9 research outputs found

    Classification of Acute Leukemia using Fuzzy Neural Networks

    Get PDF
    Accurate classification of cancers based on microarray gene expressions is very important for doctors to choose a proper treatment. In this paper, we compared ten filter based gene selection methods in order to differentiate acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) in leukemia dataset. Dimensionality reduction methods, such as Spearman Correlation Coefficient and Wilcoxon Rank Sum Statistics are used for gene selection. The experimental results showed that the proposed gene selection methods are efficient, effective, and robust in identifying differentially expressed genes. Adopting the existing SVM-based and KNN-based classifiers, the selected genes by filter based methods in general give more accurate classification results, typically when the sample class sizes in the training dataset are unbalanced

    NCR-PCOPGene: An Exploratory Tool for Analysis of Sample-Classes Effect on Gene-Expression Relationships

    Get PDF
    Background. Microarray technology is so expensive and powerful that it is essential to extract maximum value from microarray data. Our tools allow researchers to test and formulate from a hypothesis to entire models. Results. The objective of the NCRPCOPGene is to study the relationships among gene expressions under different conditions, to classify these conditions, and to study their effect on the different relationships. The web application makes it easier to define the sample classes, grouping the microarray experiments either by using (a) biological, statistical, or any other previous knowledge or (b) their effect on the expression relationship maintained among specific genes of interest. By means of the type (a) class definition, the researcher can add biological information to the gene-expression relationships. The type (b) class definition allows for linking genes correlated neither linearly nor nonlinearly. Conclusions. The PCOPGene tools are especially suitable for microarrays with large sample series. This application helps to identify cellular states and the genes involved in it in a flexible way. The application takes advantage of the ability of our system to relate gene expressions; even when these relationships are noncontinuous and cannot be found using linear or nonlinear analytical methods

    PCOPGene-Net: Holistic Characterisation of cellular states from microarray data based on continuous and non-continuous analysis of gene-expression relationships

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray technology is so expensive and powerful that it is essential to extract maximum value from microarray data, specially from large-sample-series microarrays. Our web tools attempt to respond to these researchers' needs by facilitating the possibility to test and formulate from a hypothesis to entire models under a holistic point of view.</p> <p>Results</p> <p>PCOPGene-Net is a web application for facilitating the study of the relationships among gene expressions under microarray conditions, to classify these conditions and to study their effect on expression relationships. Furthermore, the system guides the researcher in the navigation through the microarray data by providing the most suitable genes and information for the researcher's interests at each moment. We achieve all of these by means of the zoom-out operation, the zoom-in operation, the non-continuous analysis and crossing the PCOPGene results with external data-servers.</p> <p>Conclusion</p> <p>PCOPGene-Net helps to identify cellular states and the genes involved in these. All of that is accomplished in a flexible way, guided by the researcher's interests and taking advantage of the ability of our system to relate gene expressions, even when these relationships are non-continuous and cannot be found using linear or non-linear analytical methods. Currently, our tools are used for tumour-progression study from a holistic point of view.</p

    Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis

    Get PDF
    Background: Analysing gene expression data from microarray technologies is a very important task in biology and medicine, and particularly in cancer diagnosis. Different from most other popular methods in high dimensional bio-medical data analysis, such as microarray gene expression or proteomics mass spectroscopy data analysis, fuzzy rule-based models can not only provide good classification results, but also easily be explained and interpreted in human understandable terms, by using fuzzy rules. However, the advantages offered by fuzzy-based techniques in microarray data analysis have not yet been fully explored in the literature. Although some recently developed fuzzy-based modeling approaches can provide satisfactory classification results, the rule bases generated by most of the reported fuzzy models for gene expression data are still too large to be easily comprehensible. Results: In this paper, we develop some Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) methods for analysing high dimensional bio-medical data sets, such as microarray gene expression data and proteomics mass spectroscopy data. We mainly focus on evaluating our proposed models on microarray gene expression cancer data sets, i.e., the lung cancer data set and the colon cancer data set, but we extend our investigations to other type of cancer data set, such as the ovarian cancer data set. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, can be successfully obtained for challenging microarray gene expression datasets. Conclusions: We believe that fuzzy-based techniques, and in particular the methods proposed in this paper, can be very useful tools in dealing with high dimensional cancer data. We also argue that the potential of applying fuzzy-based techniques to microarray data analysis need to be further explored. </p

    Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualization of DNA microarray data in two or three dimensional spaces is an important exploratory analysis step in order to detect quality issues or to generate new hypotheses. Principal Component Analysis (PCA) is a widely used linear method to define the mapping between the high-dimensional data and its low-dimensional representation. During the last decade, many new nonlinear methods for dimension reduction have been proposed, but it is still unclear how well these methods capture the underlying structure of microarray gene expression data. In this study, we assessed the performance of the PCA approach and of six nonlinear dimension reduction methods, namely Kernel PCA, Locally Linear Embedding, Isomap, Diffusion Maps, Laplacian Eigenmaps and Maximum Variance Unfolding, in terms of visualization of microarray data.</p> <p>Results</p> <p>A systematic benchmark, consisting of Support Vector Machine classification, cluster validation and noise evaluations was applied to ten microarray and several simulated datasets. Significant differences between PCA and most of the nonlinear methods were observed in two and three dimensional target spaces. With an increasing number of dimensions and an increasing number of differentially expressed genes, all methods showed similar performance. PCA and Diffusion Maps responded less sensitive to noise than the other nonlinear methods.</p> <p>Conclusions</p> <p>Locally Linear Embedding and Isomap showed a superior performance on all datasets. In very low-dimensional representations and with few differentially expressed genes, these two methods preserve more of the underlying structure of the data than PCA, and thus are favorable alternatives for the visualization of microarray data.</p

    NCR-PCOPGene : An Exploratory Tool for Analysis of Sample-Classes Effect on Gene-Expression Relationships

    Get PDF
    Background. Microarray technology is so expensive and powerful that it is essential to extract maximum value from microarray data. Our tools allow researchers to test and formulate from a hypothesis to entire models. Results. The objective of the NCRPCOPGene is to study the relationships among gene expressions under different conditions, to classify these conditions, and to study their effect on the different relationships. The web application makes it easier to define the sample classes, grouping the microarray experiments either by using (a) biological, statistical, or any other previous knowledge or (b) their effect on the expression relationship maintained among specific genes of interest. By means of the type (a) class definition, the researcher can add biological information to the gene-expression relationships. The type (b) class definition allows for linking genes correlated neither linearly nor nonlinearly. Conclusions. The PCOPGene tools are especially suitable for microarrays with large sample series. This application helps to identify cellular states and the genes involved in it in a flexible way. The application takes advantage of the ability of our system to relate gene expressions; even when these relationships are noncontinuous and cannot be found using linear or nonlinear analytical methods

    Feature dimension reduction for microarray data analysis using locally linear embedding

    No full text
    Cancer classification is one major application of microarray data analysis. Due to the ultra high dimensionality nature of microarray data, data dimension reduction has drawn special attention for such type of data analysis. The currently available data dimension reduction methods are either supervised, where data need to be labeled, or computational complex. In this paper, we proposed to use a revised locally linear embedding(LLE) method, which is purely unsupervised and fast as the feature extraction strategy for microarray data analysis. Three public available microarray datasets have been used to test the proposed method. The effectiveness of LLE is evaluated by the classification accuracy of a SVM classifier. Generally, the results are promising. 1

    FEATURE DIMENSION REDUCTION FOR MICROARRAY DATA ANALYSIS USING LOCALLY LINEAR EMBEDDING

    No full text
    corecore