3,614 research outputs found

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust

    Study of gene expression representation with Treelets and hierarchical clustering algorithms

    Get PDF
    English: Since the mid-1990's, the field of genomic signal processing has exploded due to the development of DNA microarray technology, which made possible the measurement of mRNA expression of thousands of genes in parallel. Researchers had developed a vast body of knowledge in classification methods. However, microarray data is characterized by extremely high dimensionality and comparatively small number of data points. This makes microarray data analysis quite unique. In this work we have developed various hierarchical clustering algorthims in order to improve the microarray classification task. At first, the original feature set of gene expression values are enriched with new features that are linear combinations of the original ones. These new features are called metagenes and are produced by different proposed hierarchical clustering algorithms. In order to prove the utility of this methodology to classify microarray datasets the building of a reliable classifier via feature selection process is introduced. This methodology has been tested on three public cancer datasets: Colon, Leukemia and Lymphoma. The proposed method has obtained better classification results than if this enhancement is not performed. Confirming the utility of the metagenes generation to improve the final classifier. Secondly, a new technique has been developed in order to use the hierarchical clustering to perform a reduction on the huge microarray datasets, removing the initial genes that will not be relevant for the cancer classification task. The experimental results of this method are also presented and analyzed when it is applied to one public database demonstrating the utility of this new approach.Castellano: Desde finales de la década de los años 90, el campo de la genómica fue revolucionado debido al desarrollo de la tecnología de los DNA microarrays. Con ésta técnica es posible medir la expresión de los mRNA de miles de genes en paralelo. Los investigadores han desarrollado un vasto conocimiento en los métodos de clasificación. Sin embargo, los microarrays están caracterizados por tener un alto número de genes y un número de muestras comparativamente pequeño. Éste hecho convierte al estudio de los microarrays en único. En éste trabajo se ha desarrollado diversos algoritmos de agrupación jerárquica para mejorar la clasificación de los microarrays. La primera y gran aplicación ha sido el enriquecimiento de las bases de datos originales mediante la introducción de nuevos elementos que son obtenidos como combinaciones lineales los genes originales. Estos nuevos elementos se han denominado metagenes y son producidos mediante los diferentes algoritmos propuestos de agrupación jerárquica. A fin de demostrar la utilidad de esta metodología para clasificar las bases de datos de microarrays se ha introducido la construcción de un clasificador fiable a través de un proceso de selección de características. Esta metodología ha sido probada en tres bases de datos de cáncer públicas: Colon, Leucemia y Linfoma. El método propuesto ha obtenido mejores resultados en la clasificación que cuando éste enriquecimiento no se ha llevado a cabo. De ésta manera se ha confirmado la utilidad de la generación de los metagenes para mejorar el clasificador. En segundo lugar, se ha desarrollado una nueva técnica para realizar una reducción inicial en las bases de datos, consistente en eliminar los genes que no son relevantes para realizar la clasificación. Éste método se ha aplicado a una de las bases de datos públicas, y los resultados experimentales se presentan y analizan demostrando la utilidad de éste nuevo enfoque.Català: Des de finals de la dècada dels 90, el camp de la genómica va ser revolucionat gràcies al desenvolupament de la tecnología dels DNA microarrays. Amb aquesta tècnica es possible mesurar l'expresió dels mRNA de milers de gens en paralel. Els investigadors han desenvolupat un ample coneixement dels mètodes de classificació. No obstant, els microarrays estàn caracteritzats per tindre una alt nombre de genes i comparativament un nombre petit de mostres. Aquest fet fa que l'estudi dels microarrays sigui únic. Amb aquest treball s' han desenvolupat diversos algoritmes d'agrupació jeràrquica per millorar la classificació dels microarrays. La primera i gran aplicació ha sigut l'enriqueiment de les bases de dades originals mitjançant l'introducció de nous elements que s'obtenen com combinacions lineals dels gens originals. Aquests nous elements han sigut denominats com metagens i són calculats mitjantçant els diferents algoritmes d'agrupació jerárquica proposats. Per a demostrar l'utilitat d'aquesta metodología per a classificar les bases de dades de microarrays s'ha introduït la construcció d'un classificador fiable mitjantçant un procés de selecció de característiques. Aquesta metodología ha sigut aplicada a tres bases de dades públiques de càncer: Colon, Leucèmia i Limfoma. El métode proposat ha obtenigut millors resultats en la classificació que quan aquest enriqueiment no ha sigut realitzat. D'aquesta manera s'ha confirmat l'utilitat de la generació dels metagens per a millorar els classificadors. En segon lloc, s'ha desenvolupat una nova técnica per a realitzar una reducció inicial en les bases de dades, aquest mètode consisteix en l'eliminació dels gens que no són relevants a l'hora de realitzar la classificació dels pacients. Aquest mètode ha sigut aplicat a una de les bases de dades públiques. Els resultats experimentals es presenten i analitzen demostrant l'utilitat d'aquesta nova tècnica

