139,150 research outputs found

    Correlation-based feature selection for association rule mining in semantic annotation of mammographic medical images

    Get PDF
    Mining of high dimension data for mammogram image classification is highly challenging. Feature reduction using subset selection plays enormous significance in the field of image mining to reduce the complexity of image mining process. This paper aims at investigating an improved image mining technique to enhance the automatic and semi-automatic semantic image annotation of mammography images using multivariate filters, which is the Correlation-based Feature Selection (CFS). This feature selection method is then applied onto two association rules mining methods, the Apriori and a modified genetic association rule mining technique, the GARM, to classify mammography images into their pathological labels. The findings show that the classification accuracy is improved with the use of CFS in both Apriori and GARM mining techniques

    Irrelevant feature and rule removal for structural associative classification

    Get PDF
    In the classification task, the presence of irrelevant features can significantly degrade the performance of classification algorithms,in terms of additional processing time, more complex models and the likelihood that the models have poor generalization power due to the over fitting problem.Practical applications of association rule mining often suffer from overwhelming number of rules that are generated, many of which are not interesting or not useful for the application in question.Removing rules comprised of irrelevant features can significantly improve the overall performance.In this paper, we explore and compare the use of a feature selection measure to filter out unnecessary and irrelevant features/attributes prior to association rules generation.The experiments are performed using a number of real-world datasets that represent diverse characteristics of data items.Empirical results confirm that by utilizing feature subset selection prior to association rule generation, a large number of rules with irrelevant features can be eliminated.More importantly, the results reveal that removing rules that hold irrelevant features improve the accuracy rate and capability to retain the rule coverage rate of structural associative association

    Feature Selection for Multi-label Document Based on Wrapper Approach through Class Association Rules

    Get PDF
    Each document in a multi-label classification is connected to a subset of labels. These documents usually include a big number of features, which can hamper the performance of learning algorithms. Therefore, feature selection is helpful in isolating the redundant and irrelevant elements that can hold the performance back. The current study proposes a Naive Bayesian (NB) multi-label classification algorithm by incorporating a wrapper approach for the strategy of feature selection aiming at determining the best minimum confidence threshold. This paper also suggests transforming the multi-label documents prior to utilizing the standard algorithm of feature selection. In such a process, the document was copied into labels that belonged to by adopting all the assigned characteristics for each label. Then, this study conducted an evaluation of seven minimum confidence thresholds. Additionally, Class Association Rules (CARs) represents the wrapper approach for this evaluation. The experiments carried out with benchmark datasets revealed that the Naïve Bayes Multi-label (NBML) classifier with business dataset scored an average precision of 87.9% upon using a 0.1 % of minimum confidence threshold

    A New Feature Selection Method Based on Class Association Rule

    Full text link
    Feature selection is a key process for supervised learning algorithms. It involves discarding irrelevant attributes from the training dataset from which the models are derived. One of the vital feature selection approaches is Filtering, which often uses mathematical models to compute the relevance for each feature in the training dataset and then sorts the features into descending order based on their computed scores. However, most Filtering methods face several challenges including, but not limited to, merely considering feature-class correlation when defining a feature’s relevance; additionally, not recommending which subset of features to retain. Leaving this decision to the end-user may be impractical for multiple reasons such as the experience required in the application domain, care, accuracy, and time. In this research, we propose a new hybrid Filtering method called Class Association Rule Filter (CARF) that deals with the aforementioned issues by identifying relevant features through the Class Association Rule Mining approach and then using these rules to define weights for the available features in the training dataset. More crucially, we propose a new procedure based on mutual information within the CARF method which suggests the subset of features to be retained by the end-user, hence reducing time and effort. Empirical evaluation using small, medium, and large datasets that belong to various dissimilar domains reveals that CARF was able to reduce the dimensionality of the search space when contrasted with other common Filtering methods. More importantly, the classification models devised by the different machine learning algorithms against the subsets of features selected by CARF were highly competitive in terms of various performance measures. These results indeed reflect the quality of the subsets of features selected by CARF and show the impact of the new cut-off procedure proposed

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Data mining based cyber-attack detection

    Get PDF
    corecore