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ABSTRACT 
 
Response Surface Methodology (RSM) searches for the 
input combination that optimizes the simulation output. 
RSM treats the simulation model as a black box. 
Moreover, this paper assumes that simulation requires 
much computer time. In the first stages of its search, RSM 
locally fits first-order polynomials. Next, classic RSM uses 
steepest descent (SD); unfortunately, SD is scale 
dependent. Therefore, Part 1 of this paper derives scale 
independent ‘adapted’ SD (ASD) accounting for 
covariances between components of the local gradient. 
Monte Carlo experiments show that ASD indeed gives a 
better search direction than SD. Part 2 considers multiple 
outputs, optimizing a stochastic objective function under 
stochastic and deterministic constraints. This part uses 
interior point methods and binary search, to derive a scale 
independent search direction and several step sizes in that 
direction. Monte Carlo examples demonstrate that a 
neighborhood of the true optimum can indeed be reached, 
in a few simulation runs.  
 
1 INTRODUCTION 
 
RSM was invented by Box and Wilson (1951) for finding 
the input combination that minimizes the output of a real, 
non-simulated system. They ignored constraints. Also see 
recent publications such as Box (1999), Khuri and Cornell 
(1996), Myers (1999), and Myers and Montgomery (1995). 
 Later on, RSM was also applied to random simulation 
models, treating these models as black boxes (a black box 
means that there is no gradient information available; see 
Spall (1999)). Classic articles are Donohue, Houck, and 
Myers (1993, 1995); recent publications are Irizarry, 
Wilson, and Trevino (2001), Kleijnen (1998), Law and 
Kelton (2000, pp. 646-655), Neddermeijer et al. (2000), 
and Safizadeh (2002). 

 Technically, RSM is a stagewise heuristic that 
searches through various local (sub)areas of the global area 
in which the simulation model is valid. We focus on the 
first stage, which fits first-order polynomials in the inputs, 
per local area. This fitting uses Ordinary Least Squares 
(OLS) and estimates the SD path, as follows. 
 Let jd  denote the value of the original (non-

standardized) input j  with k. ..., ,j 1?  Hence k  main or 

first-order effects (say) jß  are to be estimated in the local 

first-order polynomial approximation. For this estimation, 
classic RSM uses resolution-3 designs, which specify the 

1?? kn  input combinations to be simulated. (Spall (1999) 
proposes to simulate only two combinations in his 
‘simultaneous perturbation stochastic approximation’ or 
SPSA.) These input/output (I/O) combinations give the 

OLS estimates ,ˆ
jß  and the SD path uses the local gradient 

? ? .ˆ ..., ,ˆ
1

?
kßß   

 Unfortunately, RSM suffers from two well-known 
problems; see Myers and Montgomery (1995, pp. 192-
194): (i) SD is scale dependent; (ii) the step size along the 
SD path is selected intuitively. For example, in a case 
study, Kleijnen (1993) uses a step size that doubles the 
most important input. 
 Our research contribution  is the following. In Part 1 
(§§2-3) we derive ASD; that is, we adjust the estimated 
first-order factor effects through their estimated covariance 
matrix. We prove that ASD is scale independent. In most 
of our Monte Carlo experiments with simple test functions, 
ASD indeed gives a better search direction. Note that we 
examine only the search direction, not the other elements 
of classic RSM. In Part 2 (§§4-5) we consider multiple 
outputs, whereas classic RSM assumes a single output. We 
optimize a stochastic objective function under multiple 
stochastic and deterministic constraints. We derive a scale 
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independent search direction – inspired by interior point 
methods - and several step sizes - inspired by binary 
search. This search direction namely scaled and projected 
SD, is a generalization of classic RSM’s SD. We then 
combine these search direction and step sizes into an 
iterative heuristic. Notice that if there are no binding 
constraints at the optimum, then classic RSM combined 
with ASD might suffice. 
 The remainder of this paper is organized as follows.  
For the unconstrained problem, §2 derives ASD, its 
mathematical properties, and its interpretation. §3 
compares the search directions SD and ASD, by means of 
Monte Carlo experiments. §4 derives a novel heuristic 
combining a search direction and a step size procedure for 
constrained problems. §5 studies the performance of the 
novel heuristic by means of Monte Carlo experiments. §6 
gives conclusions. 
 Note that this paper summarizes two separate papers, 
namely Kleijnen, Den Hertog, and Angün (2002), and 
Angün et al. (2002), which give all mathematical proofs 
and additional experimental results. 
 
