9 research outputs found

    A situation-driven framework for relearning of activities of daily living in smart home environments

    Get PDF
    Activities of Daily Living (ADLs) are sine qua non for self-care and improved quality of life. Self-efficacy is major challenge for seniors with early-stage dementia (ED) when performing daily living activities. ED causes deterioration of cognitive functions and thus impacts aging adults’ functioning initiative and performance of instrumental activities of daily living (IADLs). Generally, IADLs requires certain skills in both planning and execution and may involve sequence of steps for aging adults to accomplish their goals. These intricate procedures in IADLs potentially predispose older adults to safety-critical situations with life-threatening consequences. A safety-critical situation is a state or event that potentially constitutes a risk with life-threatening injuries or accidents. To address this problem, a situation-driven framework for relearning of daily living activities in smart home environment is proposed. The framework is composed of three (3) major units namely: a) goal inference unit – leverages a deep learning model to infer human goal in a smart home, b) situation-context generator – responsible for risk mitigation in IADLs, and c) a recommendation unit – to support decision making of aging adults in safety-critical situations. The proposed framework was validated against IADLs dataset collected from a smart home research prototype and the results obtained are promising

    Supervised Machine Learning Under Test-Time Resource Constraints: A Trade-off Between Accuracy and Cost

    Get PDF
    The past decade has witnessed how the field of machine learning has established itself as a necessary component in several multi-billion-dollar industries. The real-world industrial setting introduces an interesting new problem to machine learning research: computational resources must be budgeted and cost must be strictly accounted for during test-time. A typical problem is that if an application consumes x additional units of cost during test-time, but will improve accuracy by y percent, should the additional x resources be allocated? The core of this problem is a trade-off between accuracy and cost. In this thesis, we examine components of test-time cost, and develop different strategies to manage this trade-off. We first investigate test-time cost and discover that it typically consists of two parts: feature extraction cost and classifier evaluation cost. The former reflects the computational efforts of transforming data instances to feature vectors, and could be highly variable when features are heterogeneous. The latter reflects the effort of evaluating a classifier, which could be substantial, in particular nonparametric algorithms. We then propose three strategies to explicitly trade-off accuracy and the two components of test-time cost during classifier training. To budget the feature extraction cost, we first introduce two algorithms: GreedyMiser and Anytime Representation Learning (AFR). GreedyMiser employs a strategy that incorporates the extraction cost information during classifier training to explicitly minimize the test-time cost. AFR extends GreedyMiser to learn a cost-sensitive feature representation rather than a classifier, and turns traditional Support Vector Machines (SVM) into test- time cost-sensitive anytime classifiers. GreedyMiser and AFR are evaluated on two real-world data sets from two different application domains, and both achieve record performance. We then introduce Cost Sensitive Tree of Classifiers (CSTC) and Cost Sensitive Cascade of Classifiers (CSCC), which share a common strategy that trades-off the accuracy and the amortized test-time cost. CSTC introduces a tree structure and directs test inputs along different tree traversal paths, each is optimized for a specific sub-partition of the input space, extracting different, specialized subsets of features. CSCC extends CSTC and builds a linear cascade, instead of a tree, to cope with class-imbalanced binary classification tasks. Since both CSTC and CSCC extract different features for different inputs, the amortized test-time cost is greatly reduced while maintaining high accuracy. Both approaches out-perform the current state-of-the-art on real-world data sets. To trade-off accuracy and high classifier evaluation cost of nonparametric classifiers, we propose a model compression strategy and develop Compressed Vector Machines (CVM). CVM focuses on the nonparametric kernel Support Vector Machines (SVM), whose test-time evaluation cost is typically substantial when learned from large training sets. CVM is a post-processing algorithm which compresses the learned SVM model by reducing and optimizing support vectors. On several benchmark data sets, CVM maintains high test accuracy while reducing the test-time evaluation cost by several orders of magnitude

    Scaling Near-Surface Remote Sensing To Calibrate And Validate Satellite Monitoring Of Grassland Phenology

