49 research outputs found

    Speaker identification using multimodal neural networks and wavelet analysis

    Get PDF
    © 2014 The Authors. Published by IET. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1049/iet-bmt.2014.0011The rapid momentum of the technology progress in the recent years has led to a tremendous rise in the use of biometric authentication systems. The objective of this research is to investigate the problem of identifying a speaker from its voice regardless of the content. In this study, the authors designed and implemented a novel text-independent multimodal speaker identification system based on wavelet analysis and neural networks. Wavelet analysis comprises discrete wavelet transform, wavelet packet transform, wavelet sub-band coding and Mel-frequency cepstral coefficients (MFCCs). The learning module comprises general regressive, probabilistic and radial basis function neural networks, forming decisions through a majority voting scheme. The system was found to be competitive and it improved the identification rate by 15% as compared with the classical MFCC. In addition, it reduced the identification time by 40% as compared with the back-propagation neural network, Gaussian mixture model and principal component analysis. Performance tests conducted using the GRID database corpora have shown that this approach has faster identification time and greater accuracy compared with traditional approaches, and it is applicable to real-time, text-independent speaker identification systems

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF
    corecore