2 ADAPTED STEEPEST DESCENT 
 
RSM uses the following approximation: 
 

ed ß ß =y jj
k

j
 +  + 

1 = 
0 ?  (1) 

 
where y  denotes the predictor of the expected simulation 
output; e  denotes the nois e consisting of intrinsic noise 
caused by the simulation’s pseudo-random numbers (PRN) 
plus lack of fit. RSM assumes white noise; that is, e  is 
normally, identically, and independently distributed with 

zero mean µe  and constant variance .2
es   

 The OLS estimator of the 1?? kq  parameters 
? ?kßß  ..., ,0??ß  in (1) is  

 

wXXXß ?? )( = ˆ -1  (2) 
 
with 

:X  qN ?  matrix of explanatory variables including the 
‘dummy’ variable with constant value 1; X  is 
assumed to have linearly independent columns 
?? ?

n
i imN 1 :  number of simulation runs 

:mi  number of replicates at input combination ,i  with 
0??? ii mNm  

:n  number of different, simulated input combinations 
with qnNn ???  

:w  vector with N  simulation outputs r i;w  

? ?.1 im ..., ,r ?  
 The noise in (1) may be estimated through the mean 
squared residual (MSR): 

 

)(

)ˆ( 
ˆ 1 1

2

2
q - N

i
y - w

 = s

n

i

m

r
ir i;

e

? ?
? ?  

(3) 

  
where yiˆ  follows from (1) and (2): 

 

 ?
k

 =j 
ji;ji .d ß + ß = y

10
ˆˆˆ    

 
 Kleijnen et al. (2002) derives the design point that 
minimizes the variance of the regression predictor: 

bCd 1
0

???  where C s e
2  is the covariance matrix of ß̂ 0-  

which equals ß̂  excluding the intercept :ˆ
0ß  

 

 
 a

 s = s= cov ee ??
?

?
??
?

? ?
?

C b

b
X Xß 21-2 )( )ˆ(  (4) 

 
where a  is a scalar, b  a k -dimensional vector, and 

kk ? a C  matrix. 
 Now we consider the one-sided a?1  confidence 
interval ranging from ??  to 
 

xXXxßxx )(ˆˆ)(ˆ 1-???  s t +  = y e
a

q - Nmax  (5) 

 

where ? ?dx ???  1,  and a
qNt ?  denotes the a?1  quantile of 

the t  distribution with qN ?  degrees of freedom.  

 ASD selects ,?d  the design point that minimizes the 
maximum output predicted through (5) (this gives both a 
search direction and a step size). Kleijnen et al. (2002) 
derives  
 

0-
-1-1 ß̂C-bCd ????  (6a) 

 
where bC 1??  is derived from (4), ß C ˆ

0-
-1?  is the ASD 

direction, and ?  is the step size: 
 

. 
ˆˆ)ˆ( 0-

1-
0-

2

1-

ß C ß

b C b

?

?

 - s t

 - a
 = ?

e
a

q - N

 (6b) 
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We mention the following mathematical properties and 
interpretations of ASD. 
 The first term in (6a) means that the ASD path starts 
from the point with minimal predictor variance. The 
second term means that the classic SD direction ß̂ 0-?  

(second term’s last factor) is adjusted for the covariance 
matrix of ß̂ 0- ; see C  in (4). The step size ?  is quantified 

in (6b). 
 Kleijnen et al. (2002) proves that ASD is scale 
independent. 
 In case of large signal/noise ratios )ˆ(ˆ ßvar / ß jj , the 

denominator under the square root in (6b) is negative so (6) 
does not give a finite solution for d + . Indeed, if the noise 
is negligible, we have a deterministic problem, which our 
technique is not meant to address (many other researchers - 
including Conn et al. (2000) - study optimization of 
deterministic simulation models). 
 In case of a small signal/noise ratio, no step is taken. 
Kleijnen et al (2002) further discusses two subcases: (i) the 
signal is small; (ii) the noise is big. 
 
3 COMPARISON OF ASD AND SD THROUGH 

MONTE CARLO EXPERIMENTS 
 

To compare the ASD and SD search directions, we 
perform Monte Carlo experiments. The Monte Carlo 
method is an efficient and effective way to estimate the 
behavior of search techniques applied to random 
simulations; see Kleijnen et al. (2002). 
 We limit the example to two inputs, so .k 2?  We 
generate the simulation output w  through a second-order 
polynomial with white noise:  

 

. e +d d ß +

 d ß + d ß + d ß + d ß + ß = w

212 1;

2
22 2;

2
11 1;22110

 (7) 

 
The response surface (7) holds for the global area, for 
which we take the unit square: 11 1 ??? d  and 

1.1 2 ??? d  (We have already seen that RSM fits first-
order polynomials locally.)  
 In the local area we use a one-at-a-time design, 
because this design is non-orthogonal - and in practice 
designs in the original inputs are not orthogonal (see 
Kleijnen et al. (2002)). The specific local area is in the 
lower corner of Figure 1. To enable the computation of the 
MSR, we simulate one input combination twice: .m 21 ?  

