

Clearly, we may assume G ′ contains a cubic vertex, or else the problem is trivial. Moreover, it is enough to prove our 
claim for graphs with no 1-vertex. Indeed, suppose G ′ contains a 1-vertex w and let P be a shortest path linking w to a 
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cubic vertex w ′ . Clearly, any Hamiltonian path of G ′ contains P as a subpath. Therefore, it is enough to check whether there 
exists a Hamiltonian path in G ′ − (V (P ) \ {w ′}) having w ′ as one end. By the proof of Theorem 17, we may also assume 
that u and v are non-adjacent, or else a Hamiltonian u, v-path is equivalent to a Hamiltonian cycle through uv and the 
constant p we take is the same as the one in [38] and in Theorem 17 (note that we make this assumption just in order to 
shorten the proof).

We say that an edge of G ′ is good if it belongs to every Hamiltonian u, v-path of G ′ containing uu′ and v v ′ (if any), 
whereas it is bad if it does not belong to any Hamiltonian u, v-path of G ′ through uu′ and v v ′ (clearly, uu′ and v v ′ are 
good). We provide a polynomial-time algorithm that either labels at least two edges incident to w as good, for each vertex 
w ∈ V (G ′) \{u, v}, or returns as output that the graph has no Hamiltonian u, v-path through uu′ and v v ′ . More precisely, we 
address the vertices sequentially and, if during the labelling process some edges are relabelled (i.e. a good edge becomes 
bad or vice versa), we have that G ′ does not contain any Hamiltonian u, v-path through uu′ and v v ′ . Suppose now we 
have obtained such a labelling. If there exists w ∈ V (G ′) \ {u, v} incident to three good edges, then G ′ has no Hamiltonian 
u, v-path through uu′ and v v ′ . Otherwise, each vertex in V (G ′) \ {u, v} is incident to exactly two good edges and these 
edges induce a path and possibly some cycles. If there are no cycles, we have found a desired Hamiltonian path. Otherwise, 
no such path exists.

Let us finally proceed with the description of the labelling algorithm. Clearly, uu′ and v v ′ are good and the same holds 
for the edges incident to a 2-vertex w ∈ V (G ′) \ {u, v}. Moreover, the other edges incident to u and v are bad. Therefore, it 
remains to consider the cubic vertices in V (G ′) \ {u, v}. Let w be such a vertex and let H w be the subgraph of G ′ induced 
by the set of vertices at distance at most d from w . Since H w belongs to Qp , it is a subcubic Yp ∪ Cp -free graph such that 
each cubic vertex has a non-cubic neighbour. On the other hand, since H w is subcubic, we have that |V (H w)| < 3 · 2d = p
(Lemma 21) and so H w is Yk ∪ Ck-free for any k > p. Therefore, H w belongs to Q and, being connected, it must be a 
caterpillar with hairs of arbitrary length. Moreover, each leaf of H w is at distance exactly d from w , or else it would be a 
1-vertex of G ′ . Consider now a path P of H w connecting two leaves and containing all cubic vertices of H w . Since G ′ is 
Td-free, we have that P contains 2-vertices, and let wi be a 2-vertex of P having shortest distance from w . Moreover, let 
w0 w1 · · · wi be the subpath between wi and w0 = w . Each vertex w j with j �= i has a neighbour w ′

j not on the path and 
which is a 2-vertex different from wi . We denote by W the set {w0, . . . , wi−1, wi, w ′

0, . . . , w
′
i−1} and we distinguish several 

cases according to the size of the intersection W ∩ {u, v}. In each case, we are going to argue that there exists a subpath 
w0 w1 · · · w j whose edges are labelled alternately good and bad. This suffices to label two edges incident to w = w0 as 
good. Indeed, if w0 w1 is bad, the other two edges incident to w0 are good. On the other hand, suppose w0 w1 is good and 
let w ′′

0 ∈ N(w0) \ {w1, w ′
0}. If w ′

0 is either u or v (say without loss of generality w ′
0 = u) and u′ �= w0, we have that w0 w ′′

0
is good. Otherwise, the remaining good edge must be w0 w ′

0.
Suppose first W ∩ {u, v} = ∅. This means that the edges incident to a 2-vertex in W are both labelled good. Since 

wi wi−1 and wi−1 w ′
i−1 are both good, wi−1 wi−2 is bad. Moreover, since each cubic vertex in W has at least two good 

incident edges, wi−2 wi−3 is good. Therefore, the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad 
(while traversing the path from wi to w0).

Suppose now W contains exactly one vertex from {u, v}, say without loss of generality u ∈ W . If u is a cubic vertex 
then, by assumption, we have that u = w j with j > 0 and u′ = w ′

j (otherwise v = w ′
j). Moreover, for each 2-vertex in 

W , its incident edges are labelled good. But then w j w j−1 is bad and, similarly to the paragraph above, the edges on the 
subpath w0 w1 · · · w j are labelled alternately bad and good. Suppose now u is a 2-vertex in W . If u = wi and u′ is the 
neighbour of u different from wi−1, the edges on the subpath w0 w1 · · · wi are labelled alternately bad and good. If u = wi

and u′ = wi−1, the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad. If u = w ′
j and u′ = w j , for 

some 0 ≤ j ≤ i − 1, we have again that the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad. Finally, 
if u = w ′

j and u′ is the neighbour of u different from w j , for some 0 ≤ j ≤ i − 1, the edges on the subpath w0 w1 · · · w j are 
labelled alternately good and bad.

Finally, suppose that {u, v} ⊆ W . Consider the smallest index j < i such that either w j or w ′
j is a vertex in {u, v}. Note 

that, since uv /∈ E(G ′), it cannot be that {u, v} ⊆ {w j, w ′
j} and we assume, without loss of generality, that u ∈ {w j, w ′

j}. If 
u = w j , then u′ = w ′

j and, by minimality, each 2-vertex w ′
k with k < j is incident to two good edges. Therefore, w j w j−1

is bad and the edges on the subpath w0 w1 · · · w j are labelled alternately bad and good. If u = w ′
j and u′ is the neighbour 

of w ′
j different from w j , then w j �= v and the edges w j w j−1 and w j w j+1 are both good. Moreover, by minimality, each 

2-vertex w ′
k with k < j is incident to two good edges and so the edges on the subpath w0 w1 · · · w j are labelled alternately 

good and bad. It remains to consider the case u = w ′
j and u′ = w j . If v = wk and v ′ = w ′

k or v = w ′
k and v ′ = wk , for some 

j < k < i, it is easy to see that the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad. If v = w ′
k and 

v ′ = wk , for some j < k < i, the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad. If v = w ′
k and 

v ′ is the neighbour of w ′
k different from wk , for j < k < i, the edges on the subpath w0 w1 · · · wk are labelled alternately 

good and bad. Finally, in the case v = wi , the edges on the subpath w0 w1 · · · wi are labelled alternately good and bad, if 
v ′ = wi−1, or bad and good otherwise.

This concludes the proof. �
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Fig. 7. Construction of the graph G ′ in the proof of Lemma 23.

Fig. 8. The graph Hi .

As with Hamiltonian Cycle and Hamiltonian Cycle Through Specified Edge, we now show that 
⋂

p≥1 S(Qp) is a limit 
class for Hamiltonian Path:

Lemma 23. For any p ≥ 1, Hamiltonian Path is NP-complete for graphs in S(Qp).

Proof. We reduce from Hamiltonian Cycle Through Specified Edge for graphs in Q2p+3, which is NP-complete by 
Lemma 15. Let G = (V , E) and uv ∈ E be an instance of this problem, where G ∈ Q2p+3. By Remark 16, we may assume 
that d(u) = 3 and d(v) = 2. Moreover, we may assume that G has a bipartition V = V 1 ∪ V 2 with |V 1| = |V 2|, or else G is 
not Hamiltonian. Without loss of generality, we have v ∈ V 1 and u ∈ V 2. We begin by constructing a graph G ′ = (V ′, E ′) as 
follows (see Fig. 7): we set V ′ = V ∪{a1, b1, b2}, where each ai and bi is a new vertex, and E ′ = (E \ {uv}) ∪{a1u, b1b2, b2 v}. 
Therefore, V 1 ∪ {a1, b1} and V 2 ∪ {b2} are bipartition classes of G ′ . We finally construct the graph G ′′ by adding to G ′ all 
possible edges with both endpoints in V 2 ∪ {b2}, thus turning the independent set V 2 ∪ {b2} into a clique.

We claim that G ′ ∈ Qp . Clearly, G ′ is a subcubic planar bipartite Cp -free graph. Moreover, each cubic vertex of G ′ has 
a non-cubic neighbour. Suppose now G ′ contains an induced tribranch Yi, j,k with i, j, k ≤ p. Since G does not contain a 
tribranch in Yp (even as a subgraph), we have that Yi, j,k is not contained in G −uv and so it must contain at least one vertex 
in {a1, b1, b2}. But no bi can be a 1-vertex of Yi, j,k and so we have that a1 is a 1-vertex of Yi, j,k and V (Yi, j,k) ∩{a1, b1, b2} =
{a1}. Moreover, if v does not belong to Yi, j,k , then G contains a subgraph in Yp (just replace a1 with v), a contradiction. 
Therefore, v belongs to Yi, j,k . But then the distance between u and v in G ′ is at most 2p + 1 and so, since uv ∈ E , we have 
that G contains a cycle of length at most 2p + 2, a contradiction. This implies that G ′ ∈Qp and so G ′′ ∈ S(Qp).

Finally, we claim that G has a Hamiltonian cycle through uv if and only if G ′′ has a Hamiltonian path. Clearly, if G has 
a Hamiltonian cycle through uv , then G ′ has a Hamiltonian path between a1 and b1 and similarly for G ′′ .

Conversely, suppose G ′′ has a Hamiltonian path P . Since a1 and b1 are 1-vertices of G ′′ , P is a Hamiltonian a1, b1-path 
and {a1u, b1b2} ⊆ E(P ). This means that all the vertices in V 1 (which is an independent set of G ′′) have degree 2 in P . 
Therefore, since P has 2|V 1| + 2 edges, it does not contain any edge of G ′′ with both endpoints in V 2 ∪ {b2} and so there 
exists a Hamiltonian a1, b1-path in G ′ and in turn a Hamiltonian cycle through uv in G . �
6. Feedback Vertex Set

In this section, we provide the first boundary class for Feedback Vertex Set. Ueno et al. [69] showed that Feedback 
Vertex Set (and Connected Vertex Cover) can be solved in polynomial time for subcubic graphs by a reduction to a matroid 
matching problem. On the other hand, Feedback Vertex Set is NP-hard for planar graphs with maximum degree at most 
4, as first shown by Speckenmeyer [67], and so it admits a boundary class with respect to the class of planar graphs with 
maximum degree at most 4. We begin by showing that the class of forests whose components have at most four leaves and 
at most one vertex of degree three is in fact a limit class.

For k ≥ 1, we denote by Sk the class of planar bipartite (C4, . . . , C2k, H1, . . . , Hk)-free graphs with maximum degree at 
most 4 (see Fig. 8).

Lemma 24. For any k ≥ 1, Feedback Vertex Set is NP-complete for graphs in Sk.

Proof. We reduce from Feedback Vertex Set for planar graphs with maximum degree at most 4, which is known to be 
NP-complete (see, e.g., [57,67] and Section 6.3). Given a planar graph G with maximum degree at most 4, we denote by G ′
a 2k + 1-subdivision of G . It is easy to see that G ′ ∈ Sk and τc(G) = τc(G ′). �
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Fig. 9. The graph Si, j,k,� .

We denote by S the class of forests whose components have at most four leaves and at most one vertex of degree three. 
Each graph in S has components of the form Si, j,k,� , for some non-negative integers i, j, k, � (see Fig. 9). It is not difficult to 
see that 

⋂
k≥1 Sk = S and so S is a limit class for Feedback Vertex Set with respect to the class of planar bipartite graphs 

with maximum degree at most 4.
In order to show the minimality of S , we first prove that Feedback Vertex Set can be solved in polynomial time for 

graphs with maximum degree at most 4 and bounded number of 4-vertices (see Section 6.2). This result follows from 
the fact that even the weighted version of Feedback Vertex Set can be solved in polynomial time for cubic graphs (see 
Section 6.1) which, in turn, is an easy corollary of a deep result on the weighted linear matroid matching problem recently 
obtained by Iwata [30], Iwata and Kobayashi [32] and Pap [61].

6.1. Weighted feedback vertex set for cubic graphs

Let us begin by recalling the notion of polymatroid. We refer the reader to [46] for a complete introduction to 
2-polymatroids. Note that in this section we allow graphs to contain loops and multiple edges.

A 2-polymatroid is a pair P = (S, f ), where S is a finite set and f is a function f : 2S → Z satisfying the following 
properties:

(P1) f (∅) = 0;
(P2) f (X) ≤ f (Y ), for any X ⊆ Y ⊆ S;
(P3) f (X ∪ Y ) + f (X ∩ Y ) ≤ f (X) + f (Y ), for any X, Y ⊆ S;
(P4) f ({x}) ≤ 2, for any x ∈ S .

If in addition f ({x}) ≤ 1, for any x ∈ S , then P is a matroid. A subset X ⊆ S is a matching of P if f (X) = 2|X | and it is a 
spanning set of P if f (X) = f (S). The size of a maximum matching of P is denoted by ν(P ) while the size of a minimum 
spanning set of P is denoted by ρ(P ).

It is easy to see that, given a (simple) graph G = (V , E), the pair P = (E, f ) with f (X) = | ⋃e∈X e| is a 2-polymatroid 
(note that e ∈ E is a 2-element set). Moreover, a matching of P is a matching of G and a spanning set of P is an edge cover 
of G . A well-known Gallai’s identity asserts that α′(G) + β ′(G) = |V (G)|, for any graph G without isolated vertices. In fact, 
Lovász provided the following generalisation (see [46]):

Theorem 25. For any 2-polymatroid P = (S, f ), we have ν(P ) + ρ(P ) = f (S).

Feedback vertex sets of (sub)cubic graphs have been extensively studied (see, e.g., [27,42,68]). In particular, Specken-
meyer [68] showed that τc(G) + z(G) = μ(G), for any connected cubic simple graph G , and Ueno et al. [69] showed that 
the previous relation actually holds for every cubic graph (thus allowing loops and multiple edges):

Theorem 26 (Ueno et al. [69]). If G is a cubic graph, then τc(G) + z(G) = μ(G).

Their proof is based on the fact that τc and z can be interpreted as the size of a minimum spanning set and the size of 
a maximum matching, respectively, of a suitably defined 2-polymatroid. Given a graph G , it is easy to see that the function 
f : 2V (G) → Z defined by f (X) = μ(G) − μ(G − X) satisfies (P1) to (P3). Moreover, for any graph G and v ∈ V (G), we have 
that μ(G) − μ(G − v) ≤ dG(v) − 1 and the inequality is strict if and only if v is a cut-vertex or the endpoint of a loop. 
Therefore, if G is a cubic graph, P (G) = (V (G), f ) is indeed a 2-polymatroid and the following crucial result holds:

Theorem 27 (Ueno et al. [69]). Let G be a cubic graph. A subset T ⊆ V (G) is a feedback vertex set of G if and only if it is a spanning 
set of the 2-polymatroid P (G). Moreover, I ⊆ V (G) is a non-separating independent set of G if and only if it is a matching of P (G).

At this point, Theorem 26 is an immediate consequence of the “generalised Gallai’s identity” stated in Theorem 25.
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Lovász [45] provided a polynomial-time algorithm that finds a maximum matching of a special class of 2-polymatroids, 
the so-called linearly represented 2-polymatroids (see also [24,46,58]). A 2-polymatroid (S, f ) is linearly representable (over 
a field F) if there exists a matrix A = (Ae)e∈S ∈ Fd×2|S| obtained by concatenating |S| matrices Ae ∈ Fd×2 and such that 
f (X) = rank A(X), for any X ⊆ S , where d is a positive integer and A(X) = (Ae)e∈X denotes the submatrix of A obtained 
by selecting the corresponding columns. In view of Theorem 25, Lovász’s result implies we can find in polynomial time a 
minimum spanning set of a linearly represented 2-polymatroid. Moreover, Ueno et al. [69] showed that the 2-polymatroid 
P (G) is linearly representable and that a linear representation can be obtained in polynomial time. Therefore, the mentioned 
results and Theorem 27 imply we can find in polynomial time a maximum non-separating independent set and a minimum 
feedback vertex set of any cubic graph. Note that the same conclusion holds for a minimum connected vertex cover, since 
the complement of a non-separating independent set of a connected graph is a connected vertex cover and vice versa. 
Moreover, applying standard cleaning procedures, it is easy to see that these results hold for subcubic graphs [69] (see also 
Theorem 30).

In a recent breakthrough, Iwata [30,31], Iwata and Kobayashi [32] and Pap [61] showed that even the following weighted 
version of the matroid matching problem can be solved in polynomial time:

Weighted Linear Matroid Matching

Instance: A linearly represented 2-polymatroid on S and a function w : S → R.
Task: Find a matching X ⊆ S with maximum w(X) = ∑

x∈X w(x).

We now highlight the interesting consequences of this result for the weighted version of Feedback Vertex Set. Indeed, 
consider a 2-polymatroid (S, f ) and its 2-dual (S, f ∗), where f ∗ : 2S → Z is defined by f ∗(X) = 2|X | + f (S \ X) − f (S) (see, 
e.g., [60]). Clearly, X is a matching of (S, f ∗) if and only if S \ X is a spanning set of (S, f ) and so the problem of finding 
a minimum-weight spanning set for (S, f ) is equivalent to the weighted matroid matching problem for the 2-dual (S, f ∗). 
Moreover, given a linear representation of (S, f ), it is not difficult to find a linear representation of (S, f ∗) in polynomial 
time (see, e.g., [60]). Therefore, by Theorem 27, the following holds:

Theorem 28. The problem of finding a minimum-weight feedback vertex of a cubic graph can be solved in polynomial time.

6.2. Towards the minimality of S

In this section, we show that S is a boundary class for Feedback Vertex Set. As mentioned above, we first prove that
Feedback Vertex Set can be solved in polynomial time for graphs with maximum degree at most 4 and bounded number 
of 4-vertices. The idea is to reduce this problem to the cubic case and then rely on Theorem 28. The following operation is 
crucial for our purposes:

Let x ∈ V (G) be a 4-vertex of a graph G (which may contain loops and multiple edges). A vertex stretching with respect 
to x is the operation replacing x with two new vertices x1 and x2 as depicted in Fig. 10. Note that there is some freedom in 
determining the neighbours of x1 and x2. A vertex stretching with respect to x has the following fundamental properties:

• It does not alter the cycles of G , except possibly increasing the length of a cycle through x by 1;
• It does not modify the degrees of the vertices adjacent to x and it gives d(x1) = d(x2) = 3.

The following is an immediate but useful observation:

Lemma 29. Let x ∈ V (G) be a 4-vertex of G and let G ′ be the graph obtained from G by a vertex stretching with respect to x. We have 
that τc(G − x) = τc(G ′ − {x1, x2}). Moreover, G has a feedback vertex set avoiding x if and only if G ′ has a feedback vertex set avoiding 
{x1, x2} and the size of a minimum feedback vertex set of G avoiding x is the same as that of a minimum feedback vertex set of G ′
avoiding {x1, x2}.

We can finally prove the following:

Theorem 30. Feedback Vertex Set can be solved in polynomial time for graphs with maximum degree at most 4 and bounded number 
of 4-vertices.

Proof. Let G be a graph with �(G) ≤ 4 and |d4(G)| ≤ c, for some constant c. The following observations are immediate: if v
is a 1-vertex of G , then τc(G) = τc(G − v); if v is a 2-vertex of G which is the endpoint of a loop, then τc(G) = τc(G − v) +1; 
if v is a 2-vertex of G adjacent to u and u′ (note that we might have u = u′) then, denoting by H the graph obtained from 
G by deleting v and adding the edge uu′ , we have τc(G) = τc(H). Therefore, we can reduce Feedback Vertex Set for G to 
the same problem for the graph G ′ obtained by the following cleaning procedure: if v is a 1-vertex or a 2-vertex which is 
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Fig. 10. Vertex stretching.

the endpoint of a loop, we delete v; if v is a 2-vertex adjacent to u and u′ (possibly u = u′), we delete v from G and add 
the edge uu′ . It is easy to see that the graph G ′ obtained by applying these operations as long as possible either contains 
only vertices of degree 3 or 4, or it is empty.

We now proceed by a brute force argument: for each subset S ⊆ d4(G ′), we find a minimum feedback vertex set T of 
G ′ subject to T ∩ d4(G ′) = S (if any). This is done as follows. We fix S ⊆ d4(G ′) and we apply a vertex stretching to each 
4-vertex of G ′ in order to obtain a cubic graph G ′′ . Then we define a weight function w : V (G ′′) →R as follows: w(x) = 0, if 
x is the result of a vertex stretching with respect to a vertex in S; w(x) = |V (G ′′)| +1, if x is the result of a vertex stretching 
with respect to a vertex in d4(G ′) \ S; w(x) = 1 otherwise.

By Theorem 28, we can find in polynomial time a minimum-weight feedback vertex set T S of (G ′′, w). Note that, without 
loss of generality, we may assume that every zero-weight vertex belongs to T S . If w(T S ) > |V (G ′′)| then, by Lemma 29, there 
exists no feedback vertex set T of G ′ such that T ∩ d4(G ′) ⊆ S . Otherwise, we remove from T S the vertices which are the 
result of a vertex stretching with respect to a 4-vertex v (which must belong to S) and we add v to T S , in order to obtain a 
set T ′

S . Clearly, T ′
S is a minimum feedback vertex set of G ′ subject to T ′

S ∩d4(G ′) = S . We thus build a vector indexed by the 
at most 2c subsets S of d4(G ′) and we return the minimum value of |T ′

S |. Correctness and polynomiality are evident. �
We now have all the machinery to show that S is a boundary class for Feedback Vertex Set. Our proof relies once again 

on Lemma 7. Note that, in the following, all considered graphs are simple, i.e. loops and multiple edges are not allowed 
anymore.

Theorem 31. S is a boundary class for Feedback Vertex Set.

Proof. Let Sp denote the class of (C3, . . . , C p, H1, . . . , H p)-free graphs with maximum degree 4. In view of Lemma 7, it is 
enough to show that, for each H ∈ S , there exists a constant p such that Feedback Vertex Set is solvable in polynomial 
time for H-free graphs in Sp . Therefore, consider H ∈ S and let c be the number of its components. Since each component 
of H is of the form Si, j,k,� , for some non-negative integers i, j, k and �, there exists a non-negative integer d such that H is 
an induced subgraph of cSd,d,d,d . We define p = 2 · 3d and we claim that Feedback Vertex Set can be solved in polynomial 
time for cSd,d,d,d-free graphs in Sp . Lemma 7 would then imply that S is a boundary class.

Let G be a cSd,d,d,d-free graph in Sp and consider a 4-vertex v ∈ V (G) (if G is subcubic, we know the problem is solvable 
in polynomial time). Let G v be the subgraph of G induced by the set of vertices at distance at most d from v . Since G v
belongs to Sp , it is a (C3, . . . , C p, H1, . . . , H p)-free graph with maximum degree 4. Moreover, since each vertex of G v has 
degree at most 4, we have that |V (G v )| < 2 · 3d = p (Lemma 21) and so G v is (Ck, Hk)-free for any k > p. Therefore, G v
belongs to S and, being connected, it must be of the form Si1,i2,i3,i4 , for some non-negative integers i1, i2, i3, i4 ≤ d. Suppose 
now some i j is strictly less than d and let vi j be the leaf of Si1,i2,i3,i4 at distance i j from v . Clearly, no cycle of G contains a 
vertex belonging to the unique v, vi j -path P in Si1,i2,i3,i4 and different from v . Therefore, we may delete V (P ) \ {v} from G . 
Repeating this operation for each 4-vertex v ∈ V (G), we obtain a graph G ′ with maximum degree at most 4. This graph is 
such that τc(G) = τc(G ′) and, for each 4-vertex v ∈ V (G ′), the induced subgraph G v is isomorphic to Sd,d,d,d .

We now claim that G ′ has a bounded number of 4-vertices. In view of Theorem 30, this would conclude the proof. 
Let F ⊆ d4(G ′) be a subset of maximum size such that the corresponding induced copies of Sd,d,d,d (for each v ∈ F , the 
induced subgraph G v is isomorphic to Sd,d,d,d) are pairwise vertex-disjoint and denote by F ′ this corresponding set. Note 
that no two subgraphs in F ′ are connected by an edge, or else a copy of H2d+1 would arise in G ′ ∈ S2·3d . Therefore, since 
G ′ is cSd,d,d,d-free, we have |F | < c. Moreover, we claim that |d4(G ′)| ≤ 17|F |. By definition, for each v ∈ d4(G ′) \ F , we 
have that G v intersects a graph in F ′ . It is therefore enough to show that each branch of Sd,d,d,d can intersect at most four 
other copies of Sd,d,d,d , where a branch is the unique path between a leaf and the 4-vertex. To this end, let S be a copy of 
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Sd,d,d,d with 4-vertex v and let P be a v, vi -branch. The following are easy observations. If v belongs to another copy S ′ of 
Sd,d,d,d , then V (P ) ⊆ V (S ′) and vi is the 4-vertex of S ′ , and so P intersects at most four other copies of Sd,d,d,d . If v does 
not belong to another copy of Sd,d,d,d but an inner vertex of P does, then P intersects at most one other copy of Sd,d,d,d . 
Finally, if vi is the only vertex of P which belongs to another copy of Sd,d,d,d , then P intersects at most three other copies 
of Sd,d,d,d . �

In [7] it was conjectured that, for any problem � solvable in polynomial time for graphs of bounded clique-width, T
and L(T ) = {L(G) : G ∈ T } are the only �-boundary classes with respect to any �-hard class of bounded vertex degree. 
Theorem 31 shows that this is not the case for Feedback Vertex Set (which is solvable in polynomial time for graphs 
of bounded clique-width by [12]). Note that the same conclusion can be obtained as follows. Let X be a boundary class 
for Feedback Vertex Set with respect to the class of graphs with maximum degree at most 4 and let X ′ be the class of 
subcubic graphs. If X ⊆ X ′ , then Feedback Vertex Set is NP-hard for graphs in X ′ by Theorem 6 (as X ′ is finitely defined), 
contradicting the fact that Feedback Vertex Set is polynomial for subcubic graphs [69]. Therefore, X contains a graph with 
vertices of degree 4 and so it is distinct from T and L(T ).

6.3. Line graphs

In [57], we showed that Feedback Vertex Set remains NP-hard for line graphs of planar cubic bipartite graphs. This was 
obtained by first showing that if G is the line graph of a cubic triangle-free graph H , then τc(G) ≤ |V (G)|

3 + 1 if and only if 
H contains a Hamiltonian path. The conclusion follows then from the fact that Hamiltonian Path is NP-complete for planar 
cubic bipartite graphs. In this section, we adapt the previous reasoning and show that, for any p ≥ 1, Feedback Vertex Set

is NP-complete for line graphs of graphs in Rp . Recall that Qp is the class of subcubic planar bipartite Yp ∪ Cp-free graphs 
such that each cubic vertex has a non-cubic neighbour and Rp is the subclass of Qp consisting of the (C4, . . . , C2p+2)-free 
graphs G with δ(G) ≥ 2 (see Section 4).

We begin by considering (vertex) triangle-transversals of line graphs of subcubic triangle-free graphs. Given a subset of 
vertices S of a graph G , an S-cover of G is a subset of E(G) covering each vertex in S . Clearly, V (G)-covers are the usual 
edge covers of G . Recall that dk(G) = {v ∈ V (G) : dG (v) = k}.

Lemma 32. For a subcubic triangle-free graph H, there is a bijection between the d3(H)-covers of H and the triangle-transversals of 
L(H).

Proof. Using the bijection between edges of H and vertices of L(H), the assertion follows from the fact that the triangles 
of L(H) are in bijection with the cubic vertices of H . �

The following lower bound on the size of a feedback vertex set will be crucial for our NP-hardness proof:

Lemma 33. Let H be a subcubic triangle-free graph with δ(H) ≥ 2 and let G = L(H) be its line graph. We have τc(G) ≥ |d3(H)|
2 + 1, 

with equality if and only if H contains a Hamiltonian path.

Proof. By Lemma 32, there exists a bijection between the triangle-transversals of G and the d3(H)-covers of H . Therefore, 
we have τc(G) ≥ τ�(G) ≥ |d3(H)|

2 and the last inequality is an equality if and only if the induced subgraph H[d3(H)] contains 
a 1-factor.

Suppose, to the contrary, that τc(G) = |d3(H)|
2 . This means there exists a minimum triangle-transversal T of G (of size 

|d3(H)|
2 ) which is also a feedback vertex set of G . Moreover, T corresponds to a 1-factor H ′ of H[d3(H)] and so, since 

δ(H) ≥ 2, we have that H − E(H ′) is 2-regular. But then there exists a cycle in G − T , a contradiction. This implies that 
τc(G) ≥ |d3(H)|

2 + 1.

Suppose now equality holds, i.e. τc(G) = |d3(H)|
2 + 1, and let T be a minimum feedback vertex set of G . Moreover, let T�

be a triangle-transversal of G having minimum size among those contained in T . Clearly, we have |d3(H)|
2 ≤ |T�| ≤ |d3(H)|

2 +1. 
If |T�| = |d3(H)|

2 , then T� corresponds to a 1-factor H ′ of H[d3(H)] and so H − E(H ′) is a 2-factor F with p ≥ 1 components. 
Since the components of F give rise to p vertex-disjoint cycles in G − T� , then τc(G) = |d3(H)|

2 + 1 implies that p = 1 and 
so F ⊆ H is a Hamiltonian cycle.

Suppose now that T� has size |d3(H)|
2 + 1 (in particular, T = T�), and let T ′ be the corresponding d3(H)-cover of H . We 

have that T ′ contains at most two edges with an endpoint not in d3(H). If T ′ contains only edges of H[d3(H)] then, by the 
minimality of T� , we have that T ′ consists of a maximum matching M of size |d3(H)|

2 − 1 together with two edges, each 
one covering exactly one vertex uncovered by M . If T ′ contains exactly one edge e with an endpoint not in d3(H), then 
T ′ \ {e} consists of a maximum matching M of H[d3(H)] of size |d3(H)|

2 − 1 and an edge of H[d3(H)] covering the vertex 
uncovered by M ∪ {e}. Finally, if T ′ contains exactly two edges e1 and e2 with an endpoint not in d3(H), then e1 and e2

cover distinct cubic vertices. Moreover, T ′ \ {e1, e2} consists of a maximum matching of H[d3(H)] of size |d3(H)| − 1. It is 
2
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easy to see that, in all the three cases above, the graph H − T ′ either contains a single isolated vertex and all the remaining 
vertices have degree 2, or it contains exactly two 1-degree vertices with all the remaining ones having degree 2. On the 
other hand, H − T ′ is a forest, or else there would be a cycle in G − T . This implies that all the vertices of H − T ′ have 
degree 2, except two of them having degree 1, and that H − T ′ is a path. Therefore, H contains a Hamiltonian path.

Conversely, suppose that H contains a Hamiltonian path P . The number of edges in E(H) \ E(P ) is |d2(H)| + 3
2 |d3(H)| −

(|d2(H)| + |d3(H)| − 1) = |d3(H)|
2 + 1 and these edges constitute a d3(H)-cover of H . If T is the corresponding triangle-

transversal of G of size |d3(H)|
2 + 1, we have that G − T ⊆ L(P ) and so T is in fact a feedback vertex set. �

By Lemma 19, Hamiltonian Path is NP-complete for graphs in Rp , for any p ≥ 1, and so we can finally prove the 
following:

Lemma 34. For any p ≥ 1, Feedback Vertex Set is NP-complete for line graphs of graphs in Rp.

Proof. We reduce from Hamiltonian Path for graphs in Rp . Let G = (V , E) be an instance of this problem. In particular, 
G is a subcubic triangle-free graph with δ(G) ≥ 2. Consider now its line graph G ′ = L(G). By Lemma 33, we have that 
τc(G ′) ≤ |d3(G)|

2 + 1 if and only if G contains a Hamiltonian path. The conclusion immediately follows. �
Note that the class Q′

p of (C4, . . . , C2p+2)-free graphs in Qp is monotone, i.e. it is closed under vertex and edge deletions. 
Moreover, by Lemma 34, Feedback Vertex Set is NP-complete for graphs in L(Q′

p) = {L(G) : G ∈ Q′
p}, for any p ≥ 1. There-

fore, L(Q′
p) is a hard class for Feedback Vertex Set and it is easy to see that 

⋂
p≥1 L(Q′

p) = L(Q). In other words, L(Q) is a 
limit class:

Corollary 35. L(Q) is a limit class for Feedback Vertex Set.

We suspect that L(Q) is indeed a minimal limit class and we leave this verification as an open problem.

7. Connected Vertex Cover

In this section, we consider the connected variant of the vertex cover problem which asks for a minimum-size vertex 
cover inducing a connected graph:

Connected Vertex Cover

Instance: A graph G = (V , E) and a positive integer k.
Question: Does βc(G) ≤ k hold?

Connected Vertex Cover was introduced by Garey and Johnson [25], who showed it is NP-complete for planar graphs 
with maximum degree 4. Fernau and Manlove [22] strengthened this result by showing that it remains NP-hard even for 
planar bipartite graphs with maximum degree 4 (see also [21]). On the other hand, we have seen in Section 6 that it is 
solvable in polynomial time for subcubic graphs. In the following, we make some observations towards determining the first 
boundary classes for this problem.

Alekseev [3] showed that the class of forests whose components have at most three leaves is boundary for Vertex Cover
2

and conjectured no other boundary class exists. For Connected Vertex Cover, we show there are at least two boundary 
classes. One of them is a subclass of line graphs of bipartite graphs:

Lemma 36. Connected Vertex Cover is NP-complete for line graphs of planar cubic bipartite graphs.

Note that, on the contrary, Vertex Cover restricted to line graphs can be solved in polynomial time by a reduction to a 
matching problem [53,65].

Our proof of Lemma 36 is based on the following:

Lemma 37. If G is the line graph of a cubic triangle-free graph H, then βc(G) ≥ 2
3 |V (G)|. Equality holds if and only if H contains a 

Hamiltonian cycle.

2 He actually stated this result for Independent Set but the two problems are polynomially equivalent.
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Fig. 11. The operation Ap .

Fig. 12. The graph H ′
i .

Proof. Clearly, there is a bijection between the vertices of H and the triangles of G . Moreover, any vertex cover of G contains 
at least two vertices for every triangle. Since there are |V (H)| = 2

3 |V (G)| triangles in G and any two of them share at most 
one vertex, we have that βc(G) ≥ β(G) ≥ 2

3 |V (G)|.
Suppose now that βc(G) = 2

3 |V (G)|. This means there exists a connected vertex cover S of G containing exactly two 
vertices for each triangle of G . Consider now the set of edges S ′ ⊆ E(H) corresponding to S . Since G[S] is connected, we 
have that H[S ′] is connected as well. Therefore, S ′ ⊆ E(H) is a set of edges such that each vertex of H is incident to exactly 
two of them and H[S ′] is connected and so S ′ induces a Hamiltonian cycle in H .

Conversely, suppose H contains a Hamiltonian cycle C and let S be the set of vertices of G corresponding to E(C). Since 
every edge of H is incident to an edge in E(C), we have that S is a vertex cover of G . Moreover, G[S] is connected and so 
βc(G) ≤ |V (H)| = 2

3 |V (G)|. �
Proof of Lemma 36. We reduce from Hamiltonian Cycle for planar cubic bipartite graphs, which is known to be 
NP-complete [2]. Let G be an instance of this problem and consider its line graph G ′ = L(G). By Lemma 37, we have 
that βc(G ′) ≤ 2

3 |V (G ′)| if and only if G contains a Hamiltonian cycle. �
The results in [21,22] mentioned above show that the class of planar bipartite graphs with maximum degree 4 is limit. 

On the other hand, we now show it is not minimal. The following operation proves to be helpful: Given a graph G = (V , E), 
an edge uv ∈ E and an integer p ≥ 1, the graph Ap(G) is obtained from G by replacing uv with the gadget depicted in 
Fig. 11.

The fundamental property of Ap , which is left as an easy exercise, is that βc(Ap(G)) = βc(G) + p. We can now provide 
the other limit class (see Fig. 12):

Lemma 38. For any k ≥ 1, Connected Vertex Cover is NP-complete for planar bipartite (C4, . . . , C2k, H ′
1, . . . , H

′
k)-free graphs with 

maximum degree at most 4.

Proof. We reduce from Connected Vertex Cover for planar graphs with maximum degree 4, which is NP-complete by 
Lemma 36. Given an instance G of this problem, we construct a graph G ′ by applying the operation Ap , with p = 2k + 1, to 
each edge of G . The statement follows from the fact that βc(Ap(G)) = βc(G) + p. �

Note that the two boundary classes whose existence is guaranteed by Lemmas 36 and 38 are distinct. Indeed, by 
Lemma 36, there exists a boundary class C1 which is a subclass of line graphs and, by Lemma 38, there exists a boundary 
class C2 which is a subclass of forests. On the other hand, C1 must contain K3 or else, by Theorem 6, Connected Vertex 
Cover would be NP-hard for triangle-free line graphs and so for graphs with maximum degree 2.

The determination of these two boundary classes is left as an open problem.

8. Connected Dominating Set

In this section, we consider Connected Dominating Set and we begin by showing that the class of subcubic forests is a 
limit class for this problem. Alekseev et al. [6] showed that the class T of forests whose components have at most three 
leaves is boundary for the related Dominating Set. Clearly, T is contained in the class of subcubic forests but we provide 
some evidence for the fact that it may not be boundary for Connected Dominating Set.

Douglas [19] showed that the following variant of Connected Dominating Set is NP-hard even for subcubic planar 
graphs:
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(
|V |
2 − 1)-Connected Dominating Set

Instance: A graph G = (V , E).
Question: Does γc(G) ≤ |V |

2 − 1 hold?

In particular, Connected Dominating Set is NP-hard for subcubic planar graphs and in the following we show that the 
same holds for the class of subcubic planar bipartite graphs with arbitrarily large girth. This would clearly imply that the 
class of subcubic forests is a limit class for Connected Dominating Set.

Recall that, for any graph G , we have γc(G) = |V (G)| − �(G). Moreover, it is easy to see that for any subcubic graph G , 
we have �(G) ≤ |V (G)|

2 + 1, with equality if and only if G contains a {1, 3}-spanning tree, i.e. a spanning tree with no vertices 
of degree 2. Therefore, ( |V |

2 − 1)-Connected Dominating Set restricted to subcubic graphs is polynomially equivalent to the 
following problem:

{1, 3}-Spanning Tree

Instance: A graph G = (V , E).
Question: Does there exist a spanning tree T of G such that dT (v) is either 1 or 3, for any v ∈ V ?

In fact, Douglas [19] first showed that {1, 3}-Spanning Tree is NP-hard for subcubic planar graphs and then used the 
equivalence above to deduce that the same holds for ( |V |

2 − 1)-Connected Dominating Set. In the following, we take the 
same path and show that {1, 3}-Spanning Tree is NP-hard even for the class of subcubic planar bipartite graphs with 
arbitrarily large girth. We first need the following lemma:

Lemma 39. For any � ≥ 2, Hamiltonian Path is NP-complete for subcubic planar bipartite (C4, . . . , C2�)-free graphs with exactly 
two vertices of degree 1.

Proof. We reduce from Hamiltonian Cycle Through Specified Edge for subcubic planar bipartite (C4, . . . , C2�)-free graphs, 
which is NP-complete by Lemma 15. Let G = (V , E) and uv ∈ E be an instance of this problem. Clearly, we may assume G
has no vertices of degree 1. Our reduction constructs a graph G ′ = (V ′, E ′) as follows. Let V ′ = V ∪ {a, b}, where a, b are 
new vertices, and E ′ = (E \ {uv}) ∪ {au, bv}. Clearly, G ′ is a subcubic planar bipartite (C4, . . . , C2�)-free graph and a and b
are the only 1-vertices of G ′ .

It is easy to see that G has a Hamiltonian cycle through uv if and only if G ′ has a Hamiltonian path (between a
and b). �
Lemma 40. For any � ≥ 2, {1, 3}-Spanning Tree is NP-complete for subcubic planar bipartite (C4, . . . , C2�)-free graphs.

Proof. We reduce from Hamiltonian Path for subcubic planar bipartite (C4, . . . , C2�)-free graphs with exactly two vertices of 
degree 1, which is NP-complete by Lemma 39. Given such a graph G = (V , E), our reduction constructs a graph G ′ = (V ′, E ′)
as follows. We replace each 3-vertex u of G with the gadget depicted in Fig. 13 by taking k = 2� + 1. We proceed similarly 
for any 2-vertex u of G (in this case, u3 will be a 2-vertex in G ′). Note that there is some freedom on the way the edges 
incident to u are attached to the gadget. It is easy to see that G ′ is a planar bipartite (C4, . . . , C2�)-free graph with maximum 
degree 3.

Let v1 and v2 be the vertices of degree 1 in G (and so in G ′). We claim that G has a Hamiltonian path (between v1 and 
v2) if and only if there exists a spanning tree T of G ′ such that dT (v) is either 1 or 3, for any v ∈ V ′ .

Fig. 13. Construction of the graph G ′ in the proof of Lemma 40: The vertex u is replaced by a gadget containing 2(2� + 1) + 2 · 2� + 6 vertices.
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Fig. 14. Construction of the spanning tree T . If P passes through the edges 1 and 2, we select the bold edges in (a). Similarly for the other two cases 
illustrated in (b) and (c).

Suppose first G contains a Hamiltonian path P between v1 and v2. Each u ∈ V \ {v1, v2} is incident to exactly two edges 
in E(P ). We select the corresponding edges in G ′ and, for each gadget, we select the bold edges as described in Fig. 14 (if 
the gadget replaces a 2-vertex of G , the construction is similar). In this way, we obtain a spanning tree T of G ′ such that 
dT (v) is either 1 or 3, for any v ∈ V ′ .

Conversely, suppose there exists a spanning tree T of G ′ such that dT (v) is either 1 or 3, for any v ∈ V ′ , and consider 
the gadget replacing a 3-vertex u ∈ V (see Fig. 13). Clearly, the edges incident to the 1-vertices ai ’s and bi ’s are all in E(T ). 
Moreover, by the degree constraint and the connectedness of T , all the edges incident to the 3-neighbours of the ai ’s and 
bi ’s are in E(T ). We now claim that |E(T ) ∩ {1, 2, 3}| = 2. Since T is a spanning tree, |E(T ) ∩ {1, 2, 3}| ≥ 1. Suppose first 
{1, 2, 3} ⊆ E(T ). By the degree constraint, we have that {u1x1, u2x2, u3x1} ⊆ E(T ) and so T contains a cycle, a contradiction. 
Suppose now |E(T ) ∩ {1, 2, 3}| = 1 and, without loss of generality, E(T ) ∩ {1, 2, 3} = {1} (the other two cases are treated 
similarly). By the degree constraint, we have u1x1 ∈ E(T ), u2x2 /∈ E(T ) and u3x1 /∈ E(T ), a contradiction to the fact that at 
least one of xx1 and xx2 is in E(T ). Therefore, we have |E(T ) ∩ {1, 2, 3}| = 2. If xx1 ∈ E(T ), then it must be E(T ) ∩ {1, 2, 3} =
{1, 3} (see Fig. 14(b)). Otherwise, i.e. if xx2 ∈ E(T ), we either have E(T ) ∩ {1, 2, 3} = {1, 2} or E(T ) ∩ {1, 2, 3} = {2, 3} (see 
Figs. 14(a) and 14(c)). A similar reasoning applies to the gadget replacing a 2-vertex. But then, by contracting each gadget 
in G ′ to a single vertex, we obtain a connected spanning subgraph P of G such that, for each vertex of degree at least 2, 
exactly two of its incident edges are in E(P ). This implies that P is a Hamiltonian v1, v2-path in G . �

We have seen that a subcubic graph G contains a {1, 3}-spanning tree if and only if γc(G) ≤ |V (G)|
2 − 1. Therefore, 

Lemma 40 has the following two immediate consequences:

Corollary 41. For any � ≥ 2, ( |V |
2 − 1)-Connected Dominating Set is NP-complete for subcubic planar bipartite (C4, . . . , C2�)-free 

graphs.

Corollary 42. The class of subcubic forests is a limit class for ( |V |
2 − 1)-Connected Dominating Set and Connected Dominating 

Set.

We now show that the class T of forests whose components have at most three leaves (which is boundary for Domi-

nating Set) is not boundary for ( |V |
2 − 1)-Connected Dominating Set. Clearly, T does not contain the graph H1 depicted in 

Fig. 8.

Lemma 43. If X is a class of subcubic forests which is boundary for ( |V |
2 − 1)-Connected Dominating Set, then H1 ∈ X.

Proof. We first claim that ( |V |
2 − 1)-Connected Dominating Set is solvable in polynomial time for graphs in the class Y of 

subcubic (C3, C4, H1)-free graphs. Since this problem is polynomially equivalent to {1, 3}-Spanning Tree when restricted to 
subcubic graphs, it is enough to show the claim above for the latter problem. Therefore, consider a graph G ∈ Y . If G has 
maximum degree 2, then {1, 3}-Spanning Tree is trivial for G . Moreover, if G contains a cubic vertex v , then each neighbour 
of v has degree at most 2. This implies that v has degree 3 in a {1, 3}-spanning tree of G and so such a tree exists if and 
only if G = K1,3. Therefore, {1, 3}-Spanning Tree is trivial for the class Y .

Suppose now H1 /∈ X . We have that X ⊆ Y and Y is finitely defined. Therefore, by Theorem 6, ( |V |
2 − 1)-Connected 

Dominating Set is NP-hard for Y , a contradiction to the previous paragraph. �
Remark 44. Similarly to Lemma 43, it is not difficult to show that if X is a class of subcubic forests which is boundary for 
(

|V |
2 − 1)-Connected Dominating Set, then X contains a tribranch. Therefore, the class Q is not boundary for this problem 

either.
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Unfortunately, we do not know whether Lemma 43 holds for Connected Dominating Set and the major open problem 
is to find a boundary class with respect to the class of subcubic planar bipartite graphs with arbitrarily large girth. Another 
interesting problem (related to Lemma 43) is to determine the computational complexity of Connected Dominating Set for 
(C3, C4, H1)-free subcubic graphs. We have seen that ( |V |

2 − 1)-Connected Dominating Set is trivial for this class and we 
know that Dominating Set is NP-hard for it [6]. Moreover, in Section 10, we show that Dominating Set and Connected 
Dominating Set belong to the same complexity class when restricted to Free(H), for any graph H . If Connected Dominating 
Set is polynomial for (C3, C4, H1)-free subcubic graphs, we would obtain a first example3 of a non-trivial hereditary class 
for which Dominating Set and Connected Dominating Set belong to different complexity classes.

We now show that Connected Dominating Set admits a boundary class with respect to the class of line graphs. In order 
to show that the problem is NP-hard even for line graphs, it is useful to introduce the following notion. A connected edge 
dominating set of a graph G = (V , E) is a subset D ⊆ E such that G[D] is connected and every edge in E \ D is incident to 
at least one edge in D . We denote by γ ′

c (G) the size of a minimum connected edge dominating set of G and consider the 
following natural problem:

Connected Edge Dominating Set

Instance: A graph G and a positive integer s.
Question: Does γ ′

c (G) ≤ s hold?

Lemma 45. For any k ≥ 1, Connected Edge Dominating Set is NP-complete for planar bipartite (C4, . . . , C2k)-free graphs with 
maximum degree at most 4.

