8 research outputs found

    Securing Communication in the IoT-based Health Care Systems

    Get PDF
    Rapid development of Internet of Things (IoT) and its whole ecosystems are opening a lot of opportunities that can improve humans' quality of life in many aspects. One of the promising area where IoT can enhance our life is in the health care sector. However, security and privacy becomes the main concern in the electronic Health (eHealth) systems and it becomes more challenging with the integration of IoT. Furthermore, most of the IoT-based health care system architecture is designed to be cross-organizational due to many different stakeholders in its overall ecosystems – thus increasing the security complexity. There are several aspects of security in the IoT-based health care system, among them are key management, authentication and encryption/decryption to ensure secure communication and access to health sensing information. This paper introduces a key management method that includes mutual authentication and secret key agreement to establish secure communication between any IoT health device with any entity from different organization or domain through Identity-Based Cryptography (IBC)

    Securing Communication in the IoT-based Health Care Systems

    Get PDF
    Rapid development of Internet of Things (IoT) and its whole ecosystems are opening a lot of opportunities that can improve humans’ quality of life in many aspects. One of the promising area where IoT can enhance our life is in the health care sector. However, security and privacy becomes the main concern in the electronic Health (eHealth) systems and it becomes more challenging with the integration of IoT. Furthermore, most of the IoT-based health care system architecture is designed to be cross-organizational due to many different stakeholders in its overall ecosystems – thus increasing the security complexity. There are several aspects of security in the IoT-based health care system, among them are key management, authentication and encryption/decryption to ensure secure communication and access to health sensing information. This paper introduces a key management method that includes mutual authentication and secret key agreement to establish secure communication between any IoT health device with any entity from different organization or domain through Identity-Based Cryptography (IBC)

    Federated End-to-End Authentication for the Constrained Internet of Things using IBC and ECC

    No full text
    Authentication of smart objects is a major challenge for the Internet of Things (IoT), and has been left open in DTLS. Leveraging locally managed IPv6 addresses with identity-based cryptography (IBC), we propose an efficient end-to-end authentication that (a) assigns a robust and deployment-friendly federation scheme to gateways of IoT subnetworks, and (b) has been evaluated with a modern twisted Edwards elliptic curve cryptography (ECC). Our early results demon-strate feasibility and promise efficiency after ongoing optimi-sations

    Federated End-to-End Authentication for the Constrained Internet of Things Using IBC and ECC

    No full text
    Authentication of smart objects is a major challenge for the Internet of Things (IoT), and has been left open in DTLS. Leveraging locally managed IPv6 addresses with identity-based cryptography (IBC), we propose an efficient end-to-end authentication that (a) assigns a robust and deployment-friendly federation scheme to gateways of IoT subnetworks, and (b) has been evaluated with a modern twisted Edwards elliptic curve cryptography (ECC). Our early results demon-strate feasibility and promise efficiency after ongoing optimi-sations

    Efficient signature verification and key revocation using identity based cryptography

