4,260 research outputs found

    Using facial feature extraction to enhance the creation of 3D human models

    Get PDF
    The creation of personalised 3D characters has evolved to provide a high degree of realism in both appearance and animation. Further to the creation of generic characters the capabilities exist to create a personalised character from images of an individual. This provides the possibility of immersing an individual into a virtual world. Feature detection, particularly on the face, can be used to greatly enhance the realism of the model. To address this innovative contour based templates are used to extract an individual from four orthogonal views providing localisation of the face. Then adaptive facial feature extraction from multiple views is used to enhance the realism of the model

    Real-time content-aware texturing for deformable surfaces

    Get PDF
    Animation of models often introduces distortions to their parameterisation, as these are typically optimised for a single frame. The net effect is that under deformation, the mapped features, i.e. UV texture maps, bump maps or displacement maps, may appear to stretch or scale in an undesirable way. Ideally, what we would like is for the appearance of such features to remain feasible given any underlying deformation. In this paper we introduce a real-time technique that reduces such distortions based on a distortion control (rigidity) map. In two versions of our proposed technique, the parameter space is warped in either an axis or a non-axis aligned manner based on the minimisation of a non-linear distortion metric. This in turn is solved using a highly optimised hybrid CPU-GPU strategy. The result is real-time dynamic content-aware texturing that reduces distortions in a controlled way. The technique can be applied to reduce distortions in a variety of scenarios, including reusing a low geometric complexity animated sequence with a multitude of detail maps, dynamic procedurally defined features mapped on deformable geometry and animation authoring previews on texture-mapped models. © 2013 ACM

    Mesh-based 3D Textured Urban Mapping

    Get PDF
    In the era of autonomous driving, urban mapping represents a core step to let vehicles interact with the urban context. Successful mapping algorithms have been proposed in the last decade building the map leveraging on data from a single sensor. The focus of the system presented in this paper is twofold: the joint estimation of a 3D map from lidar data and images, based on a 3D mesh, and its texturing. Indeed, even if most surveying vehicles for mapping are endowed by cameras and lidar, existing mapping algorithms usually rely on either images or lidar data; moreover both image-based and lidar-based systems often represent the map as a point cloud, while a continuous textured mesh representation would be useful for visualization and navigation purposes. In the proposed framework, we join the accuracy of the 3D lidar data, and the dense information and appearance carried by the images, in estimating a visibility consistent map upon the lidar measurements, and refining it photometrically through the acquired images. We evaluate the proposed framework against the KITTI dataset and we show the performance improvement with respect to two state of the art urban mapping algorithms, and two widely used surface reconstruction algorithms in Computer Graphics.Comment: accepted at iros 201

    Get3DHuman: Lifting StyleGAN-Human into a 3D Generative Model using Pixel-aligned Reconstruction Priors

    Full text link
    Fast generation of high-quality 3D digital humans is important to a vast number of applications ranging from entertainment to professional concerns. Recent advances in differentiable rendering have enabled the training of 3D generative models without requiring 3D ground truths. However, the quality of the generated 3D humans still has much room to improve in terms of both fidelity and diversity. In this paper, we present Get3DHuman, a novel 3D human framework that can significantly boost the realism and diversity of the generated outcomes by only using a limited budget of 3D ground-truth data. Our key observation is that the 3D generator can profit from human-related priors learned through 2D human generators and 3D reconstructors. Specifically, we bridge the latent space of Get3DHuman with that of StyleGAN-Human via a specially-designed prior network, where the input latent code is mapped to the shape and texture feature volumes spanned by the pixel-aligned 3D reconstructor. The outcomes of the prior network are then leveraged as the supervisory signals for the main generator network. To ensure effective training, we further propose three tailored losses applied to the generated feature volumes and the intermediate feature maps. Extensive experiments demonstrate that Get3DHuman greatly outperforms the other state-of-the-art approaches and can support a wide range of applications including shape interpolation, shape re-texturing, and single-view reconstruction through latent inversion

    3D Face Reconstruction by Learning from Synthetic Data

    Full text link
    Fast and robust three-dimensional reconstruction of facial geometric structure from a single image is a challenging task with numerous applications. Here, we introduce a learning-based approach for reconstructing a three-dimensional face from a single image. Recent face recovery methods rely on accurate localization of key characteristic points. In contrast, the proposed approach is based on a Convolutional-Neural-Network (CNN) which extracts the face geometry directly from its image. Although such deep architectures outperform other models in complex computer vision problems, training them properly requires a large dataset of annotated examples. In the case of three-dimensional faces, currently, there are no large volume data sets, while acquiring such big-data is a tedious task. As an alternative, we propose to generate random, yet nearly photo-realistic, facial images for which the geometric form is known. The suggested model successfully recovers facial shapes from real images, even for faces with extreme expressions and under various lighting conditions.Comment: The first two authors contributed equally to this wor

    Learning Material-Aware Local Descriptors for 3D Shapes

    Full text link
    Material understanding is critical for design, geometric modeling, and analysis of functional objects. We enable material-aware 3D shape analysis by employing a projective convolutional neural network architecture to learn material- aware descriptors from view-based representations of 3D points for point-wise material classification or material- aware retrieval. Unfortunately, only a small fraction of shapes in 3D repositories are labeled with physical mate- rials, posing a challenge for learning methods. To address this challenge, we crowdsource a dataset of 3080 3D shapes with part-wise material labels. We focus on furniture models which exhibit interesting structure and material variabil- ity. In addition, we also contribute a high-quality expert- labeled benchmark of 115 shapes from Herman-Miller and IKEA for evaluation. We further apply a mesh-aware con- ditional random field, which incorporates rotational and reflective symmetries, to smooth our local material predic- tions across neighboring surface patches. We demonstrate the effectiveness of our learned descriptors for automatic texturing, material-aware retrieval, and physical simulation. The dataset and code will be publicly available.Comment: 3DV 201
    corecore