14 research outputs found

    Detection of Real Time QRS Complex Using Wavelet Transform

    Get PDF
    This paper presents a novel method for QRS detection. To accomplish this task ECG signal was first filtered by using a third order Savitzky Golay filter. The filtered ECG signal was then preprocessed by a Wavelet based denoising in a real-time fashion to minimize the undefined noise level. R-peak was then detected from denoised signal after wavelet denoising. Windowing mechanism was also applied for finding any missing R-peaks. All the 48 records have been used to test the proposed method. During this testing, 99.97% sensitivity and 99.99% positive predictivity is obtained for QRS complex detection

    DIAGNOSIS PENYAKIT PARKINSON MELALUI ANALISIS POLA BERJALAN BERDASARKAN VGRF MENGGUNAKAN WAVELET DAN SUPPORT VECTOR MACHINE

    Get PDF
    Penyakit parkinson atau Parkinson’s Disease (PD) tidak dapat didiagnosis disaat gejala muncul melalui citra medis yang didapatkan dari teknologi pindaian otak menggunakan computed tomography dan magnetic resonance imaging terhadap penderita PD karena tampak normal. Maka dari itu dibutuhkan metode yang dapat digunakan untuk mendiagnosis PD secara dini meskipun penderita PD masih tampak normal. Sehingga ahli medis dan para peneliti PD menyarankan kolaborasi antar bidang ilmu pengetahuan agar penelitian PD menjadi efektif. Diagnosis PD dengan melihat gejala yang muncul merupakan kemungkinan terbaik yang dapat dilakukan untuk mencegah PD berkembang dengan cepat setelah penderita terdiagnosis. Penderita PD bukan hanya memiliki gejala kegoyahan dan kekakuan saja melainkan juga memiliki kelainan bergerak dan kehilangan keseimbangan. Oleh karena itu, penelitian ini dilakukan dengan cara mengklasifikasi rekaman sinyal yang dihasilkan oleh sensor vertical ground reaction force (VGRF) bersumber dari database Physiobank. Sensor VGRF berjumlah 16 sensor dipasang pada kaki saat berjalan agar dapat mendiagnosis PD melalui analisis pola berjalan dengan menggabungkan koefisien wavelet dari hasil dekomposisi sinyal VGRF dan diklasifikasi menggunakan support vector machine (SVM). Penelitian ini menunjukkan bahwa koefisien wavelet adalah ciri yang baik untuk mewakili sinyal VGRF. SVM pada 140 vektor pelatihan dan 139 vektor pengujian mencapai akurasi klasifikasi sebesar 81,29% dengan waktu central processing unit (CPU) selama 80,87 detik sehingga metode ini dapat dipertimbangkan untuk digunakan pada analisis pola berjalan bagi penderita PD berdasarkan rekaman sinyal VGRF. Penelitian ini dapat memperlambat perkembangan penyakit PD karena diagnosis dilakukan secara dini serta memberi kesempatan ahli medis untuk memberikan rekomendasi perawatan setelah penderita PD terdiagnosis

    Improving ECG Classification Accuracy Using an Ensemble of Neural Network Modules

    Get PDF
    This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG) beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization

    Detecção de doenças baseadas em sinais de eletrocardiografia e eletroencefalografia incorporados em diferentes dispositivos: um estudo exploratório

    Get PDF
    Nowadays, cardiac and brain disorders are dispersed over the world, where an early detection allows the treatment and prevention of other related healthcare problems. Technologically, this detection is difficult to perform, and the use of technology and artificial intelligence techniques may automate the accurate detection of different diseases. This paper presents the research on the different techniques and parameters for the detection of diseases related to Electrocardiography (ECG) and Electroencephalography (EEG) signals. Previously experiments related to the performance of the Timed-Up and Go test with elderly people acquired different signals from people with different diseases. This study identifies different parameters and methods that may be used for the identification of different diseases based on the acquired data.info:eu-repo/semantics/publishedVersio

    Experimental study for determining the parameters required for detecting ECG and EEG related diseases during the timed-up and go test

    Get PDF
    The use of smartphones, coupled with different sensors, makes it an attractive solution for measuring different physical and physiological features, allowing for the monitoring of various parameters and even identifying some diseases. The BITalino device allows the use of different sensors, including Electroencephalography (EEG) and Electrocardiography (ECG) sensors, to study different health parameters. With these devices, the acquisition of signals is straightforward, and it is possible to connect them using a Bluetooth connection. With the acquired data, it is possible to measure parameters such as calculating the QRS complex and its variation with ECG data to control the individual’s heartbeat. Similarly, by using the EEG sensor, one could analyze the individual’s brain activity and frequency. The purpose of this paper is to present a method for recognition of the diseases related to ECG and EEG data, with sensors available in off-the-shelf mobile devices and sensors connected to a BITalino device. The data were collected during the elderly’s experiences, performing the Timed-Up and Go test, and the different diseases found in the sample in the study. The data were analyzed, and the following features were extracted from the ECG, including heart rate, linear heart rate variability, the average QRS interval, the average R-R interval, and the average R-S interval, and the EEG, including frequency and variability. Finally, the diseases are correlated with different parameters, proving that there are relations between the individuals and the different health conditions.info:eu-repo/semantics/publishedVersio
    corecore