7 research outputs found

    Отбор информативных геометрических признаков ядер клеток на люминесцентных изображениях раковых клеток

    Get PDF
    The methods of geometric informative features selection of nuclei on fluorescent images of cancer cells are considered. During the survey, a review of existing geometric features was carried out, including both the signs of rotation resisted shape and displacement of the image, as well as signs of location in space. For the selection of characteristics, the methods were used: median, correlation with calculation of the Pearson correlation coefficient, correlation with calculation of the Spearman correlation coefficient, logistic regression model, random forest with CART trees and Gini criterion, random forest with CART trees and error minimization criterion. As a result of the investigation 11 characteristics were selected from 59 features, the quality of classification and time costs were calculated depending on the number of features for describing the objects. The use of 11 features is sufficient for the accuracy of classification as it allows to reduce time costs in 2,3 times.Рассмотрены методы отбора информативных признаков для выделения геометрических признаков при описании ядер на люминесцентных изображениях раковых клеток. Выполнен обзор существующих геометрических признаков, который включает в себя как признаки формы, устойчивые к повороту и перемещению изображения, так и признаки расположения в пространстве. Для отбора наиболее информативных признаков использованы шесть методов: медианный, корреляционный с расчетом коэффициента корреляции по Пирсону, корреляционный с расчетом коэффициента корреляции по Спирмену, метод логистической регрессии, случайного леса с CART-деревьями и критерием Gini, случайного леса с CART-деревьями и критерием минимизации ошибки. В результате исследования из 59 признаков отобраны 11 наиболее информативных, выполнен анализ качества классификации с помощью метода случайного леса и рассчитаны временные затраты в зависимости от количества признаков для описания объектов. Для метода случайного леса использование 11 признаков является достаточным по точности классификации и позволяет снизить временные затраты в 2,3 раза

    Uma ferramenta baseada em inteligência artificial para exploração de espaço de projeto para redes em chip / An artificial intelligence-based tool for exploiting design space for chip networks

    Get PDF
    Com o incremento em números de núcleos em sistemas em chip, arquiteturas de barramento tem sofrido com algumas limitações. Os requisitos das aplicações demandam mais largura de banda e baixas latências. Em face a esse cenário, redes em chip emergiram como uma opção para superar essas limitações. Redes em chip são compostas por um conjunto de roteadores e enlaces de comunicação. Nesse trabalho, nós propomos o uso de técnicas de inteligência artificial para otimizar a arquitetura das redes em chip. A ferramenta explora o espaço de projeto em termos de predição de área, latência e potência para diferentes configurações. Os resultados têm demonstrado a validade dessa proposta e a adequação as restrições impostas pelo projetista

    Software defect prediction using maximal information coefficient and fast correlation-based filter feature selection

    Get PDF
    Software quality ensures that applications that are developed are failure free. Some modern systems are intricate, due to the complexity of their information processes. Software fault prediction is an important quality assurance activity, since it is a mechanism that correctly predicts the defect proneness of modules and classifies modules that saves resources, time and developers’ efforts. In this study, a model that selects relevant features that can be used in defect prediction was proposed. The literature was reviewed and it revealed that process metrics are better predictors of defects in version systems and are based on historic source code over time. These metrics are extracted from the source-code module and include, for example, the number of additions and deletions from the source code, the number of distinct committers and the number of modified lines. In this research, defect prediction was conducted using open source software (OSS) of software product line(s) (SPL), hence process metrics were chosen. Data sets that are used in defect prediction may contain non-significant and redundant attributes that may affect the accuracy of machine-learning algorithms. In order to improve the prediction accuracy of classification models, features that are significant in the defect prediction process are utilised. In machine learning, feature selection techniques are applied in the identification of the relevant data. Feature selection is a pre-processing step that helps to reduce the dimensionality of data in machine learning. Feature selection techniques include information theoretic methods that are based on the entropy concept. This study experimented the efficiency of the feature selection techniques. It was realised that software defect prediction using significant attributes improves the prediction accuracy. A novel MICFastCR model, which is based on the Maximal Information Coefficient (MIC) was developed to select significant attributes and Fast Correlation Based Filter (FCBF) to eliminate redundant attributes. Machine learning algorithms were then run to predict software defects. The MICFastCR achieved the highest prediction accuracy as reported by various performance measures.School of ComputingPh. D. (Computer Science

    OFSET_mine:an integrated framework for cardiovascular diseases risk prediction based on retinal vascular function

    Get PDF
    As cardiovascular disease (CVD) represents a spectrum of disorders that often manifestfor the first time through an acute life-threatening event, early identification of seemingly healthy subjects with various degrees of risk is a priority.More recently, traditional scores used for early identification of CVD risk are slowly being replaced by more sensitive biomarkers that assess individual, rather than population risks for CVD. Among these, retinal vascular function, as assessed by the retinal vessel analysis method (RVA), has been proven as an accurate reflection of subclinical CVD in groups of participants without overt disease but with certain inherited or acquired risk factors. Furthermore, in order to correctly detect individual risk at an early stage, specialized machine learning methods and featureselection techniques that can cope with the characteristics of the data need to bedevised.The main contribution of this thesis is an integrated framework, OFSET_mine, that combinesnovel machine learning methods to produce a bespoke solution for Cardiovascular Risk Prediction based on RVA data that is also applicable to other medical datasets with similar characteristics. The three identified essential characteristics are 1) imbalanced dataset,2) high dimensionality and 3) overlapping feature ranges with the possibility of acquiring new samples. The thesis proposes FiltADASYN as an oversampling method that deals with imbalance, DD_Rank as a feature selection method that handles high dimensionality, and GCO_mine as a method for individual-based classification, all three integrated within the OFSET_mine framework.The new oversampling method FiltADASYN extends Adaptive Synthetic Oversampling(ADASYN) with an additional step to filter the generated samples and improve the reliability of the resultant sample set. The feature selection method DD_Rank is based on Restricted Boltzmann Machine (RBM) and ranks features according to their stability and discrimination power. GCO_mine is a lazy learning method based on Graph Cut Optimization (GCO), which considers both the local arrangements and the global structure of the data.OFSET_mine compares favourably to well established composite techniques. Itex hibits high classification performance when applied to a wide range of benchmark medical datasets with variable sample size, dimensionality and imbalance ratios.When applying OFSET _mine on our RVA data, an accuracy of 99.52% is achieved. In addition, using OFSET, the hybrid solution of FiltADASYN and DD_Rank, with Random Forest on our RVA data produces risk group classifications with accuracy 99.68%. This not only reflects the success of the framework but also establishes RVAas a valuable cardiovascular risk predicto

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible
    corecore