4 research outputs found

    A survey on video compression fast block matching algorithms

    Get PDF
    Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television, CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensation predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50–80% of video encoding complexity. This technique has been adopted by all of the existing International Video Coding Standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks and compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called Full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm are developed to reduce the computation complexity. This paper focuses on a survey for two video compression techniques: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the Full Search is decreased while the resolution of the predicted frames is the same as for the Full Search. The second is called lossy block matching algorithm process, which reduces the computational complexity effectively but the search result's quality is not the same as for the Full Search

    Independent component analysis for naive bayes classification

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Intelligent strategies for sheep monitoring and management

    Get PDF
    With the growth in world population, there is an increasing demand for food resources and better land utilisation, e.g., domesticated animals and land management, which in turn brought about developments in intelligent farming. Modern farms rely upon intelligent sensors and advanced software solutions, to optimally manage pasture and support animal welfare. A very significant aspect in domesticated animal farms is monitoring and understanding of animal activity, which provides vital insight into animal well-being and the environment they live in. Moreover, “virtual” fencing systems provide an alternative to managing farmland by replacing traditional boundaries. This thesis proposes novel solutions to animal activity recognition based on accelerometer data using machine learning strategies, and supports the development of virtual fencing systems via animal behaviour management using audio stimuli. The first contribution of this work is four datasets comprising accelerometer gait signals. The first dataset consisted of accelerometer and gyroscope measurements, which were obtained using a Samsung smartphone on seven animals. Next, a dataset of accelerometer measurements was collected using the MetamotionR device on 8 Hebridean ewes. Finally, two datasets of nine Hebridean ewes were collected from two sensors (MetamotionR and Raspberry Pi) comprising of accelerometer signals describing active, inactive and grazing activity of the animal. These datasets will be made publicly available as there is limited availability of such datasets. In respect to activity recognition, a systematic study of the experimental setup, associated signal features and machine learning methods was performed. It was found that Random Forest using accelerometer measurements and a sample rate of 12.5Hz with a sliding window of 5 seconds provides an accuracy of above 96% when discriminating animal activity. The problem of sensor heterogeneity was addressed with transfer learning of Convolutional Neural Networks, which has been used for the first time in this problem, and resulted to an accuracy of 98.55%, and 96.59%, respectively, in the two experimental datasets. Next, the feasibility of using only audio stimuli in the context of a virtual fencing system was explored. Specifically, a systematic evaluation of the parameters of audio stimuli, e.g., frequency and duration, was performed on two sheep breeds, Hebridean and Greyface Dartmoor ewes, in the context of controlling animal position and keeping them away from a designated area. It worth noting that the use of sounds is different to existing approaches, which utilize electric shocks to train animals to adhere within the boundaries of a virtual fence. It was found that audio signals in the frequencies of 125Hz-440Hz, 10kHz-17kHz and white noise are able to control animal activity with accuracies of 89.88%, and 95.93%, for Hebridean and Greyface Dartmoor ewes, respectively. Last but not least, the thesis proposes a multifunctional system that identifies whether the animal is active or inactive, using transfer learning, and manipulates its position using the optimized sound settings achieving a classification accuracy of over 99.95%
    corecore