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Abstract  

Centrioles and basal bodies (CBBs) organize centrosomes and cilia within eukaryotic 

cells. These organelles are composed of microtubules and hundreds of proteins performing 

multiple functions such as signalling, cytoskeleton remodelling and cell motility. The CBB is 

present in all branches of the eukaryotic tree of life and, despite its ultrastructural and protein 

conservation, there is diversity in its function, occurrence (i.e. presence/absence) and modes 

of biogenesis across species.  

In this review, we provide an overview of the multiple pathways through which CBBs are 

formed in nature, with a special focus on the less discussed, non-canonical ways. Despite the 

differences among each mechanism here presented, we highlighted some of their common 

principles. These principles, governing different steps of biogenesis, ensure that CBBs may 

perform their multitude of functions in a huge diversity of organisms but yet retained their 

robustness in structure throughout evolution.  
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Centrioles and Basal Bodies (CBBs) are microtubule-based structures that assemble 

centrosomes and cilia. The centrosome is the dominant microtubule organizing centre (MTOC) 

in most animal cells, thereby regulating intracellular transport and spindle pole formation, and 

establishing cellular polarity and migration. Each centrosome is composed of two cylindrical 

centrioles, often nine-fold symmetric, surrounded by dynamic pericentriolar material (PCM). 

The PCM is responsible for anchoring and nucleating microtubules. Centrioles, then called basal 

bodies, can also anchor to the cell membrane and template the growth of motile and immotile 

cilia. In animals, most cell-types form only one cilium (the primary cilium) but others can form 

hundreds (multiciliogenesis). These organelles are required for both cell and flow motility and 

sensing environmental cues. 

It is essential that a cell regulates CBBs biogenesis to ensure they assemble at the right 

place, time and number. Failure in regulating this process can lead to cellular defects and 

diseases. If cells possess more than two centrosomes at mitotic onset, they may assemble 

multipolar spindles and segregate the genome unevenly. This leads to aneuploidy, genomic 

instability and cancer (Peel et al. 2007; Ganem et al. 2009; Silkworth et al. 2009; Godinho and 

Pellman 2014; Levine et al. 2017). Similarly, problems in cilia assembly cause a plethora of 

ciliopathies (Badano et al. 2006). In some cases, those may arise directly from basal body 

defects, for e.g., some mutations causing Bardet-Biedl Syndrome (Ansley et al. 2003). 

CBBs are well conserved structures present across the eukaryotic tree of life and probably 

derived from a basal body-like organelle already present in the last eukaryotic ancestor (LECA) 

(Cavalier-Smith 2002; Hodges et al. 2010). They have been lost within plant, fungi and amoebae 

lineages or reduced to some particular tissues or life-cycle stages in other groups, acquiring new 

morphologies and modes of biogenesis.  

 CCBs can assemble by several pathways; the best characterized one is centriole 

duplication (Loncarek and Bettencourt-Dias 2018). This, hereafter called canonical pathway, 
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occurs through the formation of two daughter centrioles close to pre-existing ones. In mitosis, 

one centrosome is segregated to each daughter cell, ensuring that cells maintain a correct 

centriole number when they proliferate. Canonical biogenesis is always coupled to the cell cycle, 

ensuring that CBBs only form once. On the other hand, centriole biogenesis can occur through 

non-canonical pathways. Less is known in terms of their regulation and origin, though they are 

widespread in nature. 

In this Review we describe the diverse pathways through which CBBs are formed. We 

focus mostly on the non-canonical strategies, which have been less explored in the literature, 

and that we differentiated into two categories: deuterosome-mediated biogenesis, when 

centrioles form in bulk in the presence of pre-existing centrioles, and de novo, strictly referring 

to biogenesis without any previously existing centrioles in the cell/organism. We highlight the 

similarities and differences between these pathways and discuss both their evolution and 

underlying molecular and cellular mechanisms.  
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Pathways of biogenesis 

 

1. The canonical pathway (Centriole duplication) 

In cycling cells, centrioles assemble in G1 to S transition, forming one daughter centriole 

orthogonally to each mother. The daughter centrioles elongate and, in late G2, undergo 

centriole-to-centrosome conversion losing the cartwheel (in some species) and recruiting PCM 

(Fu et al. 2016). Then, the two centrosomes migrate towards opposite poles of the cell 

organizing the mitotic spindle. After mitosis, each daughter cell inherits exactly one pair of 

centrioles (Fig. 1).   

Although we are not yet aware of all the details governing this process and preventing re-

duplication, the molecular pathways involved in triggering and coupling centriole duplication to 

the cell cycle have been extensively studied in recent years (Matsumoto et al. 1999; Meraldi et 

al. 1999; Harrison et al. 2011; Zitouni et al. 2016). Such mechanisms are not detailed here but 

they have been covered by numerous reviews (Loncarek and Bettencourt-Dias 2018; Nigg and 

Holland 2018). 

