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ABSTRACT 
 
 
 

CHARACTERIZING BIOLOGICAL SYSTEMS: QUANTITATIVE METHODS FOR 

SYNTHETIC GENETIC CIRCUITS IN PLANTS AND INTRACELLULAR MECHANICS  

 
 

This dissertation is a contribution to the development of methods for the characterization 

of two different types of biological systems – synthetic genetic circuits in plants and the 

mammalian cytoplasm. This dissertation begins with two reviews on synthetic biology and 

mechanobiology respectively. In the first part of chapter one, I review the engineering-based 

methodology developed in synthetic biology, and how this methodology has aided the design, 

construction and testing of many synthetic networks. I emphasize the assumption of modularity 

and the challenges to expand the predictive power of synthetic biology into plants. In the second 

part on mechanobiology, I briefly review the significance of mechanical properties of 

mammalian cells, the relationship between the mechanical properties and cytoskeleton, and 

methods developed to measure the cellular mechanical properties. I emphasize the passive and 

active particle-tracking microrheology (PTMR) and the technical barriers preventing their wider 

applications.  

The assumption of modularity is central to the developments of larger synthetic networks, 

where the synthetic circuits are assumed to maintain their essential properties characterized in 

isolation when they are combined into larger networks. In chapter 2, this assumption of 

modularity was tested with two canonical switches interacting with downstream elements 

(loads): the mutual-repression based synthetic toggle switch and a positive feedback based 

switch found widely in nature. We found that adding loads is able to change the dynamics of the 
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toggle switch, characterized as the time needed to switch the states. The underlying mechanisms 

were also explored using potential energy landscape. In some scenarios, the loads can actually 

abrogate its bistability, which is the fundamental functionality of the toggle switch. We also 

studied naturally-occurring autocatalytic signal transduction switches and showed that their 

switch-like behaviors can also be undermined and eventually lost when connected to downstream 

loads. Our work presented in chapter 2 shows that the assumption of modularity has crucial 

limitations for the two switches. Our study also underscores the necessity to consider the effects 

of loads in simulating and designing synthetic networks from well-characterized synthetic 

circuits.  

Most studies in synthetic biology were carried out using prokaryotic and single-cell 

eukaryotic hosts. Due to multifaceted challenges, the predictive powers of synthetic biology have 

not been extended to plants, among other multicellular and differentiated organisms. Chapter 3 

reports our collaborative efforts with Medford lab to complete the engineering-based 

methodology of synthetic biology for plants. We first utilized mathematical analysis to identify 

two properties of the synthetic parts required by a functional toggle switch. Two designs of the 

toggle switch were selected based on these two principles using synthetic parts that we 

characterized in a previously published work. We then optimized an imaging protocol to 

quantitatively test the assembled toggle switches. An in-house image processing software was 

developed to generate quantitative luciferase measurements for shoots and roots of individual 

plants. The quantitative data enabled us not only to carry out statistical tests but also to devise 

quantitative modeling to verify that the designed functionalities are achieved. We demonstrated 

that a functional genetic toggle switch can be constructed in plants using this engineering-based 

methodology integrating quantitative experiments and computational tools.  
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A single-cell assay of active and passive intracellular mechanical properties of mammalian 

cells could give significant insights into cellular processes. Force spectrum microscopy (FSM) is 

one such technique, which combines the spontaneous motions of probe particles and the 

mechanical properties of the cytoskeleton measured by active PTMR using optical tweezers to 

determine the active force spectrum of the cytoskeleton. Though a powerful technique, FSM is 

instrumentation-demanding and invasive. In chapter 4, we developed an alternative to FSM. To 

be non-invasive, mitochondria were fluorescently labeled as our endogenous probe particles. To 

make the FSM less instrumentation-demanding, we replaced the role of active PTMR using 

passive PTMR in ATP depleted cells. We developed a novel method to identify a range of 

thermally dominated timescales in the MSDs of ATP depleted cells, so that we can determine the 

intracellular viscoelasticity using Generalized Stokes-Einstein Relation. We then calculated the 

force spectrum of active fluctuations by combining the spontaneous fluctuations tracked in 

control cells and mechanical properties measured in ATP depleted cells. Our results match 

quantitatively to those obtained by the original FSM. We also studied the roles played by various 

cytoskeletal components on the active mitochondrial fluctuations to gain insight into the 

molecular bases of intracellular mechanical properties.  

