422 research outputs found

    Interior-point solver for convex separable block-angular problems

    Get PDF
    Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based on a power series expansion which approximates the inverse of the matrix of the linking constraints system. In this work we present an efficient solver based on this algorithm. Some of its features are: it solves linearly constrained convex separable problems (linear, quadratic or nonlinear); both Newton and second-order predictor-corrector directions can be used, either with the Cholesky+PCG scheme or with a Cholesky factorization of normal equations; the preconditioner may include any number of terms of the power series; for any number of these terms, it estimates the spectral radius of the matrix in the power series (which is instrumental for the quality of the precondi- tioner). The solver has been hooked to SML, a structure-conveying modelling language based on the popular AMPL modeling language. Computational results are reported for some large and/or difficult instances in the literature: (1) multicommodity flow problems; (2) minimum congestion problems; (3) statistical data protection problems using l1 and l2 distances (which are linear and quadratic problems, respectively), and the pseudo-Huber function, a nonlinear approximation to l1 which improves the preconditioner. In the largest instances, of up to 25 millions of variables and 300000 constraints, this approach is from two to three orders of magnitude faster than state-of-the-art linear and quadratic optimization solvers.Preprin

    Finding a point in the relative interior of a polyhedron

    Get PDF
    A new initialization or `Phase I' strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points - an all-pervasive assumption in interior point method theory that implies the existence of the central path - our initial method (Algorithm 1) is globally Q-linearly and asymptotically Q-quadratically convergent, with a provable worst-case iteration complexity bound. When this assumption is not met, the numerical behaviour of Algorithm 1 is highly disappointing, even when the problem is primal-dual feasible. This is due to the presence of implicit equalities, inequality constraints that hold as equalities at all the feasible points. Controlled perturbations of the inequality constraints of the primal-dual problems are introduced - geometrically equivalent to enlarging the primal-dual feasible region and then systematically contracting it back to its initial shape - in order for the perturbed problems to satisfy the assumption. Thus Algorithm 1 can successfully be employed to solve each of the perturbed problems.\ud We show that, when there exist primal-dual strictly feasible points of the original problems, the resulting method, Algorithm 2, finds such a point in a finite number of changes to the perturbation parameters. When implicit equalities are present, but the original problem and its dual are feasible, Algorithm 2 asymptotically detects all the primal-dual implicit equalities and generates a point in the relative interior of the primal-dual feasible set. Algorithm 2 can also asymptotically detect primal-dual infeasibility. Successful numerical experience with Algorithm 2 on linear programs from NETLIB and CUTEr, both with and without any significant preprocessing of the problems, indicates that Algorithm 2 may be used as an algorithmic preprocessor for removing implicit equalities, with theoretical guarantees of convergence

    A local branching heuristic for MINLPs

    Full text link
    Local branching is an improvement heuristic, developed within the context of branch-and-bound algorithms for MILPs, which has proved to be very effective in practice. For the binary case, it is based on defining a neighbourhood of the current incumbent solution by allowing only a few binary variables to flip their value, through the addition of a local branching constraint. The neighbourhood is then explored with a branch-and-bound solver. We propose a local branching scheme for (nonconvex) MINLPs which is based on iteratively solving MILPs and NLPs. Preliminary computational experiments show that this approach is able to improve the incumbent solution on the majority of the test instances, requiring only a short CPU time. Moreover, we provide algorithmic ideas for a primal heuristic whose purpose is to find a first feasible solution, based on the same scheme
    corecore