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Background. Microarray technology is so expensive and powerful that it is essential to extract maximum value from microarray
data. Our tools allow researchers to test and formulate from a hypothesis to entire models. Results. The objective of the
NCRPCOPGene is to study the relationships among gene expressions under different conditions, to classify these conditions,
and to study their effect on the different relationships. The web application makes it easier to define the sample classes, grouping
the microarray experiments either by using (a) biological, statistical, or any other previous knowledge or (b) their effect on the
expression relationship maintained among specific genes of interest. By means of the type (a) class definition, the researcher can
add biological information to the gene-expression relationships. The type (b) class definition allows for linking genes correlated
neither linearly nor nonlinearly. Conclusions. The PCOPGene tools are especially suitable for microarrays with large sample series.
This application helps to identify cellular states and the genes involved in it in a flexible way. The application takes advantage of
the ability of our system to relate gene expressions; even when these relationships are noncontinuous and cannot be found using
linear or nonlinear analytical methods.

Copyright © 2008 Juan Cedano et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

DNA microarray technology enables high-throughput gene-
expression analysis, which allows researchers to compare the
activity of genes in multiple cellular conditions. There are
several relevant web applications for microarray analysis,
that is, GEO [1], BIOREL [2], ArrayExpress [3], and
MicroGen [4]. Currently, most tools try to extract biological
information from such high-throughput expression data
combining information from coexpressed genes [5] as well
as additional annotations extracted from Gene-Ontology [6],
phylogenetic information [7], or pathway data [8]. In this
paper, a different and complementary new approach based
on the effect of the experiments on the fluctuations of gene-
expression relationships is proposed.

The suitable data for our type of analysis can be
provided by (a) temporal series, useful to study synchronous
cellular events, and (b) serial analysis of gene-expression
samples under different conditions (i.e., chemotherapy,

temperature, radiation, starvation, etc.) which are more
useful for studying asynchronous events. The progressive
increase of microarray sample series [9] motivates a more
thorough analysis of expression relationships and gene
dependencies throughout these large series, trying to rescue
global gene behaviours, cellular states and phenotypes. The
GEO database [1] facilitates the study of the microarray
experiments grouped into predefined classes introduced
by the microarray authors. Nevertheless, if the researcher
wants to understand the microarray experiments effect
on the expression relationships and elucidate hidden cell
states, he/she needs a more specific approach. To study
the effect of the microarray experiments on the relation-
ships among different sets of genes, our web tool allows
the user to define flexible sample classes. It involves a
significant new approach by going from the linear, non-
linear, and mutually exclusive gene relationships to the
complex, noncontinuous dependence among genes or sets of
genes.
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Our strategy begins from the analysis of the “continuous
gene-expression relationships” (abbreviated in the paper
as “gene relationships” or “expression relationships”). This
analysis provides the “inner pattern” of the expression
relationships. This “inner pattern” describes the relationship
in an n-space (sample space of n dimensions), where each
axis represents the expression level of each one of the
genes which are being related, and from a data cloud with
the microarray experiments. This pattern analysis detects
the lineal, nonlineal, and mutually excluding relationships,
providing a series of points in the n-space which describe
the “inner pattern” of the expression relationship. Beyond
this first analysis remains the second objective: the study of
the “noncontinuous dependence” among gene expressions.
To perform this, the sample classes are defined allowing
for the study of their effect on gene expressions and the
stated continuous dependencies. This task facilitates relating
genes which do not have continuous relationships but
rather have local, unidirectional, or other kinds of complex
dependence in their expression. The final objective is that
the sample classes defined help to identify the hidden
cellular states and phenotype changes (and provide the genes
involved).

2. Methods

Pattern extraction methodologies are very powerful tech-
niques to extract biological knowledge from data, as was
shown in our previous work [10], where this approach was
used for analysis of populations, diagnosis, and prognosis.
In the present work, a useful extension to high-throughput
microarray analysis is presented.

2.1. Preprocess

When microarray data are uploaded, the inner pattern of
the expression relationship of all pairs of microarray genes
is calculated automatically. These calculations are made by
the principal curves of oriented points (PCOPs) calculus
[11] and recognise the linear, nonlinear and mutually-
excluding relationships between genes (both genes cannot
be overexpressed or underexpressed at the same time,
or one gene can be overexpressed if the other one is
underexpressed) [12]. The noncorrelation factor between
each pair of gene expressions is calculated in the pre-
process pattern analysis, leading to the identification of
those genes which are more correlated with each gene.
How it will lead to the “analysis expansion” around the
researcher’s genes of interest is shown in Results, and a
brief description of the PCOP calculation [11] is given in
Section 2.4.

