6,980 research outputs found

    Labeling the Features Not the Samples: Efficient Video Classification with Minimal Supervision

    Full text link
    Feature selection is essential for effective visual recognition. We propose an efficient joint classifier learning and feature selection method that discovers sparse, compact representations of input features from a vast sea of candidates, with an almost unsupervised formulation. Our method requires only the following knowledge, which we call the \emph{feature sign}---whether or not a particular feature has on average stronger values over positive samples than over negatives. We show how this can be estimated using as few as a single labeled training sample per class. Then, using these feature signs, we extend an initial supervised learning problem into an (almost) unsupervised clustering formulation that can incorporate new data without requiring ground truth labels. Our method works both as a feature selection mechanism and as a fully competitive classifier. It has important properties, low computational cost and excellent accuracy, especially in difficult cases of very limited training data. We experiment on large-scale recognition in video and show superior speed and performance to established feature selection approaches such as AdaBoost, Lasso, greedy forward-backward selection, and powerful classifiers such as SVM.Comment: arXiv admin note: text overlap with arXiv:1411.771

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table

    From patterned response dependency to structured covariate dependency: categorical-pattern-matching

    Get PDF
    Data generated from a system of interest typically consists of measurements from an ensemble of subjects across multiple response and covariate features, and is naturally represented by one response-matrix against one covariate-matrix. Likely each of these two matrices simultaneously embraces heterogeneous data types: continuous, discrete and categorical. Here a matrix is used as a practical platform to ideally keep hidden dependency among/between subjects and features intact on its lattice. Response and covariate dependency is individually computed and expressed through mutliscale blocks via a newly developed computing paradigm named Data Mechanics. We propose a categorical pattern matching approach to establish causal linkages in a form of information flows from patterned response dependency to structured covariate dependency. The strength of an information flow is evaluated by applying the combinatorial information theory. This unified platform for system knowledge discovery is illustrated through five data sets. In each illustrative case, an information flow is demonstrated as an organization of discovered knowledge loci via emergent visible and readable heterogeneity. This unified approach fundamentally resolves many long standing issues, including statistical modeling, multiple response, renormalization and feature selections, in data analysis, but without involving man-made structures and distribution assumptions. The results reported here enhance the idea that linking patterns of response dependency to structures of covariate dependency is the true philosophical foundation underlying data-driven computing and learning in sciences.Comment: 32 pages, 10 figures, 3 box picture
    • …
    corecore