 

2. Deuterosome-mediated Biogenesis 

Post-mitotic cells containing two resident centrioles can differentiate into multicilated 

cells (MCCs), assembling CBBs in large-scale through the deuterosome-mediated pathway 

(Meunier and Azimzadeh 2016) (Fig. 2). Many multiciliated vertebrate tissues - the respiratory 

tract, the oviduct, skin, efferent ducts and the brain ependymal – are composed of MCCs. These 

cells produce fluid flow and particle movement, through the coordinated beating of their motile 

cilia. We hereby describe multiciliogenesis in vertebrate MCCs, whose molecular aspects have 

been characterized in recent years, showing that deuterosome-mediated and canonical 

biogenesis share part of their molecular cascade (Vladar and Stearns 2007; Azimzadeh et al. 
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2012; Klos Dehring et al. 2013; Zhao et al. 2013; Mori et al. 2017). We also speculate that a 

similar mechanism might contribute to the formation of multiciliated sperm in some 

invertebrates, such as in molluscs (C. malleata [Gall 1961] and P. ebeninus [Healy and Jamieson 

1981]) and the insect M. termites (Baccetyi and Dallai 1978; Riparbelli et al. 2009). 

In primary ciliogenesis, a single cilium derives directly from a CBB formed canonically 

whereas in multiciliogenesis, hundreds of basal bodies are generated which nucleate hundreds 

of cilia. Centriole biogenesis in MCCs does not rely only on the association with pre-existing 

centrioles but instead, depends of additional specialized structures (deuterosomes) to efficiently 

assemble a large number of CBBs. Electron microscopy (EM) studies described the formation of 

electron-dense granules (‘fibrogranular material’) in the cytosol; usually in the apical cell region 

and in the vicinity of resident centrioles, as the first morphological evidence of ciliogenesis (Fig. 

2A and E)(Sorokin 1968; Steinman 1968; Kalnins and Porter 1969; Dirksen 1971; Hagiwara et al. 

2004; Vladar and Stearns 2007) . Progressively, these granules increase in size and condense into 

large spherical bodies, the deuterosomes, which show no discernible structure and are 

extremely electron-dense (Fig. 2B, C and G); suggesting they consist of concentrated proteins. 

Frequently, numerous Golgi cisternae, small vesicles and microtubules were seen in the vicinity 

of deuterosomes (Fig. 2A and E)(Sorokin 1968; Kalnins and Porter 1969; Dirksen 1971; Vladar 

and Stearns 2007), suggesting these organelles might contribute to deuterosome formation and 

pro-centriole biogenesis. While Golgi and vesicles, together with microtubule activity can supply 

the deuterosome with precursors, pre-existing centrioles might contribute with activating 

enzymes catalysing biogenesis from the centriolar precursors. One such case, can be mediated 

by the activity of the Polo-like kinase 4 (Plk4), a master regulator and upstream player in 

centriole assembly (Bettencourt-Dias et al. 2005; Habedanck et al. 2005).  

Several evenly spaced pro-centrioles assemble simultaneously from each deuterosome 

(Fig. 2B, C and G). In most tissues, pro-centrioles form both around the amorphous deuterosome 
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(acentriolar-mediated) (Fig. 2G) and the pre-existing centrioles (centriolar-mediated) (Fig. 2F) 

(Sorokin 1968; Anderson and Brenner 1971; Hagiwara et al. 2004; Al Jord et al. 2014).  During 

ependymal MCC differentiation, deuterosomes arise from the wall of the (pre-existing) daughter 

centriole (Al Jord et al. 2014). Nonetheless, in all tissues, most of the centrioles (70-90%) are 

generated via deuterosomes rather than directly from centrosomal centrioles. The specific 

centriole amplification mechanism used by different MCCs, might then depend on the number 

of cilia they produce (Meunier and Azimzadeh 2016). Pro-centrioles separate from the clusters, 

mature and become typical basal bodies nucleating motile cilia. 

Only recently, the molecular mechanisms driving deuterosome formation started to be 

understood. The multiciliogenesis program starts with downregulation of the Notch signaling 

pathway in MCCs precursors. Then, MCCs activate a cascade, mediated by the GemC1-Multicilin-

E2f4/5 complex, triggering cell-cycle exit, cytoskeleton remodeling and upregulation of several 

centriole biogenesis components, including Cep152/Asl, Plk4, Cpap/Sas4, Sas6, Stil/Sas5 and 

centrin (Vladar and Stearns 2007; Hoh et al. 2012; Zhao et al. 2013; Mori et al. 2017; Arbi et al. 

2017). These proteins are usually at very low abundance in cycling cells, hence limiting the 

number of centrioles that are formed. MCCs also express deuterosome-specific components; 

Deup1 (a paralog of Cep63) and Ccdc78, which localize to the centre of the deuterosome (Klos 

Dehring et al. 2013; Zhao et al. 2013). Deup1 binds Cep152/Asl, which then recruits Plk4, kick-

starting the centriole biogenesis molecular cascade (Zhao et al. 2013; Al Jord et al. 2014; Mori 

et al. 2017). As MCCs start differentiating, E2f4 moves from the nucleus to the cytosol, where it 

interacts with Deup1 (Mori et al. 2017). Cep152/Asl, Plk4 and Centrin are subsequently enriched 

at the deuterosome and at the pre-existing centrioles, seeding the biogenesis of multiple CBBs. 

E2f4 has a dual role in the cell; first driving the transcription of centrosomal components and 

later participating in their assembly in the cytoplasm.  
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Knowing how the seeding of new procentrioles starts, remains unanswered how centriole 

amplification stops. Is there a feedback mechanism that terminates centriole amplification? Or 

does it simply result from exhaustion of centrosomal components? 