2.2. Defining Sample Classes

The researcher could test his/her hypotheses and intuitions
by defining the sample classes. The sample-classes definition
can be made in the following three different ways.

(i) Selecting the samples from a range of gene-expres-
sion data.

(ii) Clustering the samples from a gene-expression rela-
tionship: once the inner pattern among a set of
correlated genes of interest is calculated (once again
by PCOP calculus [11]), the samples that constitute
the different “local behaviours” of this inner pattern
can be clustered (and a high correlation implies
a better-fitted pattern). Then, the effect of these
conditions can be studied on any other genes rela-
tionship, where these genes could not be correlated
with the set initially used to cluster the microarray
experiments. Note that although in the preprocess
PCOP is calculated for two dimensions only (a pair
of genes), now it is calculated for n ≥ 2 dimensions
(the n genes of the gene set).

(iii) Classifying the microarray experiments into different
classes using previous knowledge.

2.3. Colouring the Sample Classes in
a Genes Relationship

Now, the graphical interface facilitates the visualisation of
the defined-classes effect on gene relationships by colouring
the samples (as is shown in Figure 1) for every set of genes
of interest with the intention of studying their effect. The
study of this effect is especially relevant in the nonlinear
relationships in order to understand the biological sense of
the slope change, possibly due to a phenotype change.

The class definitions of types (i) (selecting the samples
from a range of gene-expression values) and (ii) (clustering
the samples from a gene-expression relationship) are made
using these graphical visualisations of the initial-genes-of-
interest pattern analysis. Type (iii) is made using the web
interface that enquires for the samples belonging to each
class, or directly uploading the file.

2.4. Defining the Sample Classes from
a Nonlinear Expression Relationship

The system makes use of the principal curves of oriented
points (PCOPs) calculus to obtain the nonlinear inner
pattern [11, 13] used to cluster the samples (remember
that PCOP calculus is also used to obtain the correlation
degree between all pairs of microarray genes). The analysed
variables with the PCOP method can be independent
because the method uses a hidden variable for ordering the
data (in contrast to other nonlinear analyses like regression
curves) which is suitable for gene-expression comparisons
[14]. PCOP is defined by the generalisation, at the local
level, of the principal-components variance properties. From
the sample-space data of n dimensions (one per gene
expression), our system obtains discretised states named
“principal oriented points” (POPs), which represent this
principal component generalisation at the local level or
local area. The series of principal oriented points (POPs)
obtained makes up the principal curve of oriented points
(PCOPs) or inner pattern of the data cloud [11, 13]. The
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Figure 1: Sample class definitions using the PCOPGene web interface. Example 1: in the SGC(GUCY1B3) and Q6(QSN6) relationship ((a)
f ∗ = 0.08), the samples of the two extremes of the SGC/Q6 inner pattern are clustered into two classes by clicking on the POPs, these classes
are coloured in the GATA3 and AML1(RUNX1) relationship ((b) f = 0.10). Example 2: in the GATA3 and AML1(RUNX1) comparison
window (b), the samples of GATA3 over-expressed are grouped with the range-selection facility and coloured in the SGC and Q6 relationship
(a). Example 3: in the GATA3, AML1(RUNX1), SGC and Q6 relationship ((c) f = 0.28), the plot of the SGC and Q6 plane is shown. The
coloured classes shown have been obtained by clustering the microarray experiments according to their correlation. These classes represent
differentiated cell processes with different genes involved. ( f ∗ = non-correlation factor provided by the PCOP calculus [10]).

final series of POPs obtained will minimise the dispersion
degree of the samples around PCOP [11, 13]. As a result, even
with no isotropic distribution of the data, we obtain a very
realistic inner pattern, compared, for example, with methods
like least squares, and a very accurate data-dispersion
measurement (the noncorrelation factor), compared with
artificial intelligence methods [11, 15].

Next, when the user selects the POPs (the different
discretised states obtained in the PCOP calculus) using the
graphical interface, the samples belonging to each POP scope
or local area are selected. One of the main keys of PCOP
calculus is precisely the scope detection of the local area of
each POP, as has been explained in a previous work [11].
In this way, the different sample classes are finally defined

based on the “local behaviours” of the gene-expression
relationship. For more details about this clustering method
based on the fluctuations of the inner pattern, consult our
previous work [10].