 The lack of a general, accessible and reliable delivery method of fluorescent particles into 

the cytoplasm is a bottleneck for wider applications of PTMR. In chapter five, we demonstrate 

that a method used for delivering proteins to cells, known as glass bead loading, can deliver 

fluorescent particles into cells. Using both confocal imaging and particle tracking results under 

different chemical treatments, we show that glass beads are able to load 100 nm fluorescent 

particles directly into cytoplasm and probe the mechanical properties of the embedding 

cytoskeletal network. We also tested the general applicability of bead loading in two more cell 
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lines. Analysis of the MSD and distribution of directional change provided insights into the 

complexity of active motion in the cytoplasm. Our observations are consistent with a picture in 

which the particles are trapped within the actin cytoskeleton, which confines their motion. But 

due to motor driven fluctuations and cytoskeleton remodeling, the confining cage itself moves 

over the long timescales. The fluctuations are strongly affected when the actin cytoskeleton is 

dissolved, and weakly affected by stabilizing it, by inhibiting myosin II or by perturbing the 

microtubule network. These results suggest that the mechanical microenvironment probed by the 

glass bead loaded fluorescent particles is strongly dominated by the actin cytoskeleton. Our 

protocol makes passive and active PTMR more accessible and gives it the potential to become a 

routine assay of intracellular mechanical properties.  

In chapter six, I conclude this dissertation with the most interesting questions, in my 

viewpoint, that stem out of chapters two to five, and delineate some future directions in order to 

address these questions.   
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CHAPTER 1: INTRODUCTION 
 
 
 

In last decades, our abilities of manipulation and quantitative measurements of biological 

systems have seen significant advances, and so have the developments of mathematical theories 

and computational power. With these advances, scientists and engineers are now endeavoring to 

characterize biological systems from a more quantitative perspective, and this dissertation finds 

itself as a part of this trend. This is the overarching theme of the two seemingly very different 

projects, plant synthetic biology and mechanobiology of mammalian cells, presented in this 

dissertation. In plant synthetic biology (section 1.1, chapters 2 and 3), I helped develop an 

engineering-based methodology (as introduced in details in the following section), with 

associated computational and data analysis tools, which was applied to build a synthetic genetic 

circuit with designed biological functionalities from quantitatively characterized synthetic parts. 

In mechanobiology of mammalian cells (section 1.2, chapters 4 and 5), I developed imaging 

protocols and quantitative methods to characterize the intracellular mechanical properties and to 

probe the underlying mechanisms on the level of cytoskeleton. In the following parts of this 

chapter, the two fields, synthetic biology and mechanobiology, are introduced in section 1.1 and 

section 1.2 respectively.  

1.1 Introduction on synthetic biology  

Synthetic biology could mean two different fields. One field focuses on developing 

technologies to synthesize biological macromolecules, including DNA, RNA and protein. The 

other field generally focuses on the construction of biological systems with pre-designed 

functionalities through an engineering-based methodology. Throughout the rest of this 

dissertation, the term “synthetic biology” refers to the latter field unless otherwise indicated. For 
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the former field, interested readers can refer to the fantastic reviews by Dr. George Church, for 

example the Ref. [1].  

Synthetic biology could trace its roots back to the pioneering work by Monod and Jacob 

[2], where it was proposed that genetic circuits with virtually any desired property can be 

constructed from networks of simple regulatory elements [3]. Synthetic biology, as an emerging 

field, started in 2000 when two papers were published back-to-back in Nature reporting 

constructions of a genetic toggle switch [4] and a genetic oscillator [5] respectively.  

1.1.1 Analogy of genetic circuits to electrical circuits 

Synthetic biologists seek to advance the field in a way similar to electrical engineers [6,7]. 

The hierarchical and modular structures found in electrical systems are taken as an analogy to 

develop synthetic biological systems. On the bottom level in the hierarchy, there are the basic 

biological components, including DNA, RNA, proteins, and metabolites (e.g., lipids, 

carbohydrates, amino acids, and nucleotides). Correspondingly, the physical layer of computers 

includes transistors, capacitors, and resistors. In the device layer, biochemical reactions regulate 

signal transduction and physical processes, which are analogous to electronic logic gates built on 

the basis of the physical layer. Both the biochemical reactions and logic gates perform specific 

computational functions, including sensing and integration of inputs, and delivery of outputs 

after processing. As modules in computers, biochemical reactions can be assembled into 

pathways or circuits. A cell can be made of a lot of pathways or circuits, just like a computer is 

made of numerous modules. On the top of the hierarchy, tissues and cell cultures are comprised 

of cells connected by cell-cell communications, which are similar to computer networks. Under 

such an analogy to electrical engineering, the assumption of modularity is pivotal in synthetic 

biology that aims to rationally design and construct synthetic circuits, cells and tissues with 
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designed functionality using a bottom-up approach [8]. The assumption of modularity will be 

discussed in more detail in section 1.1.5. 