 

3. De novo 

Centrioles can assemble de novo, i.e. without centriolar structures present in the cell, in 

several species. However, in most naturally occurring cases (Fig. 6, Table S1), the mechanisms 

remain poorly understood. Centrioles may arise as single units (Fig. 3), as two centrioles coaxially 

oriented (Bicentriole, Fig. 4) or in electron-dense spheres (Blepharoplasts, Fig. 5) where the 

number of CBBs assembled varies (Miki-Noumura 1977; Riparbelli et al. 1998; Renzaglia and 

Garbary 2001).  

Amoebae to flagellate transition in Naegleria gruberi is accompanied by the biogenesis of 

two centrioles. Since amoebae lack centrioles and microtubules, and so far no basal body 

precursor was found, it was proposed that centrioles assemble de novo (Dingle and Fulton 1966; 

Fulton and Dingle 1971). By studying the localization of centrin and γ-tubulin during the 

transition, Fritz-Laylin and colleagues (2016) have shown that only the first centriole assembles 

de novo while the second one appears to duplicate from the first. There is no EM support for 

the underlying pathway and despite some molecular insights from recent studies (Suh et al. 

2002; Kim et al. 2005; Fritz-Laylin et al. 2010; Lee et al. 2015; Fritz-Laylin and Fulton 2016) the 

exact cascade is still unknown.  

Other examples of de novo biogenesis of single centrioles take place in parthenogenetic 

insect eggs (in Muscidifurax uniraptor [Riparbelli et al. 1998] [Fig. 3], and Drosophila mercatorum 

[Riparbelli and Callaini 2003]) and artificially activated eggs of sea urchin (Dirksen 1961; Miki-

Noumura 1977) and Spisula solidissima (Kuriyama et al. 1986; Palazzo et al. 1992) (Fig. 6; Table 

S1). As in most animals, centrioles are lost during oogenesis (Fig. 3A) and are delivered to the 
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egg by the sperm upon fertilization. In insect eggs, when development is triggered without 

fertilization, single centrioles are formed de novo and nucleate tubulin monoasters (Fig. 3B) 

(Miki-Noumura 1977; Palazzo et al. 1992; Riparbelli et al. 1998; Riparbelli and Callaini 2003). In 

activated hemynopteran eggs, multiple microtubule asters containing single centrioles are 

formed along the cortex (Fig. 3B). These migrate towards the centre of egg. Parthenogenetic 

development is initiated when two asters are captured by the female pronuclei forming the first 

mitotic spindle (Fig. 3C) (Riparbelli et al. 1998; Tram and Sullivan 2000).  

The centriole in the mouse sperm is unable to nucleate microtubules after fertilization 

(Schatten et al. 1985; Gueth-Hallonet et al. 1993), so the first embryonic divisions are 

acentrosomal (Gueth-Hallonet et al. 1993; Courtois et al. 2012) and centrioles are only detected 

by EM from 64-cell stage onwards (Gueth-Hallonet et al. 1993). Throughout the first mitotic 

divisions, the spindles become progressively more focused and are enriched with PCM and 

centriolar components, such as centrin, pericentrin and CP110. Nevertheless, the trigger 

underlying centriole assembly is still unclear. A gradual concentration of PCM and centriolar 

components throughout the mitotic cycles, could allow crossing a molecular threshold that 

enables the formation of centrioles (Courtois et al. 2012). 

Oocytes represent a very particular cell-type that is loaded with several centriolar 

components therefore, mechanisms blocking spontaneous centriole assembly could be present. 

Thought in most eggs centrioles do not assemble spontaneously, overexpression of Plk4 is 

enough to drive de novo formation of multiple centrioles (Peel et al. 2007; Rodrigues-Martins et 

al. 2007). 

In most cases, centrioles assembled de novo seem to be able to replicate through the 

canonical pathway (Palazzo et al. 1992; Rodrigues-Martins et al. 2007; Fritz-Laylin et al. 2016). 

Therefore, in cases where several centrioles are observed, we cannot exclude that, some could 

result from duplication following de novo biogenesis. Moreover, in Naegleria, both CBBs form 
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cilia, highlighting that centrioles formed de novo and canonically are equally capable of 

nucleating cilia without the need of a full cell cycle to mature. 

 

3.1 Bicentriole 

De novo centriole biogenesis through bicentrioles is known to occur in plants with 

biflagellated sperm, such as bryophytes, as well as in the protist Labyrinthula spp. (Perkins 1970) 

(Fig. 6, Table S1). A bicentriole is composed of two centrioles oriented end-to-end, aligned along 

the same axis and connected by a continuous cartwheel hub, while the triplet microtubules 

between centrioles are discontinuous (Fig. 4C and F) (Moser and Kreitner 1970; Robbins 1984).  

In land plants, two bicentrioles appear simultaneously in the sperm mother-cell. First, an 

electron-dense body without any recognizable structure is detected in the outer surface of the 

nucleus. Microtubules emanate from this structure, suggesting that it has MTOC activity (Fig. 

4A). Next, it separates into two different lobes (pro-bicentrioles) with a lighter stained central 

core surrounded by a darker matrix (Fig. 4B) (Robbins 1984). Before mitosis, the two pro-

bicentrioles separate, migrate towards the poles of the cell and mature into bicentrioles, 

assembling MT-triplets (Robbins 1984; Renzaglia and Duckett 1987). Each bicentriole at the 

spindle pole contains two coaxial centrioles (Fig. 4C and F) (Moser and Kreitner 1970; Robbins 

1984). 