2.5. Gene Search Based on
the Distribution of the Classes along
the Gene-Expression Range

To make it easier to relate the genes in a noncontinuous
approach, the user can carry out a gene search based on
the expression level required for each class defined. This
noncontinuous approach leads to the correlation of gene
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expressions that cannot be related by the continuous analysis
facilitated by the pattern analysis (as shown in the actual
examples described in Section 3). In the “class-distribution”
search, the genes can be searched for some of the defined
classes by being upregulated or downregulated, with respect
to the basal value, or by being disjointed, overexpressed,
or underexpressed, with respect to some of the other
classes. All possible combinations are allowed where different
combinations will supply different gene sets.

2.6. Contextualisation Consulting
the GEO Database

In order to get complementary information from other pub-
lic microarray data, the GEO database could be consulted.
These queries attempt to know if the genes supplied by
the “class-distribution” search tool (genes that follow the
user-defined class distribution in their expression) are gene
markers in the GEO datasets. To achieve this information,
the NCR-PCOPGene queries the microarray “gene-centric”
GEO Profiles [1]. The profiles across all GEO datasets where
the query gene displays significant expression differences
among the GEO-predefined sample classes are obtained. In
this way, the queried gene can be considered, for example, as
a marker of osmotic stress in a microarray to analyse cellular
stress response, or as a marker of metastasis in another
microarray to analyse disease states, and so forth. These
query-gene properties can then be assigned to the sample
classes obtained with the NCR-PCOPGene.

2.7. Availability and Requirements

(1) Project name: PCOPGene.

(2) Project home page: http://ibb.uab.es/revresearch/

(3) Operating system(s): Web-based application.

(4) Programming language: PHP, Java, flash script, CGI,
C++, Matlab (interfaces for Matlab users).

(5) Requirements: Mozilla 5.0, sea monkey 1.0, Firefox 1.0
or Explorer 6.0. flash plug-in 7.0 and Java 1.3.1 or
higher versions.

(6) Licence: free access; source codes available in the web.

(7) Any restrictions to use by nonacademics: we prefer no
use for profit.

A demo user for visualising the above examples is
available. A multimedia tutorial is provided to describe the
application use and it is indexed from the application help
icon. For mathematical and computational details, technical
reports are also available in the web.

3. Results

Let us describe some real-use cases of the NCR-PCOPGene
and the relevance of the new knowledge supplied (the gene-
expression dependence put forward in the examples are new
and unknown, until now). The three ways to define the
sample classes and a basic-analysis procedure have been used.

3.1. Microarray Data

The suitable data to be analysed by the NCR-PCOPGene
are microarrays with large synchronous or asynchronous
sample series. The analysis presented in the paper uses
microarray data provided by the National Cancer Institute
(USA) [16]. They correspond to the profiles of 9703 cDNAS
representing ∼8000 unique genes of 60 cell-lines, in relation
to the activity profiles of 1400 drugs. They provide a resulting
table of 1376 genes and 118 compounds with the most
representative substances and genes normalised for the 60
cell-lines (suitable data for knowledge discovery using our
tools).

3.2. Basic Analysis Procedure

The analysis begins in the researcher’s genes of interest,
usually gene markers of a specific disease, cell state, or
function. As was commented on in Section 2, the correlation
factors between all microarray pairs of genes (for the
linearly, nonlinearly, and mutually excluding relationships)
are automatically calculated when the microarray data are
uploaded (the preprocess). Thus, for each gene the system
provides its rank of best-correlated genes and the user can
expand the initial correlated-gene-set based on these ranks
[14]. And then finally, the user can launch the PCOP calculus
of the gene set.

Once the pattern analysis of the query genes has been per-
formed, the graphical interface will show their expression-
relationship, inner pattern, and their fluctuations. Also, their
noncorrelation factor of the set is provided (remember that
a better correlation among the initial gene-set implies an
inner pattern that fits better, facilitating the detection of the
fluctuations and slope changes, and also the clustering of
the different microarray experiments associated with each
one).

