42 research outputs found

    Applications of Cellular Components in Engineered Environments

    Get PDF
    Manipulation of cellular components in synthetic environment has attracted interest for applications ranging from sensors to nanelectronics and from catalysis to biomedical devices. In such applications, biological-based processes such as specific recognition and self-assembly direct the formation of hierarchical structures, all at minimum energetic costs, with high efficiency and reliability. Among such cellular machines, microtubules and kinesins have attracted special interest. Inside the cells, microtubules are giving structural integrity while serving as regular and uniform tracks for transport of vesicles or organelles. Kinesin uses a microtubule track in vivo to progress to specific locations with processive and coordinated steps, all under the transformation of the chemical cycle of adenosine triphosphate (ATP) into mechanical work. Manipulation of microtubules and kinesins in vitro has been implemented for the transport of synthetic cargos like beads, nanoparticles or quantum dots to specific locations for molecular detection or diagnosis. However, in such applications, individual separation of a microtubule or kinesin-based complex, or parallel and yet individual sustainability and attainability of such complexes, could not be achieved. Main challenges consisted of biological components susceptibility to experimental conditions or lack of stability and complexity of tasks to be achieved under ambient temperature and pressure conditions. This thesis presents novel concepts and implementations of such cellular components in engineered environments. From studying single molecule assembly forces using atomic force microscopy approaches, to synthesizing novel self-assembled hybrid materials combining advantages of organic and inorganic components, and from application of cellular components in nanoelectronics or as the next generation tools for single molecule printing, the work included offers viable solutions for emerging science and engineering concepts that promote natural-based processes for synthetic applications

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Full text link

    Dichotomic role of NAADP/two-pore channel 2/Ca2+ signaling in regulating neural differentiation of mouse embryonic stem cells

    Get PDF
    Poster Presentation - Stem Cells and Pluripotency: abstract no. 1866The mobilization of intracellular Ca2+stores is involved in diverse cellular functions, including cell proliferation and differentiation. At least three endogenous Ca2+mobilizing messengers have been identified, including inositol trisphosphate (IP3), cyclic adenosine diphosphoribose (cADPR), and nicotinic adenine acid dinucleotide phosphate (NAADP). Similar to IP3, NAADP can mobilize calcium release in a wide variety of cell types and species, from plants to animals. Moreover, it has been previously shown that NAADP but not IP3-mediated Ca2+increases can potently induce neuronal differentiation in PC12 cells. Recently, two pore channels (TPCs) have been identified as a novel family of NAADP-gated calcium release channels in endolysosome. Therefore, it is of great interest to examine the role of TPC2 in the neural differentiation of mouse ES cells. We found that the expression of TPC2 is markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebound during the late stages of neurogenesis. Correspondingly, perturbing the NAADP signaling by TPC2 knockdown accelerates mouse ES cell differentiation into neural progenitors but inhibits these neural progenitors from committing to the final neural lineage. Interestingly, TPC2 knockdown has no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Overexpression of TPC2, on the other hand, inhibits mouse ES cell from entering the neural lineage. Taken together, our data indicate that the NAADP/TPC2-mediated Ca2+signaling pathway plays a temporal and dichotomic role in modulating the neural lineage entry of ES cells; in that NAADP signaling antagonizes ES cell entry to early neural progenitors, but promotes late neural differentiation.postprin

    2013 IMSAloquium, Student Investigation Showcase

    Get PDF
    This year, we are proudly celebrating the twenty-fifth anniversary of IMSA’s Student Inquiry and Research (SIR) Program. Our first IMSAloquium, then called Presentation Day, was held in 1989 with only ten presentations; this year we are nearing two hundred.https://digitalcommons.imsa.edu/archives_sir/1005/thumbnail.jp

    Women in Science 2016

    Get PDF
    Women in Science 2016 summarizes research done by Smith College’s Summer Research Fellowship (SURF) Program participants. Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. In 2016, 150 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 56 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants were asked to summarize their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1005/thumbnail.jp

    Characterizing biological systems: quantitative methods for synthetic genetic circuits in plants and intracellular mechanics

    Get PDF
    2018 Summer.Includes bibliographical references.To view the abstract, please see the full text of the document
    corecore