Each spermatid inherits one bicentriole. The central hub breaks at its midpoint and the 

two resulting centrioles undergo planar rotation becoming almost parallel to each other, with 

their proximal ends facing the same direction (Fig. 4D) (Moser and Kreitner 1970; Kreitner and 

Carothers 1976; Robbins 1984). Centriole reorientation is accompanied by the development of 

the multi-layered structure (MLS), immediately bellow the centrioles (Fig. 4E and G). The MLS is 

composed of a bundle of parallel microtubule singlets – the spline (Fig. 4G - asterisk) - and by 

the lamellar strip (layers of electron-dense material) (Fig. 4G – arrowhead). The centrioles 
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anchor to the MLS and become basal bodies for ciliogenesis (Moser et al. 1977; Renzaglia and 

Duckett 1987). 

There is no available molecular data on centriole assembly through bicentrioles, except 

that these structures appear to contain γ-tubulin (Shimamura et al. 2004). The only study 

reporting the early stages (before bicentriole assembly) of de novo bicentriole assembly is from 

Robbins (1984) on spermatogenesis in the bryophyte Riella americana.  Early land plants, such 

as Marchantia polymorpha, Physcomitrella patens and Selaginella moellendorffii are model 

organisms that assemble CBBs through the bicentriole pathway and therefore, could be used to 

better describe this pathway and understand its regulatory mechanisms. 

 

3.2 Blepharoplast 

In land plants with multiciliated sperm such as ferns, cycads and Ginkgo (Fig. 6, Table S1), 

CBBs are formed through blepharoplasts. The blepharoplast arises de novo as a spherical 

electron-dense organelle which is initially amorphous (Fig. 5A), and during maturation it 

becomes intercalated by lighter cylinders embedded in an electron-opaque matrix. These 

cylinders mature into centrioles that later give rise to the basal bodies of multiple cilia (Fig. 5) 

(Hepler 1976; Gifford and Larson 1980). 

Blepharoplast biogenesis starts with the appearance of two hemispherical densely stained 

structures near the cell nucleus (Fig. 5B and F). Then, cylinders organize within the electron-

dense matrix (Fig. 5G – arrowheads), with microtubules emanating from the blepharoplast. 

These structures grow and become spherical, giving rise to two blepharoplasts (Mizukami and 

Gall 1966; Hepler 1976; Hoffman and Vaughn 1995). The two blepharoplasts separate (Fig. 5G) 

and migrate to the spindle poles of the mitotic cell, where they appear to act as MTOC (Fig. 5C) 

(Hepler 1976; Gifford and Larson 1980; Doonan et al. 1986). In the metaphase-anaphase 

transition of the last mitosis, the blepharoplast becomes more diffuse and loses its MT-
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nucleating ability. The cylinders acquire a nine-fold symmetry and a hub-and-spokes 

configuration, therefore resembling pro-centrioles. Each daughter cell inherits one 

blepharoplast (Norstog 1967; Gifford and Lin 1975; Hepler 1976). Sperm development proceeds 

as centrioles are formed (Fig. 5D and H) (Hepler 1976; Renzaglia and Maden 2000). The 

blepharoplast eventually collapses, resulting in individualized centrioles. The centrioles dock 

into the MLS and function as basal bodies nucleating axonemes (Fig. 5E) (Mizukami and Gall 

1966; Doonan et al. 1986; Norstog 1986). 

Molecular characterization of blepharoplast assembly is still scarce. However, a few 

studies have reported the localization of centrin, acetylated, tyrosinated and β-tubulins at the 

blepharoplast (Doonan et al. 1986; Klink and Wolniak 2001; Vaughn and Renzaglia 2006). 

Centrin’s function was studied in M. vestita, where RNAi experiments highlighted its 

requirement for proper blepharoplast and centriole biogenesis (Klink and Wolniak 2001).  

To this date, there is no evidence for centriole duplication in multiciliated plant cells. It 

appears that each CBB formed de novo only gives rise to one cilium (Mizukami and Gall 1966; 

Norstog 1967; Gifford and Lin 1975; Norstog 1986).  

 

Mechanisms underlying CBBs assembly 

Regulation of centriole number is still not fully understood. While in the canonical 

pathway regulation is partially achieved by coupling of the centriole and cell cycles, this cannot 

be the case in non-canonical pathways. It is possible that centriole number only depends on the 

amount of its building blocks and as centrioles are assembled, these are depleted. In this case 

regulation takes place at the levels of transcription and translation. Another strategy would be 

the activation of a negative feedback mechanism wherein, once the right amount of centrioles 

are assembled, any further biogenesis is inhibited. In that regard, even non-canonical pathways 
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show some centriole number regulation since several cell-types that form centrioles de novo 

consistently form a defined and similar amount.  

In spite of the diversity of pathways, their outcome is the same: the generation of CBBs 

with a conserved ultrastructure and function. The mechanism used by each cell-type and 

organism to build it seems highly dependent on the number of CBBs they have to begin with and 

how many will be generated. While in the canonical pathway, a single daughter is generated per 

mother per cycle, in most non-canonical pathways that number regulation is seemingly loss, 

allowing a variable number of CBBs to assemble.  