    Get PDF
    Cryptography deals with the development and evaluation of procedures for securing digital information. It is essential whenever multiple entities want to communicate safely. One task of cryptography concerns digital signatures and the verification of a signer’s legitimacy requires trustworthy authentication and authorization. This is achieved by deploying cryptographic keys. When dynamic membership behavior and identity theft come into play, revocation of keys has to be addressed. Additionally, in use cases with limited networking, computational, or storage resources, efficiency is a key requirement for any solution. In this work we present a solution for signature verification and key revocation in constraned environments, e.g., in the Internet of Things (IoT). Where other mechanisms generate expensive overheads, we achieve revocation through a single multicast message without significant computational or storage overhead. Exploiting Identity Based Cryptography (IBC) complements the approach with efficient creation and verification of signatures. Our solution offers a framework for transforming a suitable signature scheme to a so-called Key Updatable Signature Scheme (KUSS) in three steps. Each step defines mathematical conditions for transformation and precise security notions. Thereby, the framework allows a novel combination of efficient Identity Based Signature (IBS) schemes with revocation mechanisms originally designed for confidentiality in group communications. Practical applicability of our framework is demonstrated by transforming four well-established IBS schemes based on Elliptic Curve Cryptography (ECC). The security of the resulting group Identity Based Signature (gIBS) schemes is carefully analyzed with techniques of Provable Security. We design and implement a testbed for evaluating these kind of cryptographic schemes on different computing- and networking hardware, typical for constrained environments. Measurements on this testbed provide evidence that the transformations are practicable and efficient. The revocation complexity in turn is significantly reduced compared to existing solutions. Some of our new schemes even outperform the signing process of the widely used Elliptic Curve Digital Signature Algorithm (ECDSA). The presented transformations allow future application on schemes beyond IBS or ECC. This includes use cases dealing with Post-Quantum Cryptography, where the revocation efficiency is similarly relevant. Our work provides the basis for such solutions currently under investigation.Die Kryptographie ist ein Instrument der Informationssicherheit und beschäftigt sich mit der Entwicklung und Evaluierung von Algorithmen zur Sicherung digitaler Werte. Sie ist für die sichere Kommunikation zwischen mehreren Entitäten unerlässlich. Ein Bestandteil sind digitale Signaturen, für deren Erstellung man kryptographische Schlüssel benötigt. Bei der Verifikation muss zusätzlich die Authentizität und die Autorisierung des Unterzeichners gewährleistet werden. Dafür müssen Schlüssel vertrauensvoll verteilt und verwaltet werden. Wenn sie in Kommunikationssystemen mit häufig wechselnden Teilnehmern zum Einsatz kommen, müssen die Schlüssel auch widerruflich sein. In Anwendungsfällen mit eingeschränkter Netz-, Rechen- und Speicherkapazität ist die Effizienz ein wichtiges Kriterium. Diese Arbeit liefert ein Rahmenwerk, mit dem Schlüssel effizient widerrufen und Signaturen effizient verifiziert werden können. Dabei fokussieren wir uns auf Szenarien aus dem Bereich des Internets der Dinge (IoT, Internet of Things). Im Gegensatz zu anderen Lösungen ermöglicht unser Ansatz den Widerruf von Schlüsseln mit einer einzelnen Nachricht innerhalb einer Kommunikationsgruppe. Dabei fällt nur geringer zusätzlicher Rechen- oder Speicheraufwand an. Ferner vervollständigt die Verwendung von Identitätsbasierter Kryptographie (IBC, Identity Based Cryptography) unsere Lösung mit effizienter Erstellung und Verifikation der Signaturen. Hierfür liefert die Arbeit eine dreistufige mathematische Transformation von geeigneten Signaturverfahren zu sogenannten Key Updatable Signature Schemes (KUSS). Neben einer präzisen Definition der Sicherheitsziele werden für jeden Schritt mathematische Vorbedingungen zur Transformation festgelegt. Dies ermöglicht die innovative Kombination von Identitätsbasierten Signaturen (IBS, Identity Based Signature) mit effizienten und sicheren Mechanismen zum Schlüsselaustausch, die ursprünglich für vertrauliche Gruppenkommunikation entwickelt wurden. Wir zeigen die erfolgreiche Anwendung der Transformationen auf vier etablierten IBSVerfahren. Die ausschließliche Verwendung von Verfahren auf Basis der Elliptic Curve Cryptography (ECC) erlaubt es, den geringen Kapazitäten der Zielgeräte gerecht zu werden. Eine Analyse aller vier sogenannten group Identity Based Signature (gIBS) Verfahren mit Techniken aus dem Forschungsgebiet der Beweisbaren Sicherheit zeigt, dass die zuvor definierten Sicherheitsziele erreicht werden. Zur praktischen Evaluierung unserer und ähnlicher kryptographischer Verfahren wird in dieser Arbeit eine Testumgebung entwickelt und mit IoT-typischen Rechen- und Netzmodulen bestückt. Hierdurch zeigt sich sowohl die praktische Anwendbarkeit der Transformationen als auch eine deutliche Reduktion der Komplexität gegenüber anderen Lösungsansätzen. Einige der von uns vorgeschlagenen Verfahren unterbieten gar die Laufzeiten des meistgenutzten Elliptic Curve Digital Signature Algorithm (ECDSA) bei der Erstellung der Signaturen. Die Systematik der Lösung erlaubt prinzipiell auch die Transformation von Verfahren jenseits von IBS und ECC. Dadurch können auch Anwendungsfälle aus dem Bereich der Post-Quanten-Kryptographie von unseren Ergebnissen profitieren. Die vorliegende Arbeit liefert die nötigen Grundlagen für solche Erweiterungen, die aktuell diskutiert und entwickelt werden
    corecore