526 research outputs found

    A Comparative Study for 2D and 3D Computer-aided Diagnosis Methods for Solitary Pulmonary Nodules

    Get PDF
    Many computer-aided diagnosis (CAD) methods, including 2D and 3D approaches, have been proposed for solitary pulmonary nodules (SPNs). However, the detection and diagnosis of SPNs remain challenging in many clinical circumstances. One goal of this work is to investigate the relative diagnostic accuracy of 2D and 3D methods. An additional goal is to develop a two-stage approach that combines the simplicity of 2D and the accuracy of 3D methods. The experimental results show statistically significant differences between the diagnostic accuracy of 2D and 3D methods. The results also show that with a very minor drop in diagnostic performance the two-stage approach can significantly reduce the number of nodules needed to be processed by the 3D method, streamlining the computational demand

    Classification of Pulmonary Nodules by Using Hybrid Features

    Get PDF
    Early detection of pulmonary nodules is extremely important for the diagnosis and treatment of lung cancer. In this study, a new classification approach for pulmonary nodules from CT imagery is presented by using hybrid features. Four different methods are introduced for the proposed system. The overall detection performance is evaluated using various classifiers. The results are compared to similar techniques in the literature by using standard measures. The proposed approach with the hybrid features results in 90.7% classification accuracy (89.6% sensitivity and 87.5% specificity)

    Automatic detection of pulmonary nodules: Evaluation of performance using two different MDCT scanners

    Get PDF
    The purpose of this study was to evaluate the diagnostic performance of a computer-aided diagnosis (CAD) system, on the detection of pulmonary nodules in multidetector row computed tomography (MDCT) images, by using two different MDCT scanners. The computerized scheme was based on the iris filter. We have collected CT cases of patients with pulmonary nodules. We have included in the study one hundred and thirty-two calcified and noncalcified nodules, measuring 4-30 mm in diameter. CT examinations were performed by using two different equipments: a CT scanner (SOMATOM Emotion 6), and a dual-source computed tomography system (SOMATOM Definition) (Siemens Medical System, Forchheim, Germany), with the following parameters: collimation, 6x1.0mm (Emotion 6); and 64×0.6mm (Definition); 100-130 kV; 70-110 mAs. Data were reconstructed with a slice thickness of 1.25mm (Emotion 6) and 1mm (Definition). True positive cases were determined by an independent interpretation of the study by three experienced chest radiologists, the panel decision being used as the reference standard. Free-response Receiver Operating Characteristic curves, sensitivity and number of false-positive per scan, were calculated. Our CAD scheme, for the test set of the study, yielded a sensitivity of 80%, with an average of 5.2 FPs per examination. At an average false positive rate of 9 per scan, our CAD scheme achieved sensitivities of 94% for all nodules, 94.5% for solid, 80% for non-solid, 84% for spiculated, and 97% for non-spiculated nodules. These encouraging results suggest that our CAD system, advocated as a second reader, may help radiologists in the detection of lung nodules in MDCTThis work has been partially supported by the Xunta de Galicia (expte. nº PGIDIT06BTF20802PR), and by the FIS (expte. nº PI060058) and (expte. nº PI080072)S

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Automatic 3D pulmonary nodule detection in CT images: a survey

    Get PDF
    This work presents a systematic review of techniques for the 3D automatic detection of pulmonary nodules in computerized-tomography (CT) images. Its main goals are to analyze the latest technology being used for the development of computational diagnostic tools to assist in the acquisition, storage and, mainly, processing and analysis of the biomedical data. Also, this work identifies the progress made, so far, evaluates the challenges to be overcome and provides an analysis of future prospects. As far as the authors know, this is the first time that a review is devoted exclusively to automated 3D techniques for the detection of pulmonary nodules from lung CT images, which makes this work of noteworthy value. The research covered the published works in the Web of Science, PubMed, Science Direct and IEEEXplore up to December 2014. Each work found that referred to automated 3D segmentation of the lungs was individually analyzed to identify its objective, methodology and results. Based on the analysis of the selected works, several studies were seen to be useful for the construction of medical diagnostic aid tools. However, there are certain aspects that still require attention such as increasing algorithm sensitivity, reducing the number of false positives, improving and optimizing the algorithm detection of different kinds of nodules with different sizes and shapes and, finally, the ability to integrate with the Electronic Medical Record Systems and Picture Archiving and Communication Systems. Based on this analysis, we can say that further research is needed to develop current techniques and that new algorithms are needed to overcome the identified drawbacks

    Convolutional Neural Network based Malignancy Detection of Pulmonary Nodule on Computer Tomography

    Get PDF
    Without performing biopsy that could lead physical damages to nerves and vessels, Computerized Tomography (CT) is widely used to diagnose the lung cancer due to the high sensitivity of pulmonary nodule detection. However, distinguishing pulmonary nodule in-between malignant and benign is still not an easy task. As the CT scans are mostly in relatively low resolution, it is not easy for radiologists to read the details of the scan image. In the past few years, the continuing rapid growth of CT scan analysis system has generated a pressing need for advanced computational tools to extract useful features to assist the radiologist in reading progress. Computer-aided detection (CAD) systems have been developed to reduce observational oversights by identifying the suspicious features that a radiologist looks for during case review. Most previous CAD systems rely on low-level non-texture imaging features such as intensity, shape, size or volume of the pulmonary nodules. However, the pulmonary nodules have a wide variety in shapes and sizes, and also the high visual similarities between benign and malignant patterns, so relying on non-texture imaging features is difficult for diagnosis of the nodule types. To overcome the problem of non-texture imaging features, more recent CAD systems adopted the supervised or unsupervised learning scheme to translate the content of the nodules into discriminative features. Such features enable high-level imaging features highly correlated with shape and texture. Convolutional neural networks (ConvNets), supervised methods related to deep learning, have been improved rapidly in recent years. Due to their great success in computer vision tasks, they are also expected to be helpful in medical imaging. In this thesis, a CAD based on a deep convolutional neural network (ConvNet) is designed and evaluated for malignant pulmonary nodules on computerized tomography. The proposed ConvNet, which is the core component of the proposed CAD system, is trained on the LUNGx challenge database to classify benign and malignant pulmonary nodules on CT. The architecture of the proposed ConvNet consists of 3 convolutional layers with maximum pooling operations and rectified linear units (ReLU) activations, followed by 2 denser layers with full-connectivities, and the architecture is carefully tailored for pulmonary nodule classification by considering the problems of over-fitting, receptive field, and imbalanced data. The proposed CAD system achieved the sensitivity of 0.896 and specificity of 8.78 at the optimal cut-off point of the receiver operating characteristic curve (ROC) with the area under the curve (AUC) of 0.920. The testing results showed that the proposed ConvNet achieves 10% higher AUC compared to the state-of-the-art work related to the unsupervised method. By integrating the proposed highly accurate ConvNet, the proposed CAD system also outperformed the other state-of-the-art ConvNets explicitly designed for diagnosis of pulmonary nodules detection or classification
    • …
    corecore