To find the expression dependence of these initial sets
of correlated genes with other genes either linearly or
nonlinearly correlated with the first ones (on the contrary,
it is easier and faster to perform PCOP analysis directly),
the user should proceed as follows: first, he/she must
discretise the continuous relationship among the initial gene
set forming the different classes (by simply clicking on
the POPs along the relationship’s inner-pattern in the plot
interface); second, applying the “classes-distribution” search
tool for a certain distribution of that discretisation, the genes
that follow the required distribution in their expressions
are obtained. Finally, the researcher can now perform the
pattern analysis of the genes provided and observe, in its
interface visualisation, the effect of each sample class on
its expression relationship (with the samples of the classes
coloured, as in Figure 1). This procedure will show the
noncontinuous dependence among the genes provided by
the search and the initial gene set in the manner specified
in the search. If the distribution required in the search
is changed, the genes provided and their noncontinuous
dependence, with respect to the initial ones, will vary
too.

http://ibb.uab.es/revresearch/
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3.3. Example 1: Defining the Sample Classes
from a Nonlinear Genes Relationship

Let us now look at a real analysis. We wish to relate the
Soluble Guanylate Cyclase Beta1 3 (SGC) and Quiescin Q6
(Q6) genes (our genes of interest). The SGC is underex-
pressed in cellular stress [17], whereas Q6 is overexpressed
in the last phases of tissue remodelling [18]. Additionally,
we would like to relate this pair of genes to GATA-binding
protein 3 (GATA3) and acute myeloid leukaemia 1 (AML1,
RUNX1). GATA3 is involved in growth control and the
maintenance of the differentiated state in epithelial cells
[19]. The impairment of the AML1 function deregulates the
pathways leading to cellular proliferation and differentiation
[20]. The two gene sets show a correlation between their
respective members (noncorrelation factors of SGC versus
Q6 = 0.08; GATA3 versus AML1 = 0.1) and their inner pattern
can be calculated and visualised in the graphical interfaces,
as is shown in Figure 1. The problem is that these two
sets of genes are neither linearly nor nonlinearly correlated
(noncorrelation factor for SGC versus Q6 versus GATA3
versus AML1 = 0.28). But perhaps they are maintaining
a noncontinuous dependence in their expressions, and we
cannot discern it with the analysis for continuous data-
clouds. However, we can try to find it using the classes’
definition.

To perform this, two clusters are built from the SGC
and Q6 relationship by selecting the POPs located in
the two extremes of their inner-pattern relationship, one
corresponding to the cellular-stress samples and the other
to the tissue-remodelling samples (Figure 1, SGC and Q6
relationship). These clusters will constitute two different
sample classes.

Now, the classes are applied to the GATA3 and AML1
relationship, painting their respective samples with red and
blue colours (Figure 2). As can be observed in Figure 2,
almost all samples corresponding to cellular stress (red)
appear with an underexpression of GATA3 and AML1,
indicating that the two genes are not overexpressed in cellular
stress. However, the tissue-remodelling-class samples (blue)
appear along the GATA3 and AML1 relationship as being
over- and underexpressed and indicate that some of these
tissue-remodelling conditions are affected by the GATA3 and
AML1 differentiation ways while some are not. This points
out that the overexpression of GATA3 and AML1 implies an
overexpression of SGC and Q6, but not the opposite. Note
that this “unidirectional” relationship is impossible to detect
by pattern- or correlation-analysis methods.

3.4. Example 2: Defining the Sample Classes
from Selecting Expression Ranges

As seen above, there are some experiments involved in tissue
remodelling, but not in the GATA3 differentiation processes.
It would be interesting to study them. For this purpose,
those samples where GATA3 is overexpressed were selected
(using the graphical interface) to define a new sample class
(Figure 1, GATA3 and AML1 relationship).
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Figure 2: Example 1: effect of classes derived from Q6 and SGC on
GATA3 and AML1 expression. In the picture is shown the GATA3
(x axis) and AML1 (y axis) relationship, where the data-cloud
shows the microarray experiments and the PCOP, connecting the
POPs, describes the inner pattern of the expression relationship.
The samples under-expressed in the Q6 and SGC relationship are
coloured in red, and the samples over-expressed in the Q6 and SGC
relationship are coloured in blue. This points out that the under-
expression of Q6 and SGC implies an under-expression of GATA3
and AML1, but that an over-expression of Q6 and SGC does not
always imply an over-expression of GATA3 and AML1. The data
set represents the activity of 118 substances normalised for 60 cell-
lines [16].