1.1.2 The engineering-based methodology  

 

Figure 1.1 The engineering-based methodology is the ideal practice for developing synthetic 
circuits from quantitatively characterized synthetic parts in synthetic biology.  

Following the analogy discussed earlier, it is useful to apply the methodology developed in 

established engineering fields, like electrical engineering, to synthetic biology (Figure 1.1). 

Indeed, one important characteristic that distinguishes synthetic biology from the traditional 

genetic engineering is the integration of mathematical tools and quantitative measurements. The 

entire workflow of building a functional genetic circuit starts with the design and quantitative 

characterizations of synthetic parts, including promoters with different expression levels and 

repressor-promoter pairs [9,10]. In the second step, mathematical models can be formulated, and 

different combinations of numerical parameters of synthetic parts, characterized in step one, can 

be fed into the models. The synthetic parts producing desired functionalities in silico are then 

selected to be assembled into synthetic circuits and tested experimentally. If the tested circuit 

does not satisfy designed functionalities, researchers can either try different combinations of 
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synthetic parts or change the synthetic parts designs till a functional synthetic circuit is 

constructed in an iterative manner.  

The canonical genetic toggle switch can be taken as a working example to illustrate the 

workflow. The toggle switch is built from two repressible promoters arranged in a mutually 

inhibitory network [4]. The workflow started with picking natural repressor-promoter pairs or 

building synthetic ones, which should be orthogonal to endogenous molecules to reduce 

undesired interactions [9]. These repressor-promoter combinations were then tested 

quantitatively, and their operational parameters can be extracted from the experimental data. In 

the second step, a dimensionless ordinary differential equation (ODE) based model was utilized 

to help identify the minimum set of conditions on the two repressor-promoter pairs required by a 

functional toggle switch. Then, the toggle switch design satisfying these conditions was 

assembled and its functionalities tested. The stability of the two states was tested by removing 

corresponding inducers and the ability to switch between the two states was also tested. Luckily, 

the only design of the toggle switch assembled, tested and evaluated in Gardner et al. [4] was 

reported to be functional as designed. But if this was not the case, the whole workflow can be 

iterated till a fully functional toggle switch is constructed. In addition to the toggle switch, the 

repressilator, in which three repressor-promoter combinations are arranged in a ring-shape, was 

developed following the same workflow [5].  

1.1.3 A brief review on synthetic circuit designs  

Inspired by the analogy to electrical engineering and networks found in nature, many 

sophisticated genetic circuits with novel functionalities were designed, constructed and tested in 

the years following the works of Gardner et al. [4] and Elowitz et al. [5]. The most representative 
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designs includes logic gates [11], clocks [12], pattern detectors [13], and cell-cell communication 

modules [14]. In the following, these representative designs of synthetic circuits are reviewed.  

Other types of biological molecules can also be incorporated into the circuit designs in 

addition to transcriptional factors. For example, a gene-metabolic oscillator was designed by 

integrating metabolite fluxes with a transcriptional network [15]. An oscillation between two 

inter-convertible metabolite pools was generated through two transcriptionally regulated 

enzymes [15]. Interestingly, the oscillation is only observed when the glycolytic rate surpasses a 

preset threshold [15].  

Exemplified by the three designs covered so far, early synthetic circuit designs relied only 

on single cells to realize expected functionalities. Predictable and reliable functionalities can also 

be realized on the level of cell populations taking advantages of cell-cell communications [7]. 

The synthetic cell-cell communication module is often based on the quorum sensing machinery 

found in the bacterium Vibrio fischeri [16,17]. Using quorum sensing, a bacterium is able to 

regulate its own behaviors based on the density of the surrounding population [16,17]. More 

specifically on the mechanisms, every bacterium in a population secretes acyl-homoserine 

lactone (AHL), a small signaling molecule that can diffuse across the membranes. When the 

AHL in the environment reaches a threshold, LuxR, a regulatory protein, can be activated by 

AHL, binds to the lux operator region and activates the expressions of downstream genes 

[16,17]. As a result of the activation, the bacterium Vibrio fischeri becomes luminescent when its 

population density reaches a threshold [16,17].  

By integrating a killer gene at the downstream of the lux operator, You et al. constructed a 

“population control” circuit that can prevent the density of Escherichia coli (E. coli) population 

reaching the limits imposed by the environment [14]. Also using this quorum sensing machinery, 
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Danino et al. built a genetic clock as an intercellular network of oscillators that enables a 

growing population of cells to demonstrate synchronized oscillations [12]. Cell-cell 

communication is also a potential tool for engineering highly sophisticated biological behaviors 

between heterogeneous cell populations [7]. 