Nevertheless, canonical and non-canonical pathways share many striking similarities. Two 

centriolar proteins - Sas6 and centrin - and pericentriolar components γ-tubulin and pericentrin 

have been shown to be present in both canonical and non-canonical pathways in multiple 

species (Table 1). Sas6 is the most conserved centriolar protein and the major molecular 

component of the cartwheel, forming nine-fold symmetrical stacks at the core of the centriolar 

barrel, and being required for centriole and basal body assembly (Nakazawa et al. 2007; van 

Breugel et al. 2011; Kitagawa et al. 2011). In plants, centrin and γ-tubulin are enriched in the 

blepharoplast of Ceratopteris richardii (Hoffman et al. 1994) and functional studies 

demonstrated that centrin is needed to form the blepharoplast and therefore, the cilliary 

apparatus in Marsilea vestita sperm (Klink and Wolniak 2001). De novo CBB formation in 

Naegleria gruberi is preceded by the formation of a γ-tubulin, pericentrin and myosin II complex, 

at the site where Sas6 and centrin-positive centrioles assemble (Fritz-Laylin et al. 2010; Lee et 

al. 2015; Fritz-Laylin and Fulton 2016). In vertebrates, all of these previously mentioned 

components along with others, localize to centrioles generated de novo in mammalian culture 

cells (Khodjakov et al. 2002; La Terra et al. 2005; Uetake et al. 2007) and are upregulated in 

multiciliogenesis (Vladar and Stearns 2007; Klos Dehring et al. 2013; Zhao et al. 2013; Mori et al. 
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2017). Though the molecules are the same, differential regulation of their levels allows 

overcoming the canonical biogenesis regulation and assembling multiple CBBs.  

The location where pro-centrioles assemble is determined by the site where its precursors 

concentrate, here called “concentrator”. Even though the “concentrator” might be 

morphologically distinct in each centriolar or acentriolar pathways, components must first 

accumulate in a defined location in the cytosol to then seed the growth of CBBs. In the canonical 

pathway the mother centriole acts as a concentrator, whereas in the non-canonical pathways 

organisms evolved multiple structures where centriolar components are specifically enriched – 

the blepharoplast, the deuterosome and other electron-dense structures. This way, the 

concentrator regulates the location and number of CBBs assembled (Table 1).  

The microtubule cytoskeleton helps transporting components to the concentrator (Table 

1). CHO cells, upon centriolar removal and if treated with nocodazole, no longer form centrioles 

de novo (Khodjakov et al. 2002). Multiciliogenesis is accompanied by cytoskeleton remodelling 

that promotes assembly of stable cytoplasmic microtubules (more resistant to 

depolymerisation) (Vladar and Stearns 2007). Microtubule enrichment is also detected close to 

the fibrogranular material preceding deuterosome formation (Steinman 1968; Dirksen 1971) 

and microtubules grow from the blepharoplast, after depolymerization (Vaughn and Bowling 

2008). Overall, multiple observations hint that microtubules are important for CBBs assembly, 

however it is still left to determine when exactly they are critical. Are they needed in the very 

early stages of precursor concentration? Or do they only facilitate recruitment once there is 

already a MTOC primordium? Some components might have evolved affinity for the MTs, 

naturally concentrating at the MTOCs and facilitating the process. Amongst those components, 

PCM proteins are known to be required to stabilize centrioles and allow efficient centriole 

duplication (Dammermann et al. 2004; Pimenta-Marques et al. 2016). Proteins like 

chTOG/XMAP215, members of the Tacc family, Cpap/Sas4 and γ-tubulin are important for PCM 
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assembly and microtubule organization and are widely present in eukaryotes (Dammermann et 

al. 2004; Peset and Vernos 2008; Hodges et al. 2010). PCM might help concentrating centriolar 

proteins, hence wherever PCM stably aggregates in the cytosol it can create a suitable 

environment for CBBs biogenesis (Table 1) (Varmark et al. 2007; Dzhindzhev et al. 2010).  

Finally, self-assembly and catalytic activity of centrosomal components are important in 

driving CBBs biogenesis. In several animals, Plk4 is the main kinase triggering centriole 

biogenesis. PLK4 controls its own activation by trans-autophosphorylation, which results in a 

positive feedback loop dependent on Plk4 accumulation (Lopes et al. 2015). Self-assembling 

properties facilitate Sas6 oligomerization in vitro (Kitagawa et al. 2011). Together with 

Cep135/Bld10, these two Chlamydomonas proteins are able to assemble a cartwheel, the first 

step in building the centriolar core (Guichard et al. 2017). Recent studies have also shown that 

some centrosomal components spontaneously form condensates in vitro. Above a critical 

concentration, C. elegans Spd5 (a master PCM recruiter), forms a supramolecular scaffold where 

other PCM proteins can bind (Woodruff et al. 2017). Spd5 condensates enriched with chTOG 

and TPX2, are capable of concentrating α- and β-tubulin and organizing microtubule asters. 

Future work should dissect the role of self-assembling in vivo.  

 

Evolutionary history of CBBs and their pathways  

Numerous evidences support that CBBs are the same identity which was co-opted 

throughout evolution to perform different functions within the eukaryotic cell. Not only CBBs 

are ultrastructurally similar and co-occur across distinct taxa, but the same gene network, the 

core centriolar assembly, is conserved in the genome of ciliated species (Woodland and Fry 

2008; Carvalho-Santos et al. 2010; Hodges et al. 2010). Indeed, CBBs are found in all 7 major 

eukaryotic lineages (Fig. 6, Table S1), suggesting they were already present in the LECA but 

apparently not before (Carvalho-Santos et al. 2010). The ancestral CBB was most likely a basal 
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body-like organelle composed of nine microtubule triplets arranged in a radially symmetrical 

cylinder (Beisson and Wright 2003), involved in the nucleation of motile cilia (Carvalho-Santos 

et al. 2011; Azimzadeh 2014). CBBs (and their gene repertoire) have been independently lost in 

several lineages and are frequently absent in: some plants (Archaeplastida), fungi (Opisthokonts) 

and amoebae (Amoebozoa) (Fig. 6) (Renzaglia and Garbary 2001; Woodland and Fry 2008; 

Carvalho-Santos et al. 2011; Judelson et al. 2012; Yubuki and Leander 2013).   