This class of samples is coloured in the SGC and
Q6 relationship, as shown in Figure 3. As we can see,
the differentiation induced by GATA3 is independent of
the tissue-remodelling level achieved by the SGC and Q6
relationship. Note that the sample selection from POP is
the appropriate method to classify cellular states because the
cause or effect of a cell state is the combined expression of
multiple genes.

3.5. Example 3: Defining the Sample
Classes by Classifying the Experiments
Using Previous Knowledge

Previous knowledge can arise basically from two different
origins: a biological/clinical origin or a statistical one. In our
case, the microarray experiments are grouped by their linear
correlation using principal components, but other methods
like biclustering [21, 22] or Locally Linear Embedding [23,
24] can be used with better accuracy to define the classes.
Note that in order to define the classes, the microarray
experiments play the variable role and the genes make up
the data cloud. Defining the classes by the microarray-
experiments correlation, sets of genes are similarly expressed
under the conditions of certain experiments (a class), but
not under the conditions of the others. Thus, we can
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Figure 3: Example 2: effect of over-expressed class from GATA3
and AML1 on SGC and Q6 expression: SGC (x axis) and Q6
(y axis) relationship, where the data-cloud shows the microarray
experiments and the PCOP, connecting the POPs, describes the
inner pattern of the expression relationship. The samples of the
class representing the over-expression of GATA3 and AML1 are
coloured. In this way, the four gene expressions are related, SGC
and Q6 linearly, with GATA3 and AML1 maintaining a complex
noncontinuous relationship with the other two. The data set
represents the activity of 118 substances normalised for 60 cell-
lines [16].

establish the hypothesis that each sample class represents a
differentiated cell process, with the genes implicated in it
acting jointly.

The effect of the defined classes on relationships among
genes of interest can now be observed. Colouring these
classes in the relationship among the four genes of the
above examples (Figure 1, GATA3, RUNX, SGC, and Q6
relationship), and remembering the observations of the
above examples, the genes that may act jointly would be (i)
the genes involved in cell stress (yellow and red) and (ii)
the genes involved in tissue remodelling (green and blue),
this last set being divided into genes related to GATA3 and
AML1 differentiation (green), and those not implicated in it
(blue).

3.6. Example 4: Gene Search Based on
the Distribution of the Classes along
Their Expression Range

With the classes obtained in the last example (Figure 1,
GATA3, RUNX, SGC, and Q6 relationship) and using the
“class-distribution” gene-search tool, it is interesting to
search the genes which mark the “transition” from the
cell process involved in tissue remodelling without GATA3
differentiation (blue) to the cell process linked to tissue
remodelling with GATA3 differentiation (green). For this
purpose, the following “class-distribution” gene search must

be performed: the blue and green classes are overexpressed,
with respect to the basal value; the rest of the classes are
underexpressed, with respect to the basal value; and the
green-class samples are more overexpressed than the blue-
class samples.

Furthermore, we can identify gene markers of specific
cell processes or pathologies (in relation to their expression
levels) from the supplied genes by means of the queries made
by the application against the “gene-centric” GEO profiles.
Thus, the analysis can be focused on the relevant genes for
biomedical user interest.

4. Conclusions

NCR-PCOPGene strength resides in (a) the flexibility
of the classes’ definition, due to the nonlinear pattern
analysis of gene expressions and the sample clustering
along the inner pattern, combined with (b) the high-
throughput approach of microarray technology, which, by
means of the “class-distribution” gene search and the gene-
correlation table, leads the researcher to expand his/her
analysis. As a result, our application can help to relate
gene expressions when their relationships are noncontinuous
and cannot be found using linear or nonlinear analytical
methods.

The flexibility of the tool leads to the combination of the
three ways for determining the classes shown in this paper, to
define and redefine the classes. For example, using the “class
definition from a nonlinear genes relationship” way, the classes
can be clustered from two different, uncorrelated, initial gene
sets (as long as no sample appears in more than one class).
Therefore, the user could search the genes that are partially
related to both sets of genes in a specific manner (e.g.,
being correlated with one set in the underexpression, but
with the other in the overexpression analyses). Or initially
using the “previous-knowledge” way, the user redefines the
predefined classes by their effect on the gene-expression-
relationships (performing subclasses from the original ones
to study subprocesses in which the genes of interest are
involved).

In summary, it is a powerful tool to study genes of interest
and test researchers’ hypotheses by taking advantage of the
high-throughput capability of microarray technology.
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