 

 Figure 1: Tilted Ellipsoid Contours ? ?21  ,|E ddw   

 with Global and Local Experimental Areas 

 
We consider a specific case of (7): ß0  = ß1  = ß 2  = 0, 

ß 2 1;  = 2, ß 1 1;  = -2, ß 2 2;  = -1, so the contour functions 

(for example, iso-cost curves) form ellipsoids tilted relative 
to the 1d  and 2d  axes. Hence, (7) has as its true optimum 

? ? .0 0,* ??d  
 After fitting a first-order polynomial, we estimate the 
SD and ASD paths starting from 0d?= (0.85, -0.95), 
explained above (4). 
 In this Monte Carlo experiment we know the truly 
optimal search direction , namely the vector (say) g  that 

starts at 0d  and ends at the true optimum ? ??.0 0,  So we 

compute the angle (say) ?̂  between the true search 
direction g  and the estimated search direction :p  
 

. ˆ

22 pg
pg?

? arccos?  (8) 

 
Obviously, the smaller ?̂  is, the better the search technique 
performs. 

 To estimate the distribution of ?̂  defined in (8), we 
take 100  macro-replications. Figure 2 shows a bundle of 
100 s'p  around g  when 0.10.?es  In each macro-
replicate, we apply SD and ASD to the same I/O data 

? ?.21 d ,d w,  We characterize the resulting empirical ?̂  
distribution through several statistics, namely its average, 
standard deviation, and specific quantiles; see Table 1. 
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Figure 2: 100 ASD Search Directions p  and the Truly 
Optimal Search Direction g  (Marked by Thick Dots) 

  

Table 1: Statistics in case of Interactions, for ASD and 

SD’s Estimated Angle Error ?̂  (in Degrees) 
0.10?es  0.25?es  

Statistics 
ASD SD ASD SD 

Average 9.72 16.01 10.14 17.33 
Standard deviation 3.30 6.23 7.69 12.88 
Median (50% quantile) 9.68 16.02 8.99 14.94 
75% quantile 12.37 21.12 16.13 27.87 
25% quantile 6.99 10.76 3.21 5.84 
95% quantile 15.66 27.05 24.78 41.55 
5% quantile 4.99 6.80 0.61 0.81 
100% quantile 17.41 30.08 32.07 50.99 
0% quantile 0.85 1.46 0.04 0.25 

 
Further, we perform the Monte Carlo experiment for two 
noise values: s e  is 0.10 or 0.25. We use the same PRN for 
both values. In case of high noise, the estimated search 
directions may be very wrong. Nevertheless, ASD still 
performs better; see again Table 1. 

In general, ASD performs better than SD, unless we 
focus on outliers; see Kleijnen et al. (2002).  
 
4 MULTIPLE RESPONSES: INTERIOR POINT 

AND BINARY SEARCH APPROACH 
 
In Part 1, we assumed a single response of interest – 
denoted by w  in (2). Now we consider a more realistic 
situation, namely the simulation generates multiple outputs. 
For example, an academic inventory simulation defines w  
in (2) as the sum of inventory-carrying, ordering, and out-
of-stock costs, whereas a practical simulation minimizes 
the sum of the expected inventory-carrying and ordering 
costs provided the service probability exceeds a pre-
specified value. 

 In RSM, there have been several approaches to 
multiresponse optimization. Khuri (1996) surveys most of 
these approaches (including desirability functions, 
generalized distances, and dual responses). Angün et al. 
(2002) discusses drawbacks of these approaches. To 
overcome these drawbacks, we propose the following 
alternative based on mathematical programming. 
 We select one of the responses as the objective and the 
remaining (say) 1?z  responses as constraints. The SD 
search would soon hit the boundary of the feasible area 
formed by these constraints, and would then creep along 
this boundary. Instead, our search starts in the interior of 
the feasible area and avoids the boundary; see Barnes 
(1986) on Karmarkar’s algorithm for linear programming.  
 Note that our approach has the additional advantage of 
avoiding areas in which the simulation model is not valid 
and may even crash. 
 Formally, our problem becomes: 
 

minimize ? ?? ?d0E w   

subject to ? ?? ? 1 ..., 1,for  E ??? zhaw hh d  (9) 

 udl ??   
 
where d  is the vector of simulation inputs, l  and u  the 
deterministic lower and upper bounds on d , ha  the right-

hand-side value for the thh  constraint, and 
? ?10 ???? z ..., ,h wh  is the response .h?    
Note that probabilities (for example, service 

percentages) can be formulated as expected values of 
indicator functions. Further, the multiple simulation 
responses are correlated, since they are estimated through 
the same PRN fed into the same simulation model. 