Proof. Recall that a connected vertex cover of a graph G is a vertex cover S such that G[S] is connected and we denote by 
βc(G) the size of a minimum connected vertex cover of G . We first claim that γ ′

c (G) = βc(G) − 1, for any graph G .4

Indeed, consider a minimum connected edge dominating set D of G . It is easy to see that G[D] is a tree. But then the 
vertex set of G[D] is a connected vertex cover of G of size γ ′

c (G) + 1.
Conversely, let D be a minimum connected vertex cover of G and let T be a spanning tree of G[D]. We have that E(T )

is a connected edge dominating set of G of size βc(G) − 1.
The claim above implies that Connected Edge Dominating Set and Connected Vertex Cover are polynomially equiva-

lent and since the latter is NP-complete for planar bipartite (C4, . . . , C2k)-free graphs with maximum degree at most 4
(Lemma 38), the conclusion follows. �

Since there is an obvious bijection between the connected edge dominating sets of a graph G and the connected domi-
nating sets of L(G), we have that Connected Edge Dominating Set polynomially reduces to Connected Dominating Set for 
line graphs. Therefore, Lemma 45 implies the following:

Lemma 46. For any k ≥ 1, Connected Dominating Set is NP-complete for line graphs of planar bipartite (C4, . . . , C2k)-free graphs 
with maximum degree at most 4.

9. Graph VCcon Dimension

In this section, we consider Graph VCcon Dimension, a problem closely related to Connected Dominating Set. Graph 
VCcon Dimension is the problem of deciding the VC-dimension of a certain set system arising from a graph. In order to give 
the precise definition, let us first recall the notion of VC-dimension.

Given a set system H on X , a subset Y ⊆ X is shattered by H if {E ∩ Y : E ∈H} = 2Y and the VC-dimension of H is 
defined as the maximum size of a set shattered by H, or as ∞ if arbitrarily large subsets can be shattered. The notion of 
VC-dimension was introduced by Vapnik and Chervonenkis [70] and it represents a prominent measure of the “complexity” 
of a set system. Given a graph, we can consider set systems induced by a certain family of subgraphs. In this way we 
obtain several different notions of VC-dimension, each one related to a special family of subgraphs. Kranakis et al. [40]
initiated a systematic study of these notions and adapted the definition of VC-dimension to the graph theoretic setting as 
follows:

Definition 47. Let G = (V , E) be a graph and let P be a family of subgraphs of G . A subset A ⊆ V is P-shattered if every 
subset of A can be obtained as the intersection of V (H) with A, for some H ∈P . The VC-dimension of G with respect to P
is the size of a maximum P-shattered subset and it is denoted by VCP (G).

3 To the best of our knowledge.
4 This claim is in fact folklore.
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According to Definition 47, we denote by VCcon the VC-dimension with respect to the family of connected subgraphs. 
Kranakis et al. [40] showed that VCcon(G) differs by at most 1 from the number of leaves �(G) in a maximum leaf spanning 
tree of G:

Theorem 48 (Kranakis et al. [40]). �(G) ≤ VCcon(G) ≤ �(G) + 1, for any connected graph G.

Papadimitriou and Yannakakis [62] considered the problem of deciding the VC-dimension: Given a set system H on X
(by its incidence matrix) and an integer s, does H have VC-dimension at least s? Since the VC-dimension is at most log2 |H|, 
it can clearly be computed by brute force in O (|X |log2 |H|) time and so the problem looks unlikely to be NP-complete. In 
fact, they introduced the complexity class LOGNP and showed that the problem in question is complete for it. Kranakis 
et al. [40] investigated the computational complexity of computing VCP (G), for a given graph G and a certain family of its 
subgraphs P . They formulated the decision problem as follows:

Graph VCP Dimension

Instance: A graph G and a positive integer s.
Question: Does VCP (G) ≥ s hold?

Moreover, they showed that Graph VCcon Dimension is NP-complete. In [56], we strengthened this result and provided 
several others, as summarised in the following table:

Family P Graph G Comp. Compl. Reference

Star P Kranakis et al. [40]
Neighbourhood LOGNP-complete Kranakis et al. [40]
Path 

p
3 -complete Schaefer [66]

Cycle 
p
3 -complete Schaefer [66]

k-Connected split NP-complete Munaro [56]
k-Connected bounded clique-width P Munaro [56]
k-Connected split, Dilworth number ≤ 2 P Munaro [56]
Connected planar, bipartite, �(G) = 3 NP-complete Munaro [56]
2-Connected planar, bipartite, �(G) = 4 NP-complete Munaro [56]

Theorem 48 hints at the fact that Graph VCcon Dimension and Connected Dominating Set are two closely related prob-
lems5 and we now show that the class of subcubic forests is limit for Graph VCcon Dimension as well.

Lemma 49. For any � ≥ 2, Graph VCcon Dimension is NP-complete for subcubic planar bipartite (C4, . . . , C2�)-free graphs.

Proof. It is easy to see that the complement of a connected dominating set can be shattered by connected subgraphs. 
Moreover, if G is a subcubic graph with sufficiently large order and VC-dimension, we showed in [56] that the converse 
holds as well: more precisely, for every subcubic graph G with |V (G)| ≥ 46, γc(G) ≤ |V (G)|

2 − 1 if and only if VCcon(G) ≥
|V (G)|

2 + 1 [56, Theorem 25]. But then the proof immediately follows from the fact that, for any � ≥ 2, ( |V |
2 − 1)-Connected 

Dominating Set is NP-complete for subcubic planar bipartite (C4, . . . , C2�)-free graphs (Corollary 41). �
Corollary 50. The class of subcubic forests is a limit class for Graph VCcon Dimension.

Definition 47 has an analogue formulation for edge sets:

Definition 51 (Kranakis et al. [40]). Let G = (V , E) be a graph and let P be a family of sets of edges of G . A subset A ⊆ E
is P-edge-shattered if every subset of A can be obtained as the intersection of a C ∈ P with A. The edge VC-dimension of G
with respect to P is defined as the size of a maximum P-edge-shattered subset and it is denoted by EVCP (G).

We denote by EVCcon the edge VC-dimension with respect to the family of connected edge sets. Since a graph G is 
connected if and only if L(G) is, it is easy to see that EVCcon(G) = VCcon(L(G)) [40]. Moreover, given a graph G and a 
positive integer s, it is NP-complete to decide whether EVCcon(G) ≥ s holds [40]. It immediately follows that Graph VCcon

Dimension is NP-complete for line graphs.
To further emphasise the connection between Graph VCcon Dimension, Connected Dominating Set and Dominating Set, 

we show in the next section that the complexities of these problems all agree in monogenic classes.

5 Recall that �(G) = |V (G)| − γc(G).
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10. Complexity dichotomies in monogenic classes for Graph VCcon Dimension and Connected Dominating Set

A class of graphs G is monogenic if it is defined by a single forbidden induced subgraph, i.e. G = Free(H), for some 
graph H . We say that a (decision) graph problem admits a dichotomy in monogenic classes if, for each monogenic class, 
the problem is either NP-complete or decidable in polynomial time. The first result in this direction was obtained by 
Korobitsin [36], who showed that Dominating Set is decidable in polynomial time if H is an induced subgraph of P4 + t K1, 
for t ≥ 0, and NP-complete otherwise. Král’ et al. [39] showed that Colouring is decidable in polynomial time if H is an 
induced subgraph of P4 or of P3 + K1 and NP-complete otherwise. Kamiński [33] showed that Simple Max-Cut is decidable 
in polynomial time if H is an induced subgraph of P4 and NP-complete otherwise. Other dichotomies were obtained by 
Golovach et al. [28] for Precolouring Extension and �-List Colouring and by AbouEisha et al. [1] for Upper Dominating 
Set. Other problems, like k-Colouring and Independent Set, appear more stubborn and no complete dichotomy is available: 
we refer the reader to [29] for a survey on the status of k-Colouring and we just mention that a major question related to
Independent Set is whether it is decidable in polynomial time for Pk-free graphs with k ≥ 6 (see, e.g., [44]).

In the following, we enlarge the list above by providing dichotomies for the closely related Graph VCcon Dimension and
Connected Dominating Set. Let us begin with Graph VCcon Dimension:

Theorem 52. Graph VCcon Dimension restricted to H-free graphs is decidable in polynomial time if H is an induced subgraph of 
P4 + t K1 and NP-complete otherwise.

Proof. Suppose first H contains an induced cycle Ck . If k is odd, then the problem is NP-complete since it is NP-complete 
when restricted to bipartite graphs [56]. If k is even, then the problem is again NP-complete since it is NP-complete when 
restricted to split graphs [56].

Suppose now H is a forest with a vertex of degree at least 3. Then H contains an induced claw and the problem is 
NP-complete since it is NP-complete when restricted to line graphs (see Section 9).

Finally, suppose H is the disjoint union of paths. If H contains at least two paths on at least 2 vertices, then H contains 
2K2 and the problem is NP-complete since it is NP-complete when restricted to split graphs. The same conclusion holds if 
H contains a path on at least 5 vertices. It remains to consider the case of H being of the form Pk + t K1, for some k ≤ 4
and t ≥ 0. Therefore, let G be such a Pk + t K1-free graph. If G is in addition Pk-free, then it has bounded clique-width (see 
Section 2) and the problem is decidable in polynomial time [56]. On the other hand, if G contains an induced copy G ′ of 
Pk , then there are at most t − 1 pairwise non-adjacent vertices of G none of which is adjacent to a vertex of G ′ . Denoting 
this set by S , we have that V (G ′) ∪ S is a dominating set of size at most t + 3. Moreover, denoting by γ (G) the domination 
number of G , Duchet and Meyniel [20] showed that γc(G) ≤ 3γ (G) − 2 and so we have γc(G) ≤ 3t + 7. If G has n vertices, 
Theorem 48 implies that n − γc(G) ≤ VCcon(G) ≤ n − γc(G) + 1. But then we simply check all the subsets of V (G) of size 
n − γc(G) and n − γc(G) + 1: their number is 

( n
γc(G)

) + ( n
γc(G)−1

) = O (n3t+7) and so, by the proof of [56, Theorem 17], we 
can compute VCcon(G) in polynomial time. �

Let us now consider Connected Dominating Set. We have seen in Section 2 that if a graph property is expressible in 
MSO1, then it is decidable in polynomial time for graphs of bounded clique-width. We now show that being a connected 
dominating set is an example of such a property:

Lemma 53. Being a connected dominating set is expressible in MSO1 .

Proof. Let G = (V , E) be a graph. The following MSO2 sentence says that the subgraph induced by X ⊆ V is connected:

conn(X) = ∀Y ⊆V [(∃u∈X u ∈ Y ∧ ∃v∈X v /∈ Y ) → (∃e∈E∃u∈X∃v∈X inc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v /∈ Y )].
Moreover, the quantification over single edges can be expressed by a MSO1 sentence as follows:

∃a∈V ∃b∈V ∃u∈X∃v∈X adj(a,b) ∧ (u = a ∨ u = b) ∧ (v = a ∨ v = b) ∧ u ∈ Y ∧ v /∈ Y .

Finally, the following MSO1 sentence says that D ⊆ V is a connected dominating set:

cds(D) = conn(D) ∧ ∀v∈V \D∃u∈D adj(u, v). �
Corollary 54. Connected Dominating Set is decidable in polynomial time for graphs of bounded clique-width. In particular, it is 
decidable in polynomial time for P4-free graphs.

We can finally prove our second dichotomy. The proof is similar to that of Theorem 52.

Theorem 55. Connected Dominating Set restricted to H-free graphs is decidable in polynomial time if H is an induced subgraph of 
P4 + t K1 and NP-complete otherwise.
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Proof. Suppose first H contains an induced cycle Ck . If k is odd, then the problem is NP-complete since it is NP-complete 
when restricted to bipartite graphs (Corollary 41). If k is even, then the problem is again NP-complete since it is 
NP-complete when restricted to split graphs [41].

Suppose now H is a forest with a vertex of degree at least 3. Then H contains an induced claw and the problem is 
NP-complete since, by Lemma 46, it is NP-complete when restricted to line graphs.

Finally, suppose H is the disjoint union of paths. If H contains at least two paths on at least 2 vertices, then H contains 
2K2 and the problem is NP-complete since it is NP-complete when restricted to split graphs. The same conclusion holds 
if H contains a path on at least 5 vertices. Therefore, it remains to consider the case of H being of the form Pk + t K1, for 
some k ≤ 4 and t ≥ 0. Let G be such a Pk + t K1-free graph. If G is in addition Pk-free, then the problem is decidable in 
polynomial time by Corollary 54. On the other hand, if G contains an induced copy of Pk , we have seen in the proof of 
Theorem 52 that γc(G) ≤ 3t + 7. Therefore, it suffices to check all the subsets of V (G) of size at most 3t + 7, and this can 
be clearly done in polynomial time. �
11. Concluding remarks and open problems

In this paper, we considered seven NP-hard graph problems involving non-local properties and provided some new 
boundary classes for them. Unfortunately, we could not completely determine the set of boundary classes for any of these 
problems.

Korpelainen et al. [38] showed that the class Q is boundary for Hamiltonian Cycle (with respect to the class of sub-
cubic graphs) and in Section 3 we showed that Q is boundary also with respect to the class of subcubic planar bipartite 
graphs. Moreover, we showed there exists a boundary class with respect to split graphs which is a subclass of 

⋂
p≥1 S(Qp)

(Lemma 13) and which is distinct from Q (Remark 14). A boundary class with respect to line graphs was determined by 
Korpelainen et al. [38]. Their result is an application of the following operation, usually known as Y -extension (see, e.g., 
[57]). Given a graph G , the graph R(G) is obtained by replacing each cubic vertex u ∈ V (G) with a triangle Tu , where each 
x ∈ V (Tu) corresponds to an edge incident to u, and by connecting the vertices of the triangles which correspond to the 
same edge. They showed that the hereditary closure R(Q) of {R(G) : G ∈Q} is a boundary class. The existence of one more 
boundary class for Hamiltonian Cycle follows from the fact that the problem is NP-hard for chordal bipartite graphs [54], 
i.e. (C3, C5, C6, . . . )-free graphs. Reasonings similar to Remarks 2 and 14 show that these boundary classes are distinct and 
so Hamiltonian Cycle admits at least four boundary classes. Determining all of them seems to be a challenging problem.

A similar situation occurs for Hamiltonian Path. In Section 5, we showed that Q is a boundary class with respect to 
the class of subcubic planar bipartite graphs with arbitrarily large girth. Moreover, we showed there exists a boundary class 
(with respect to split graphs) which is a subclass of 

⋂
p≥1 S(Qp). By a result in [57], we have that R(Q) is a limit class 

with respect to line graphs and the existence of a boundary class with respect to chordal bipartite graphs follows by results 
in [54]. Once again, it is easy to see that these four boundary classes are distinct and we leave as an open problem their 
complete determination. In particular, it would be interesting to check whether Hamiltonian Path and Hamiltonian Cycle

admit the same boundary classes.
In Section 6, we considered Feedback Vertex Set and provided the first boundary class for the problem (with respect to 

planar bipartite graphs with maximum degree 4 and arbitrarily large girth): the class S of forests whose components have 
at most four leaves and no two vertices of degree three. The existence of a boundary class with respect to line graphs was 
shown in Section 6.3, where we proved that L(Q) is a limit class. In fact, we suspect that this class is minimal. Note that 
the problem is solvable in polynomial time for chordal graphs [13] (the C3,1 problem for chordal graphs defined therein is 
equivalent to Feedback Vertex Set) and for chordal bipartite graphs [35].

In Section 7, we considered Connected Vertex Cover and showed it admits at least two boundary classes. The determi-
nation of these two classes is left as an open problem: one of them is a subclass of line graphs of subcubic planar bipartite 
graphs and the other is a subclass of planar bipartite graphs with maximum degree 4 and arbitrarily large girth. Note that
Connected Vertex Cover is solvable in polynomial time for chordal graphs [21].

In Section 8, we considered Connected Dominating Set and showed that the class of subcubic forests is a limit class for 
this problem. Moreover, we showed that Connected Dominating Set admits a boundary class with respect to line graphs 
and gave some insights into its structure. Note that the problem is NP-hard for chordal bipartite graphs [55] and for split 
graphs [41] and so reasonings similar to Remarks 2 and 14 show that it admits at least four boundary classes.

In Section 9, we observed that Graph VCcon Dimension, a problem closely related to Connected Dominating Set, admits 
at least three boundary classes.

Finally, in Section 10, we provided a dichotomy for Graph VCcon Dimension and Connected Dominating Set in monogenic 
classes showing that the complexities of these two problems all agree with those of Dominating Set when restricted to 
monogenic classes.
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