Throughout evolution, the requirement for ciliary motility imposed a functional constrain 

on basal body architecture, since absence of cilia allowed for complete centriole loss and the 

generation of MTOCs with very distinct morphology like the Spindle Pole Body (SPB) of fungi and 

the Nuclear-Associated Body (NAB) of amoebae (Table S1) (Hodges et al. 2010; Azimzadeh 

2014).  

Though cilia are seemingly ancestral structures, centrosomes most probably are not. A 

good example is the animal centrosome, which is it is mostly composed by Holozan-specific 

components (Holozoa is an Opisthokont sub-division including animals and closely related 

organisms except fungi) (Hodges et al. 2010). Recently, Gouw et al. (M. Gouw, unpubl) employed 

maximum parsimony landscapes to assess the probability of the cilium and the centriole-based 

centrosome being ancestral in specific eukaryotic lineages. This analysis favoured a convergent 

evolution hypothesis for the origin of centriole-based centrosomes, suggesting that centrioles 

were co-opted as part of the centrosomes independently in different eukaryotic lineages. The 

acquisition of centrosomal functions might have occurred in a stepwise manner. First, by 

becoming part of the spindle poles, CBBs could segregate equally to daughter cells upon cell 

division. This could favour an enrichment in PCM, potentiating MTOC activity. Finally, the 

acquisition of cell cycle components (Lange 2002) would link centrosome biogenesis and 

segregation to cell cycle progression, allowing a much tighter regulation of its activity and copy-

number in cells (Nigg and Holland 2018).  
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All pathways share components; a specific set of centriolar proteins - Sas6, Cpap/Sas4, 

Cep135/Bld10, Poc1, centrin – as well as α-, β- and γ-tubulin, is found in the genome of most 

eukaryotic species that assemble CBBs (Table 1) (Carvalho-Santos et al. 2010; Hodges et al. 

2010). Functional studies and expression data are still scarce outside Opisthokonts, but are 

needed to validate the function of these components in each pathway.  

Canonical duplication is the most prevalent pathway and probably, the ancestral one. It is 

present in every main branch of the eukaryotic tree, though the mechanism is somewhat 

different in specific taxa. In some oomcytes such as S. ferax and P. infestans (Stramenopiles) and 

in Plasmodiophora spp. (Rhizaria) (Fig. 6, Table S1), daughter centrioles assemble in a 180-

degree angle from their mother (coaxial orientation), rather than the usual 90 degrees, forming 

a Bicentriole, similar to the one found in some plants (Heath and Greenwood 1970; Heath 1974a, 

1974b; Garber and Aist 1979). 

Similarly, to the centriole-based centrosomes, the deuterosomes, the bicentriole and 

blepharoplast are all evolutionary innovations, arising relatively recently in eukaryotic history 

(Fig. 6). A recent study argued that the deuterosome-mediated pathway is vertebrate-specific, 

arising just before tetrapode divergence. That is because Deup1, a specific component of the 

deuterosome and resulting from Cep63 duplication, is only found in the genomes of lobe-finned 

fish and tetrapods (Zhao et al. 2013). Some gastropodes (C. malleatus and P. ebeninus); 

annellides (Tubifex spp.) and the termite M. darwiniensis produce multicilliated sperm (Fig. 6, 

Table S1) (Gall 1961; Baccetyi and Dallai 1978; Healy and Jamieson 1981; Ferraguti et al. 2002; 

Riparbelli et al. 2009). In these naturally occurring cases, the sperm basal bodies might derive 

from a mechanism similar to the deuterosome. In all these studies, no typical deuterosomes 

were detected, only occasional clouds of electron-dense material containing microtubules.  

Archaeplastida, the group including plants and some algae, suffered multiple events of 

centriole loss; both in basal groups (in some green algae and in red algae altogether), but also in 
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gymnosperms after the split of conifers and gnetales from cycads and ginkgophytes and once 

again before angiosperm evolution (Bremer et al. 1987; Finet et al. 2010). Within this vast group, 

de novo mechanisms are the most prevalent, based either on the bicentriole or the 

blepharoplast, since most plants lack CBBs throughout their life cycle except in sperm. The 

bicentriole appeared in land plants, it is present in most Marchantiophyta and Bryophyta, and 

in some species of Anthocerotophyta and Lycopodiophyta, but not in the basal species of 

Archaeplastida (reviewed in Renzaglia and Garbary 2001) (Fig. 6, Table S1). Interestingly, a 

bicentriole is also formed de novo in Labyrinthula spp., a Stramenopila (Fig. 6, Table S1). It is 

possible that the blepharoplast from the Pteridophyta and some gimnosperms derived from the 

bicentriole. The blepharoplast is mechanistically very similar to the deuterosome, suggesting a 

scenario of convergent evolution. CBBs are required for species that form motile cilia and, 

somehow depend on a moist environment for fertilization. Gimnosperms (Pinaceae and 

Gnetales) and all angiosperms (Magnoliophyta) no longer use motile cilia, since fertilization 

takes place by means of a pollen tube with immotile sperm cells.  