Besides the transcriptional factors, RNA interference (RNAi), mainly operated by small 

interfering RNA (siRNA), have also been applied to construct functional synthetic circuits. 

Interested readers can refer to some excellent reviews on the molecular mechanisms of RNAi, 

for example, Ref. [18]. Basically, the presence of siRNA prevents the target mRNA from being 

translated, thus behaving as a NOT gate. By using activating/inhibitory promoters to control the 

transcriptions of siRNA, it was shown that all the Boolean logic gates can be constructed [11]. 

Based on this design, a multi-input RNAi-based logic circuit was engineered to identify specific 

cancer cells [19]. These two sequential studies not only demonstrated the feasibility of RNAi-

based circuits but also showcased its potentials for clinical applications.  

With the accumulating knowledge on riboswitches and RNA aptamers, scientists and 

engineers are now able to design RNA aptamers to bind desired metabolites and to cleave 

mRNA in a directed manner [20]. Combining the knowledge on RNA aptamers and RNA 

folding, an rationally designed RNA-based scaffold was reported to be able to spatially arrange 

enzymes into multi-dimensional self-organizing scaffolds [21].  

Similar to the RNA scaffold, proteins were also engineered into scaffolds that can spatially 

recruit metabolic enzymes into a desirable spatial arrangement [22]. This method helps to 

balance the metabolic flux after the foreign enzymes were incorporated into the metabolic 

network. A 77-fold increase in product concentration was achieved, along with lower enzyme 

expression levels and reduced metabolic burden to the host cells [22]. Also using scaffold 
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proteins, part of the yeast mating MAP kinase pathway was arranged linearly into a unified 

complex [23]. Such a scaffold not only enables more flexible manipulations of the kinase 

pathway but also the ability to tune the complex into different functionalities, including 

ultrasensitive dose response, accelerated or delayed responding dynamics, and tunable adaptation 

[23].  

Promising advancements have been made for protein-based synthetic circuits. There is no 

photoreceptor in native E. coli. A chimeric protein was constructed by combining a 

cyanobacterial photoreceptor and an E. coli intracellular histidine kinase domain, which is able 

to sense and convert light signals into intracellular chemical signals [24]. As a demonstration, the 

authors made an E. coli film, which expressed light and dark regions accordingly to the inputs on 

light masks [24]. Following this development, a pattern detector was constructed using an E. coli 

film to detect edges in the light masks [13].  

1.1.4 Potential applications of synthetic biology  

Despite of being a relatively emerging field, synthetic biology has demonstrated exciting 

potential to address some of the most urgent global challenges, including healthcare and 

renewable energy.  

Malaria, a mosquito-borne infectious disease, is a major cause of death worldwide, 

especially in developing countries [25].  It is therefore very important to make anti-malaria drugs 

affordable to low-income patients living in these developing countries. However, artemisinin, a 

valuable anti-malaria compound, is isolated from the plant Artemisia annua, a herb in Chinese 

traditional medicine. The market price of artemisinin not only has been high but also has 

fluctuated widely, making it challenging to control the price of the anti-malaria drug. To address 

this challenge, a synthetic metabolic pathway to produce artemisinin was successfully engineered 
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in E. coli based on the mevalonate-dependent isoprenoid pathway found in S. cerevisiae. 

Artemisinin can then be produced by the inexpensive fermentation of E. coli, potentially a 

significant progress towards the goal of an affordable anti-malaria drug [26–28].  

Cancer is the second leading cause of death in the United States and is a major public 

health challenge globally [29]. Synthetically engineered E. coli strain was reported to be able to 

hunt solid tumor cells characterized by a combination of hypoxic microenvironment and high 

populations of certain bacteria [30]. Only when both conditions are satisfied for its AND gate, 

the E. coli cells start secreting invasin to initiate the endocytosis of the tumor cells, thus 

providing a novel approach for biological therapy [30].  

Microalgae-based biofuel holds the potential to replace a significant portion of the fossil 

fuel consumption and reduce the CO2 emission globally. However, its production is not yet 

economically feasible at commercial scales, despite its benefits of high utilization efficiency of 

sunshine and fast reproduction rate. These benefits are more relevant to optimal laboratory 

conditions than commercial production conditions. When cultured in the open ponds, which is 

the most popular and economically viable way, microalgae cell density is very low, accounting 

for only around 0.1% of the broth. