2,058 research outputs found

    Modeling mammalian gastrulation with embryonic stem cells

    Full text link
    Understanding cell fate patterning and morphogenesis in the mammalian embryo remains a formidable challenge. Recently, in vivo models based on embryonic stem cells (ESCs) have emerged as complementary methods to quantitatively dissect the physical and molecular processes that shape the embryo. Here we review recent developments in using embryonic stem cells to create both two and three-dimensional culture models that shed light on mammalian gastrulation.Comment: 18 pages, 1 figur

    Preparing for the First Breath: Genetic and Cellular Mechanisms in Lung Development

    Get PDF
    The mammalian respiratory system—the trachea and the lungs—arises from the anterior foregut through a sequence of morphogenetic events involving reciprocal endodermal-mesodermal interactions. The lung itself consists of two highly branched, tree-like systems—the airways and the vasculature—that develop in a coordinated way from the primary bud stage to the generation of millions of alveolar gas exchange units. We are beginning to understand some of the molecular and cellular mechanisms that underlie critical processes such as branching morphogenesis, vascular development, and the differentiation of multipotent progenitor populations. Nevertheless, many gaps remain in our knowledge, the filling of which is essential for understanding respiratory disorders, congenital defects in human neonates, and how the disruption of morphogenetic programs early in lung development can lead to deficiencies that persist throughout life

    Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation

    Get PDF
    Transformation of pluripotent epiblast cells into a cup-shaped epithelium as the mouse blastocyst implants is a poorly understood and yet key developmental step. Studies of morphogenesis in embryoid bodies led to the current belief that it is programmed cell death that shapes the epiblast. However, by following embryos developing in vivo and in vitro, we demonstrate that not cell death but a previously unknown morphogenetic event transforms the amorphous epiblast into a rosette of polarized cells. This transformation requires basal membrane-stimulated integrin signaling that coordinates polarization of epiblast cells and their apical constriction, a prerequisite for lumenogenesis. We show that basal membrane function can be substituted in vitro by extracellular matrix (ECM) proteins and that ES cells can be induced to form similar polarized rosettes that initiate lumenogenesis. Together, these findings lead to a completely revised model for peri-implantation morphogenesis in which ECM triggers the self-organization of the embryo’s stem cells

    Cell death and morphogenesis during early mouse development: Are they interconnected?

    Get PDF
    Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis‐independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette‐like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis‐dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage

    Rethinking organoid technology through bioengineering

    Get PDF
    In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine

    Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo

    Get PDF
    A critical point in mammalian development is when the early embryo implants into its mother's uterus. This event has historically been difficult to study due to the fact that it occurs within the maternal tissue and therefore is hidden from view. In this review, we discuss how the mouse embryo is prepared for implantation and the molecular mechanisms involved in directing and coordinating this crucial event. Prior to implantation, the cells of the embryo are specified as precursors of future embryonic and extra-embryonic lineages. These preimplantation cell fate decisions rely on a combination of factors including cell polarity, position and cell–cell signalling and are influenced by the heterogeneity between early embryo cells. At the point of implantation, signalling events between the embryo and mother, and between the embryonic and extraembryonic compartments of the embryo itself, orchestrate a total reorganization of the embryo, coupled with a burst of cell proliferation. New developments in embryo culture and imaging techniques have recently revealed the growth and morphogenesis of the embryo at the time of implantation, leading to a new model for the blastocyst to egg cylinder transition. In this model, pluripotent cells that will give rise to the fetus self-organize into a polarized three-dimensional rosette-like structure that initiates egg cylinder formation

    The epithelium of the dorsal marginal zone of Xenopus has organizer properties

    Get PDF
    We have investigated the properties of the epithelial layer of the dorsal marginal zone (DMZ) of the Xenopus laevis early gastrula and found that it has inductive properties similar to those of the entire Spemann organizer. When grafts of the epithelial layer of the DMZ of early gastrulae labelled with fluorescein dextran were transplanted to the ventral sides of unlabelled host embryos, they induced secondary axes composed of notochord, somites and posterior neural tube. The organizer epithelium rescued embryos ventralized by UV irradiation, inducing notochord, somites and posterior neural tube in these embryos, while over 90% of ventralized controls showed no such structures. Combinations of organizer epithelium and ventral marginal zone (VMZ) in explants of the early gastrula resulted in convergence, extension and differentiation of dorsal mesodermal tissues, whereas similar recombinants of nonorganizer epithelium and the VMZ did none of these things. In all cases, the axial structures forming in response to epithelial grafts were composed of labelled graft and unlabelled host cells, indicating an induction by the organizer epithelium of dorsal, axial morphogenesis and tissue differentiation among mesodermal cells that otherwise showed non-axial development. Serial sectioning and scanning electron microscopy of control grafts shows that the epithelial organizer effect occurs in the absence of contaminating deep cells adhering to the epithelial grafts. However, labelled organizer epithelium grafted to the superficial cell layer contributed cells to deep mesodermal tissues, and organizer epithelium developed into mesodermal tissues when deliberately grafted into the deep region. This shows that these prospective endodermal epithelial cells are able to contribute to mesodermal, mesenchymal tissues when they move or are moved into the deep environment. These results suggest that in normal development, the endodermal epithelium may influence some aspects of the cell motility underlying the mediolateral intercalation (see Shih, J. and Keller, R. (1992) Development 116, 901–914), as well as the tissue differentiation of mesodermal cells. These results have implications for the analysis of mesoderm induction and for analysis of variations in the differentiation and morphogenetic function of the marginal zone in different species of amphibians

    Computational morphodynamics of plants: integrating development over space and time

    Get PDF
    The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development

    Noncanonical Biogenesis of Centrioles and Basal Bodies

    Get PDF
    The deposited article is a pre-print version.The deposited article version is the Epub Ahead of Print version of the article, posted online 23 April 2018, provided by Cold Spring Harbor Laboratory Press. It hasn't peer-review.This deposit is composed by the main article, and it hasn't any supplementary materials associated.Centrioles and basal bodies (CBBs) organize centrosomes and cilia within eukaryotic cells. These organelles are composed of microtubules and hundreds of proteins performing multiple functions such as signaling, cytoskeleton remodeling, and cell motility. The CBB is present in all branches of the eukaryotic tree of life and, despite its ultrastructural and protein conservation, there is diversity in its function, occurrence (i.e., presence/absence), and modes of biogenesis across species. In this review, we provide an overview of the multiple pathways through which CBBs are formed in nature, with a special focus on the less studied, noncanonical ways. Despite the differences among each mechanism herein presented, we highlighted some of their common principles. These principles, governing different steps of biogenesis, ensure that CBBs may perform a multitude of functions in a huge diversity of organisms but yet retained their robustness in structure throughout evolution.European Research Council Consolidator Grant: (CoG683528__Centriole-BirthDeath); Boehringer Ingelheim Fonds; Fundação para a Ciência e Tecnologia grant: (PD/BD/114350/2016).info:eu-repo/semantics/acceptedVersio
    corecore