It also remains to be understood if, in all the species of Amoebozoa assembling CBBs de 

novo upon ameboid to flagellate transition (for e.g. Physarum spp.) the mechanisms resemble 

those found in animals (for e.g. in female eggs) or if these have evolved their own specific 

precursor and uncharacterized pathway. Fungi with CBBs seem to conserve the ancestral 

canonical pathway of biogenesis, but likely suffered more than one event of centriole loss (Fig 

6).  

Throughout the eukaryotic tree, there are several examples of convergent evolution 

where unrelated groups appear to share similar strategies to assemble CBBs. This suggests that 

the possibilities for how to make CBBs are somewhat limited, indicating some sort of 

morphological (perhaps even molecular) constraint inherent to the process.  

 



19 

 

Conclusions 

In this review, we have discussed that non-canonical modes of CBBs assembly are 

widespread in the eukaryotic tree. Thought the pathways display some lineage-specificity there 

are several examples of convergent evolution, suggesting that when it comes to making 

centrioles, the options are limited and mostly governed by numbers.  

Most descriptions of non-canonical assembly were done by EM in chemically fixed 

samples. However, new techniques are now available, such as High-Pressure Freezing followed 

by Automated Freeze Substitution (HPF+AFS) and Cryo-EM, which can improve the quality of the 

data and help to unravel the true representation of each step of these processes. Super 

resolution microscopy, in particular 3D-structured illumination microscopy, allows correlating 

different proteins within the organelles at much better resolution and, potentially, following live 

these biogenesis processes.   

Molecular studies on non-canonical centriole biogenesis are scarce and focused on a few 

species (such as Naegleria gruberi and Drosophila spp.) and biased towards the deuterosome-

mediated pathway in vertebrate multiciliated cells. One reason is the absence of tools to study 

other systems, which can now be overcome with CRISPR/Cas9 technology and the increasing 

availability of genomic data. More gene expression data and functional studies should expand 

our molecular knowledge outside the Opisthokonts, in order to understand what are the 

universal principles underlying centriole assembly as well as the specific properties inherent to 

each pathway.  

Many of the core centriolar components and some regulators (Polo-like kinases, PCM 

components and MT regulators) appear to be conserved across evolution (Hodges et al. 2010; 

Carvalho-Santos et al. 2010, 2011), suggesting a common molecular cascade across all centriole 

assembly pathways. However, non-canonical centriole biogenesis appears more restrictive; in 

specific cell-types during differentiation (multiciliated cells in vertebrates – deuterosome-
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mediated pathway) or life-cycle stages (N. gruberi and spermatogenesis in plants – de novo 

pathways), suggesting that centriole assembly must be under developmental regulation. In the 

future, it will be important to unravel how the multiple pathways operate in different organisms; 

how the PCM components, together with the MT network, create a suitable environment where 

unassembled centriolar precursors concentrate, forming a scaffold for centriole assembly. Only 

then we will fully understand CBBs function and its upstream and downstream molecular 

machinery.  
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Figure Legends 

Figure 1. Canonical Biogenesis in cycling cells. In early G1, cells have one centrosome with two 

centrioles (mother and daughter) orthogonally oriented. Before duplication, the two centrioles 

disengage (G1), losing their orthogonal configuration and both become mother centrioles 

(Robbins et al. 1968). From G1 to S transition, one pro-centriole forms orthogonally to each 

mother. The pro-centrioles elongate during the G2 phase and each centrosome starts recruiting 

PCM components (Robbins et al. 1968; Kuriyama and Borisy 1981). From G2 to mitosis, the two 

centrosomes separate and migrate towards opposite poles of the cell. Mitotic centrosomes 
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recruit more PCM allowing them to help to organize the mitotic spindle. Upon mitotic 

completion, each daughter inherits exactly one pair of centrioles. At the beginning of each G1 

phase, the oldest centriole acquires both distal and sub-distal appendages (Kong et al. 2014). 

Pro-centriole assembly relies on the stepwise incorporation of conserved molecules (depicted 

in the inset). Cep152/Asl recruits Plk4, which phosphorylates downstream substrates, allowing 

the formation of the Sas6 and Cep135/Bld10 cartwheel, thus building the centriole core. 

Cep152/Asl also interacts with Cpap/Sas4, promoting incorporation of PCM components 

(Cizmecioglu et al. 2010; Dzhindzhev et al. 2010; Gopalakrishnan et al. 2011; Sonnen et al. 2013).  

 

Figure 2. Deuterosome-mediated biogenesis in vertebrate multicilated cells (MCCs). 

Multiciliogenesis starts with the formation of electron-dense ‘fibrogranular material’ ((A) and 

depicted within the white square in the EM micrograph (E)) in the cytosol, close to pre-existing 

centrioles. This dense material is usually enriched with microtubules (MTs), Golgi cisternae and 

vesicles (A, E - arrowheads). The ‘fibrogranular material’ condenses and deuterosomes – 

electron-dense hollow spheres– are formed (B, G – arrows). A recent study in ependymal cells 

demonstrated that the resident daughter centriole is capable of generating multiple 

deuterosomes, which detach from its wall and give rise to many pro-centrioles (B, C and G) (Al 

Jord et al. 2014). Additionally, pro-centrioles assemble directly around the resident centrioles 

(C), as shown in the EM micrograph (F). Hundreds of CBBs are formed in the cytosol, which then 

migrate and dock to the cell membrane assembling hundreds of cilia (D). (E [x37000] and F 

[x50000]: Adapted, with permission, from Sorokin 1968, Journal of Cell Science, 3: 207-230; G 

[x96000]: Adapted, with permission, from Dirksen 1971, Journal of Cell Biology, J51(1):286-302 

DOI: 10.1083/jcb.51.1.286).  

