9 research outputs found

    Music genre classification using On-line Dictionary Learning

    Get PDF
    In this paper, an approach for music genre classification based on sparse representation using MARSYAS features is proposed. The MARSYAS feature descriptor consisting of timbral texture, pitch and beat related features is used for the classification of music genre. On-line Dictionary Learning (ODL) is used to achieve sparse representation of the features for developing dictionaries for each musical genre. We demonstrate the efficacy of the proposed framework on the Latin Music Database (LMD) consisting of over 3000 tracks spanning 10 genres namely Axé, Bachata, Bolero, Forró, Gaúcha, Merengue, Pagode, Salsa, Sertaneja and Tango

    Music genre classification using On-line Dictionary Learning

    Get PDF
    In this paper, an approach for music genre classification based on sparse representation using MARSYAS features is proposed. The MARSYAS feature descriptor consisting of timbral texture, pitch and beat related features is used for the classification of music genre. On-line Dictionary Learning (ODL) is used to achieve sparse representation of the features for developing dictionaries for each musical genre. We demonstrate the efficacy of the proposed framework on the Latin Music Database (LMD) consisting of over 3000 tracks spanning 10 genres namely Axé, Bachata, Bolero, Forró, Gaúcha, Merengue, Pagode, Salsa, Sertaneja and Tango

    Music Playlist Generation using Facial Expression Analysis and Task Extraction

    Get PDF
    In day to day stressful environment of IT Industry, there is a truancy for the appropriate relaxation time for all working professionals. To keep a person stress free, various technical or non-technical stress releasing methods are now being adopted. We can categorize the people working on computers as administrators, programmers, etc. each of whom require varied ways in order to ease themselves. The work pressure and the vexation of any kind for a person can be depicted by their emotions. Facial expressions are the key to analyze the current psychology of the person. In this paper, we discuss a user intuitive smart music player. This player will capture the facial expressions of a person working on the computer and identify the current emotion. Intuitively the music will be played for the user to relax them. The music player will take into account the foreground processes which the person is executing on the computer. Since various sort of music is available to boost one's enthusiasm, taking into consideration the tasks executed on the system by the user and the current emotions they carry, an ideal playlist of songs will be created and played for the person. The person can browse the playlist and modify it to make the system more flexible. This music player will thus allow the working professionals to stay relaxed in spite of their workloads

    Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark

    Get PDF
    The trend for listening to music online has greatly increased over the past decade due to the number of online musical tracks. The large music databases of music libraries that are provided by online music content distribution vendors make music streaming and downloading services more accessible to the end-user. It is essential to classify similar types of songs with an appropriate tag or index (genre) to present similar songs in a convenient way to the end-user. As the trend of online music listening continues to increase, developing multiple machine learning models to classify music genres has become a main area of research. In this research paper, a popular music dataset GTZAN which contains ten music genres is analysed to study various types of music features and audio signals. Multiple scalable machine learning algorithms supported by Apache Spark, including naïve Bayes, decision tree, logistic regression, and random forest, are investigated for the classification of music genres. The performance of these classifiers is compared, and the random forest performs as the best classifier for the classification of music genres. Apache Spark is used in this paper to reduce the computation time for machine learning predictions with no computational cost, as it focuses on parallel computation. The present work also demonstrates that the perfect combination of Apache Spark and machine learning algorithms reduces the scalability problem of the computation of machine learning predictions. Moreover, different hyperparameters of the random forest classifier are optimized to increase the performance efficiency of the classifier in the domain of music genre classification. The experimental outcome shows that the developed random forest classifier can establish a high level of performance accuracy, especially for the mislabelled, distorted GTZAN dataset. This classifier has outperformed other machine learning classifiers supported by Apache Spark in the present work. The random forest classifier manages to achieve 90% accuracy for music genre classification compared to other work in the same domain

    Automatic classification of latin music : some experiments on musical genre classification

    Get PDF
    Estágio realizado no INESC PortoTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Automatic classification of latin music : some experiments on musical genre classification

    Get PDF
    Estágio realizado no INESC PortoTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Feature Selection in Automatic Music Genre Classification

    Get PDF
    This paper presents the results of the application of a feature selection procedure to an automatic music genre classification system. The classification system is based on the use of multiple feature vectors and an ensemble approach, according to time and space decomposition strategies. Feature vectors are extracted from music segments from the beginning, middle and end of the original music signal (timedecomposition). Despite being music genre classification a multi-class problem, we accomplish the task using a combination of binary classifiers, whose results are merged in order to produce the final music genre label (space decomposition). As individual classifiers several machine learning algorithms were employed: Naive-Bayes, Decision Trees, Support Vector Machines and Multi-Layer Perceptron Neural Nets. Experiments were carried out on a novel dataset called Latin Music Database, which contains 3,227 music pieces categorized in 10 musical genres. The experimental results show that the employed features have different importance according to the part of the music signal from where the feature vectors were extracted. Furthermore, the ensemble approach provides better results than the individual segments in most cases

    Analyzing and improving genre and style classification in music through experiments

    Get PDF
    Music classification is a core task in the field of Music Information Retrieval (MIR). Classification refers to recognizing patterns in data. Music classification assigns genre, style, mood and etc. to each piece of music, to facilitate managing music data. It is an interesting topic in MIR with potential applications. There has been a considerable deal of attention focused on variety issues of music classification, such as selection appropriate feature sets, feature selection techniques, classification algorithm, etc. In this thesis, a series of empirical experiments are conducted to investigate and evaluate the genre and style classification in music. To validate our investigations and evaluations, several methods are proposed to analyze and interpret the results. In addition, we also design and implement an effective classification approach that obtains higher classification accuracy
    corecore