    Get PDF
    Phenology across the U.S. Great Plains has been modeled at a variety of field sites and spatial scales. However, combining these spatial scales has never been accomplished before, and has never been done across multiple field locations. We modeled phenocam Vegetation Indices (VIs) across the Great Plains Region. We used coupled satellite imagery that has been aligned spectrally, for each imagery band to align with one another across the phenocam locations. With this we predicted the phenocam VIs for each year over the six locations.Using our method of coupling the phenocam VIs and the meteorological data we predicted 38 years of phenocam VIs. This resulted in a coupled dataset for each phenocam site across the four VIs. Using the coupled datasets, we were able to predict the phenocam VIs, and examine how they would change over the 38 years of data. While imagery was not available for modeling the 38 years of weather data, we found weather data could act as an acceptable proxy. This means we were able to predict 38 years of VIs using weather data. A main assumption with this method, it that no major changes in the vegetation community took place in the 33 years before the imagery. If a large change did take place, it would be missed because of the data lacking to represent it. Using the phenocam and satellite imagery we were able to predict phenocam GCC, VCI, NDVI, and EVI2 and model them over a five-year period. This modeled six years of phenocam imagery across the Great Plains region and attempted to predict the phenocam VIs for each pixel of the satellite imagery. The primary challenge of this method is aggregating grassland predicted VIs with cropland. This region is dominated by cropland and managed grasslands. In many cases the phenology signal is likely driven by land management decisions, and not purely by vegetation growth characteristics. Future models that take this into account may provide a more accurate model for the region

    La sélection de variables en apprentissage d'ordonnancement pour la recherche d'information : vers une approche contextuelle

    Get PDF
    L'apprentissage d'ordonnancement, ou learning-to-rank, consiste à optimiser automatiquement une fonction d'ordonnancement apprise à l'aide d'un algorithme à partir de données d'apprentissage. Les approches existantes présentent deux limites. D'une part, le nombre de caractéristiques utilisées est généralement élevé, de quelques centaines à plusieurs milliers, ce qui pose des problèmes de qualité et de volumétrie. D'autre part, une seule fonction est apprise pour l'ensemble des requêtes. Ainsi, l'apprentissage d'ordonnancement ne prend pas en compte le type de besoin ou le contexte de la recherche. Nos travaux portent sur l'utilisation de la sélection de variables en apprentissage d'ordonnancement pour résoudre à la fois les problèmes de la volumétrie et de l'adaptation au contexte. Nous proposons cinq algorithmes de sélection de variables basés sur les Séparateurs à Vaste Marge (SVM) parcimonieux. Trois sont des approches de repondération de la norme L2, une résout un problème d'optimisation en norme L1 et la dernière considère des régularisations non convexes. Nos approches donnent de meilleurs résultats que l'état de l'art sur les jeux de données de référence. Elles sont plus parcimonieuses et plus rapides tout en permettant d'obtenir des performances identiques en matière de RI. Nous évaluons également nos approches sur un jeu de données issu du moteur commercial Nomao. Les résultats confirment la performance de nos algorithmes. Nous proposons dans ce cadre une méthodologie d'évaluation de la pertinence à partir des clics des utilisateurs pour le cas non étudié dans la littérature des documents multi-cliquables (cartes). Enfin, nous proposons un système d'ordonnancement adaptatif dépendant des requêtes basé sur la sélection de variables. Ce système apprend des fonctions d'ordonnancement spécifiques à un contexte donné, en considérant des groupes de requêtes et les caractéristiques obtenues par sélection pour chacun d'eux.Learning-to-rank aims at automatically optimizing a ranking function learned on training data by a machine learning algorithm. Existing approaches have two major drawbacks. Firstly, the ranking functions can use several thousands of features, which is an issue since algorithms have to deal with large scale data. This can also have a negative impact on the ranking quality. Secondly, algorithms learn an unique fonction for all queries. Then, nor the kind of user need neither the context of the query are taken into account in the ranking process. Our works focus on solving the large-scale issue and the context-aware issue by using feature selection methods dedicated to learning-to-rank. We propose five feature selection algorithms based on sparse Support Vector Machines (SVM). Three proceed to feature selection by reweighting the L2-norm, one solves a L1-regularized problem whereas the last algorithm consider nonconvex regularizations. Our methods are faster and sparser than state-of-the-art algorithms on benchmark datasets, while providing similar performances in terms of RI measures. We also evaluate our approches on a commercial dataset. Experimentations confirm the previous results. We propose in this context a relevance model based on users clicks, in the special case of multi-clickable documents. Finally, we propose an adaptative and query-dependent ranking system based on feature selection. This system considers several clusters of queries, each group defines a context. For each cluster, the system selects a group of features to learn a context-aware ranking function

    Feature selection for ranking using boosted trees

    No full text

    Search Relevance based on the Semantic Web

    Get PDF
    In this thesis, we explore the challenge of search relevance in the context of semantic search. Specifically, the notion of semantic relevance can be distinguished from the other types of relevance in Information Retrieval (IR) in terms of employing an underlying semantic model. We propose the emerging Semantic Web data on the Web which is represented in RDF graph structures as an important candidate to become such a semantic model in a search process
    corecore