 

Figure 3. De novo centriole biogenesis in parthenogenic insect eggs. Unfertilized eggs do not 

have centrioles but contain high levels of centriolar precursors (A). Upon egg activation and 
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meiotic resumption, centrioles are formed de novo along the cell cortex (B). These single 

centrioles nucleate MT asters. Meiosis is completed and the free centrosomes migrate towards 

the egg centre (C). Two asters interact with the female pro-nucleus, assembling the first mitotic 

division and triggering embryonic development (C – black rectangle). The remaining 

centrosomes degenerate (Riparbelli et al. 1998). 

 

Figure 4. Bicentriole-mediated biogenesis in land plants with biciliated sperm. During 

spermatogenesis, electron-dense material enriched in microtubules (MTs) is found near the 

nuclear envelope (A). This material assembles into two light lobes, surrounded by a darker 

matrix (B). As mitosis begins, the two lobes separate and migrate towards the poles of the 

spindle and mature into bicentrioles (C). Bicentrioles are composed of two coaxial centrioles 

connected by their central hub and with discontinuous MT triplets (F – white arrow). Each 

daughter cell (spermatid) inherits one bicentriole that breaks in half and separates into? two 

centrioles (D) that will migrate to the edge of the cell and anchor to the multi-layered structure 

(MLS), serving as basal bodies during ciliogenesis (E and G). The MLS is composed of a bundle of 

parallel MTs – the spline (G – asterisk) – and layers of electron-dense material – the lamellar 

strip (G – arrowhead). (F [x50000] and G [x50000]: Adapted, with permission, from Moser and 

Kreitner 1970, Journal of Cell Biology, 44 (2): 454-458 DOI: 10.1083/jcb.44.2.454).  

 

Figure 5. Blepharoplast-mediated biogenesis in land plants with multiciliated sperm. In plants 

with multiciliated sperm, an electron-dense agglomerate of material and microtubules (MTs) is 

first detected near the nuclear envelope of the sperm mother-cell (A). This material develops 

into two darker hemispherical lobes, intercalated by lighter cylinders (B, F and G - arrowheads). 

As the cell approaches mitosis, the lobes keep developing and separate (G). Each lobe migrates 

to a pole of the mitotic spindle and assembles a blepharoplast (C). Each spermatid inherits one 

blepharoplast, where many centrioles are assembled. The blepharoplast eventually collapses 
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releasing the individual centrioles (D and H) that will migrate and anchor into the MLS, giving 

rise to the basal bodies of the several cilia (E). (F [x37000] and G [x37000]: Adapted, with 

permission, from Hepler 1976, Journal of Cell Science, 21: 361-390; H [x21000]: Adapted, with 

permission, from Mizukami and Gall 1966, Journal of Cell Biology, 29 (1): 97-111 

DOI:10.1083/jcb.29.1.97).  

 

Figure 6. Consensus eukaryotic tree of life (selected groups; following Burki 2014 and Worden 

et al. 2015). The distinct centriole biogenesis pathways are represented in different colours. 

Canonical biogenesis (in black) is the most prevalent pathway and probably, the ancestral one.  

Deuterosomes (blue), the bicentriole (green) and blepharoplast (purple) are all evolutionary 

innovations, arising relatively recently in the eukaryotic history. Some pathways are more 

restricted to some groups, for e.g. the canonical and deuterosome pathways are predominant 

in vertebrates, while most plants assemble CBBs through a bicentriole or a blepharoplast. There 

are some striking exceptions, like the presence of a deuterosome-like mechanism in the sperm 

of some invertebrates. While in gastropods (Mollusca) the non-canonical pathway seems to be 

centriolar, where up to 20 CBBs assemble only around the existing centrioles, the sperm from 

annelids and M. darwiniensis (Arthropoda) possesses a very high number of CBBs, likely formed 

via both centriolar and acentriolar ways. Similarly, within the Class Parabasalia (Excavata) some 

protists undergo massive centriole amplification. It is proposed that biogenesis is driven by 

resident centrioles along a “ladder”-like configuration (Tamm and Tamm 1980). In all these 

studies, no typical deuterosomes were detected, only occasional clouds of electron-dense 

material containing microtubules. There are other examples of convergent evolution among 

pathways, such as the presence of a bicentriole in Labyrinthulae (Stramenopila). Future studies 

should be expanded to more species in less known groups to clarify the mechanism involved in 

de novo biogenesis (orange) and understanding if they are all a result of lineage-specific 
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evolution (convergent evolution). CBBs were lost in multiple lineages (red lines and crosses: 

absent in all species within the groups; red crosses – lost in only some species within the lineage).  

 

Tables 

Table 1. Common principles underlying centriole biogenesis among known pathways.  

 

Supplementary Figures 

Suppl. Table 1. References consulted to build the main Figure 6. Here, we dissected the 

information on CBBs presence/absence, their biogenesis pathway in specific cell-types or 

tissues, across the eukaryotic tree of life. *No bona-fide deuterosome were detected but pro-

centrioles always form in the vicinity of resident centrioles suggesting a similar centriolar-

mediated process. **Coaxial centriole duplication. 
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