As in Part 1, we locally fit a first-order polynomial – 
but now for each response; see (1). However, the noise e  
is now multi-variate normal – still with zero means but 
now with covariance matrix (say) .S   Yet, since the same 
design is used for all z  responses, the GLS estimator 
reduces to the OLS estimator; see Ruud (2000, p. 703). 
Therefore we still use (2), but to the symbol ß̂  we add the 
subscript .h?  Further, for 1,0, ????? zh,h ?  we estimate 
S  through the analogue of (3): 

 

.
1

)ˆ()ˆ(
ˆ 2

 
)(k?

s
hhhh

h,h ??

???
? ??????

???
ywyw

  (10) 

 

 We introduce ? ? ,11
?? ?z ..., , bbB  where  hb  

? ?1- ..., 1, zh ?  denotes the vector of OLS estimates ß̂  0;- h
 

(excluding the intercept ß h
ˆ

 0; ) for the thh  response. 

Adding slack vectors   r, s, and ,v  we obtain 
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minimize 0bd ?   
subject to 

0?
??????

v r, s,
l,vd u,rd c,sBd

 
(11) 

 
where  0b denotes the vector of OLS estimates ß̂ 0 0;-  

(excluding the intercept ß̂ 0 0;- ) for ,0w  and c  is the 

vector with components ? ?.1- ..., 1, ˆ
 0; zhßac hhh ???  

Through (11) we obtain a local linear approximation for 
(9). Then using ideas from interior point methods - more 
specifically the affine scaling method - Angün et al. (2002) 
derives the following search direction: 
 

0
1222 )( bVRBSBp ' ???? ????  (12) 

 
where ,R ,S and V  are diagonal matrices with the current 
estimated slack vectors 0?v ,r ,s  on the diagonal. 
Obviously, R  and V  in (12) are known as soon as the 
deterministic input d  to the simulation is selected; S  in 
(12) is estimated from the simulation output, not from the 
local approximation. Unlike SD, the search direction (12) 
is scale independent (the inverse of the matrix within the 
parentheses in (12) scales and projects the estimated SD 
direction, 0b? ). 
 Having estimated a search direction for a specific 
starting point through (12), we must next select a step size. 
Actually, we run the simulation model for several step 
sizes in that direction, as follows. 
 First, we compute the maximum step size assuming 
that the local approximation (11) holds globally: 
 

}}{{0 321 ?,?,?min,max?max ?  
 
where 
  

.p,kj:pdlmin?

p,kj:p/)dumin?

,zhcmin?

jj
*
jj

jj
*
jj

*
h

0}} , {1, /){(

0}} , {1, {(

0} 1} ,... {1, :/){(

3

2

1

????

????

????????

?

?

hhh bpbpdb

 

 
To increase the probability of staying within the interior of 
the feasible region, we take only 80% of max?  as our 
maximum step size. 
 The subsequent step sizes are inspired by binary 
search, as follows. We systematically halve the current 
step size along the search direction. At each step, we select 
as the best point the one with the minimum value for the 
simulation objective ,0w  provided it is feasible. We stop 
the search in a particular direction after a user-specified 

number of iterations (say) 3.?G  For details see Angün et 
al. (2002). 
 For all these steps we use common random numbers 
(CRN), in order to better test whether the objective 
improves. Moreover, we test whether the other 1?z  
responses remain within the feasible area: we test the slack 
vector ,s  introduced in (11). These z  tests use ratios 
instead of absolute differences, to avoid scale dependence.  
 A statistical complication is that these ratios may not 
have finite moments. Therefore we test their medians (not 
their means). For these tests we use Monte Carlo sampling, 
which takes negligible computer time compared with the 
expensive simulation runs. This Monte Carlo takes (say) 

