1,196 research outputs found

    Revealing Influenced Selected Feature for P2P Botnet Detection

    Get PDF
    P2P botnet has become a serious security threat for computer networking systems. Botnet attack causes a great financial loss and badly impact the information and communication technology (ICT) system. Current botnet detection mechanisms have limitations and flaws to deal with P2P botnets which famously known for their complexity and scalable attack. Studies show that botnets behavior can be detected based on several detection features. However, some of the feature parameters may not represent botnet behavior and may lead to higher false alarm detection rate. In this paper, we reveal selected feature that influences P2P botnets detection. The result obtained by selecting features shows detection attack rate of 99.74%

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks

    Get PDF
    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed

    Network Traffic Based Botnet Detection Using Machine Learning

    Get PDF
    The field of information and computer security is rapidly developing in today’s world as the number of security risks is continuously being explored every day. The moment a new software or a product is launched in the market, a new exploit or vulnerability is exposed and exploited by the attackers or malicious users for different motives. Many attacks are distributed in nature and carried out by botnets that cause widespread disruption of network activity by carrying out DDoS (Distributed Denial of Service) attacks, email spamming, click fraud, information and identity theft, virtual deceit and distributed resource usage for cryptocurrency mining. Botnet detection is still an active area of research as no single technique is available that can detect the entire ecosystem of a botnet like Neris, Rbot, and Virut. They tend to have different configurations and heavily armored by malware writers to evade detection systems by employing sophisticated evasion techniques. This report provides a detailed overview of a botnet and its characteristics and the existing work that is done in the domain of botnet detection. The study aims to evaluate the preprocessing techniques like variance thresholding and one-hot encoding to clean the botnet dataset and feature selection technique like filter, wrapper and embedded method to boost the machine learning model performance. This study addresses the dataset imbalance issues through techniques like undersampling, oversampling, ensemble learning and gradient boosting by using random forest, decision tree, AdaBoost and XGBoost. Lastly, the optimal model is then trained and tested on the dataset of different attacks to study its performance

    Multilayer framework for botnet detection using machine learning algorithms

    Get PDF
    The authors wish to thank Universiti Teknologi Malaysia (UTM) for its support under Research University Grant Vot- 20H04, Malaysia Research University Network (MRUN) Vot 4L876. The authors would like to acknowledge that this work was supported/funded by the Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2018/ICT04/UTM/01/1). The work was also partially supported by the Specific Research project (SPEV) at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic, under Grant 2102-2021. The authors are grateful for the support of student Sebastien Mambou in consultations regarding application aspects. The authors also wish to thank the Ministry of Education Malaysia for the Hadiah Latihan Persekutuan (HLP) scholarship to complete the research.A botnet is a malware program that a hacker remotely controls called a botmaster. Botnet can perform massive cyber-attacks such as DDOS, SPAM, click-fraud, information, and identity stealing. The botnet also can avoid being detected by a security system. The traditional method of detecting botnets commonly used signature-based analysis unable to detect unseen botnets. The behavior-based analysis seems like a promising solution to the current trends of botnets that keep evolving. This paper proposes a multilayer framework for botnet detection using machine learning algorithms that consist of a ltering module and classi cation module to detect the botnet's command and control server. We highlighted several criteria for our framework, such as it must be structure-independent, protocol-independent, and able to detect botnet in encapsulated technique. We used behavior-based analysis through ow-based features that analyzed the packet header by aggregating it to a 1-s time. This type of analysis enables detection if the packet is encapsulated, such as using a VPN tunnel. We also extend the experiment using different time intervals, but a 1-s time interval shows the most impressive results. The result shows that our botnet detection method can detect up to 92% of the f-score, and the lowest false-negative rate was 1.5%.Universiti Teknologi Malaysia (UTM) through the Research University Vot-20H04Malaysia Research University Network (MRUN) Vot4L876Ministry of Higher Education through the Fundamental Research Grant Scheme FRGS/1/2018/ICT04/UTM/01/1Hadiah Latihan Persekutuan (HLP) Scholarship through the Ministry of Education MalaysiaSpecific Research Project (SPEV) by the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republi

    Botnet detection using ensemble classifiers of network flow

    Get PDF
    Recently, Botnets have become a common tool for implementing and transferring various malicious codes over the Internet. These codes can be used to execute many malicious activities including DDOS attack, send spam, click fraud, and steal data. Therefore, it is necessary to use Modern technologies to reduce this phenomenon and avoid them in advance in order to differentiate the Botnets traffic from normal network traffic. In this work, ensemble classifier algorithms to identify such damaging botnet traffic. We experimented with different ensemble algorithms to compare and analyze their ability to classify the botnet traffic from the normal traffic by selecting distinguishing features of the network traffic. Botnet Detection offers a reliable and cheap style for ensuring transferring integrity and warning the risks before its occurrence
    • …
    corecore