    Recursive Cluster Elimination (RCE) for classification and feature selection from gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE) rather than recursive feature elimination (RFE). We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE.</p> <p>Results</p> <p>We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs), a supervised machine learning classification method, to identify and score (rank) those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE) is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA) with recursive feature elimination (SVM-RFE and PDA-RFE) are used to remove genes based on their individual discriminant weights.</p> <p>Conclusion</p> <p>SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together provide greater insight into the structure of the microarray data. Clustering genes for classification appears to result in some concomitant clustering of samples into subgroups.</p> <p>Our present implementation of SVM-RCE groups genes using the correlation metric. The success of the SVM-RCE method in classification suggests that gene interaction networks or other biologically relevant metrics that group genes based on functional parameters might also be useful.</p> <p/

    Feature Selection Algorithm for High Dimensional Data using Fuzzy Logic

    Get PDF
    Feature subset selection is an effective way for reducing dimensionality removing irrelevant data increasing learning accuracy and improving results comprehensibility This process improved by cluster based FAST Algorithm and Fuzzy Logic FAST Algorithm can be used to Identify and removing the irrelevant data set This algorithm process implements using two different steps that is graph theoretic clustering methods and representative feature cluster is selected Feature subset selection research has focused on searching for relevant features The proposed fuzzy logic has focused on minimized redundant data set and improves the feature subset accurac

    Spatial clustering of array CGH features in combination with hierarchical multiple testing

    Get PDF
    We propose a new approach for clustering DNA features using array CGH data from multiple tumor samples. We distinguish data-collapsing: joining contiguous DNA clones or probes with extremely similar data into regions, from clustering: joining contiguous, correlated regions based on a maximum likelihood principle. The model-based clustering algorithm accounts for the apparent spatial patterns in the data. We evaluate the randomness of the clustering result by a cluster stability score in combination with cross-validation. Moreover, we argue that the clustering really captures spatial genomic dependency by showing that coincidental clustering of independent regions is very unlikely. Using the region and cluster information, we combine testing of these for association with a clinical variable in an hierarchical multiple testing approach. This allows for interpreting the significance of both regions and clusters while controlling the Family-Wise Error Rate simultaneously. We prove that in the context of permutation tests and permutation-invariant clusters it is allowed to perform clustering and testing on the same data set. Our procedures are illustrated on two cancer data sets

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure

    A primer on correlation-based dimension reduction methods for multi-omics analysis

    Full text link
    The continuing advances of omic technologies mean that it is now more tangible to measure the numerous features collectively reflecting the molecular properties of a sample. When multiple omic methods are used, statistical and computational approaches can exploit these large, connected profiles. Multi-omics is the integration of different omic data sources from the same biological sample. In this review, we focus on correlation-based dimension reduction approaches for single omic datasets, followed by methods for pairs of omics datasets, before detailing further techniques for three or more omic datasets. We also briefly detail network methods when three or more omic datasets are available and which complement correlation-oriented tools. To aid readers new to this area, these are all linked to relevant R packages that can implement these procedures. Finally, we discuss scenarios of experimental design and present road maps that simplify the selection of appropriate analysis methods. This review will guide researchers navigate the emerging methods for multi-omics and help them integrate diverse omic datasets appropriately and embrace the opportunity of population multi-omics.Comment: 30 pages, 2 figures, 6 table

    Complex modulation of androgen responsive gene expression by methoxyacetic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimal androgen signaling is critical for testicular development and spermatogenesis. Methoxyacetic acid (MAA), the primary active metabolite of the industrial chemical ethylene glycol monomethyl ether, disrupts spermatogenesis and causes testicular atrophy. Transcriptional <it>trans</it>-activation studies have indicated that MAA can enhance androgen receptor activity, however, whether MAA actually impacts the expression of androgen-responsive genes <it>in vivo</it>, and which genes might be affected is not known.</p> <p>Methods</p> <p>A mouse TM3 Leydig cell line that stably expresses androgen receptor (TM3-AR) was prepared and analyzed by transcriptional profiling to identify target gene interactions between MAA and testosterone on a global scale.</p> <p>Results</p> <p>MAA is shown to have widespread effects on androgen-responsive genes, affecting processes ranging from apoptosis to ion transport, cell adhesion, phosphorylation and transcription, with MAA able to enhance, as well as antagonize, androgenic responses. Moreover, testosterone is shown to exert both positive and negative effects on MAA gene responses. Motif analysis indicated that binding sites for FOX, HOX, LEF/TCF, STAT5 and MEF2 family transcription factors are among the most highly enriched in genes regulated by testosterone and MAA. Notably, 65 FOXO targets were repressed by testosterone or showed repression enhanced by MAA with testosterone; these include 16 genes associated with developmental processes, six of which are <it>Hox </it>genes.</p> <p>Conclusions</p> <p>These findings highlight the complex interactions between testosterone and MAA, and provide insight into the effects of MAA exposure on androgen-dependent processes in a Leydig cell model.</p
    • …
    corecore