1000?K  samples from the assumed distributions with 
means and variances estimated through the simulation; in 
the numerical example of the next section we assume z  
normal distributions ignoring correlations between these 
responses. From these Monte Carlo samples we compute 
slack ratios.  
 We formulate pessimistic null-hypotheses; that is, we 
‘accept’ an input combination only if it gives a 
significantly lower objective value and all its 1?z  slacks 
imply a ‘feasible’ solution.  Actually, our interior point 
method implies that a new slack value is a percentage – 
say, 20% - of the old slack value; our pessimistic 
hypotheses make our acceptable area smaller than the 
original feasible area in (9).  
 After we have run G  simulations along the search 
path, we find a  ‘best’ solution - so far. Now we wish to re-
estimate the search direction p  defined in (12). Therefore 
we again use a resolution-3 design in the  k  factors. We 
still use CRN; actually, we take the same seeds as we used 
for the very first local exploration. We save one 
(expensive) run by using the best combination found so far, 
as one of the combinations for the design. 
 We stop the whole search when either the computer 
budget  is exhausted or the search returns to an old 
combination twice . When the search returns to an old 
combination for the first time, we use a new set of seeds.  
 
5 MONTE CARLO EXPERIMENTS FOR 

MULTIPLE RSM 
 
Like in Part 1 (§3), we study the novel procedure - 
explained in §4 - by means of a Monte Carlo example. As 
in §3, we assume globally valid functions quadratic in two 
inputs, but now we consider three responses; moreover, we 
add deterministic ‘box’ constraints fo r the two inputs:  
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minimize ? ?021
2

2
2

1 45)(1)(5E edddd ?????  

subject to  ? ? 43)(E 121
2
2

2
1 ????? edddd  

 ? ? 91.061)(3E 2
2

2
2

1 ???? edd  

 123,0 21 ????? dd  
 
where the noise has 1,0 ?s  0.15,1 ?s  0.4,2 ?s  and 

correlations 0.6,1 0; ??  0.3,2 0; ??  0.1.2 1; ???   
 It is easy to derive the analytical solution as 

? ??? 0.52 1.24,*d  with a mean objective value of 22.96 
approximately.  
 We select the initial local area shown in the lower left 
corner of Figure 3. We run 100 macro-replicates; Figure 3 
displays the macro -replicate that gives the median result 
for the objective; that is, 50% of the macro -replicates have 
worse objective values. In this figure we have 

? ??? 0.49 1.46,ˆ *d  and an estimated objective of 25.30 
approximately. 

 
Figure 3: The “Average” (50th Quantile) of 100 
Estimated Solutions 
 

 Table 2 summarizes the 100 macro-replicates, where 
Criterion 1 is the relative expected objective 

? ?? ?? ?/22.9622.96 ,E *
2

*
10 ?ddw ; Criteria 2 and 3 stand for 

the relative expected slacks ? ?? ?? ? 4/,wE4 *
2

*
11 dd?  and 

? ?? ?? ? 9/ ,E9 *
2

*
12 ddw?  for the first and the second 

constraints. Ideally, Criterion 1 is zero; Criteria 2 and 3 are 
zero if the constraints are binding at the optimum. Our 
heuristic tends to end at a feasible combination: the table 
displays only positive quantiles for the Criteria 2 and 3. 
This feasibility is explained by our pessimistic null 
hypotheses (and our small significance level 0.01?a ). 

Table 2 : Estimated Objective and Slacks over 100 Macro-
replicates  

 Criterion 1 Criterion 2 Criterion 3 
10th 

quantile 0.04 0.03 0.03 

25th 
quantile 

0.06         0.12 0.15 

50th 
quantile 0.10 0.25 0.29 

75th 
quantile 0.19 0.43 0.49 

90th 
quantile 

0.18 0.61 0.50 
  
 Our conclusion is that the heuristic reaches the desired 
neighborhood of the real optimum in a relatively small 
number of simulation runs. Once the heuristic reaches this 
neighborhood, it usually stops at a feasible point. 
 
CONCLUSIONS 
 
In Part 1 of this paper we addressed the problem of 
searching for the simulation input combination that 
minimizes the output. RSM is a classic technique for 
tackling this problem, but it uses SD, which is scale 
dependent. Therefore we devised adapted SD (ASD), 
which corrects for the covariances of the estimated 
gradient components. ASD is scale independent. Our 
Monte Carlo experiments demonstrate that - in general - 
ASD gives a better search direction than SD. 
 In Part 2, we account for multiple simulation 
responses. We use a mathematical programming approach; 
that is, we minimize one random objective under random 
and deterministic constraints. As in classic RSM, we 
locally fit functions linear in the simulation inputs. Next 
we apply interior point techniques to these local 
approximations, to estimate a search direction. This 
direction is scale independent. We take several steps into 
this direction, using binary search and statistical tests. Then 
we re- estimate these local linear functions, etc. Our Monte 
Carlo experiments demonstrate that our method indeed 
approaches the true optimum, in relatively few runs with 
the (expensive) simulation model. 
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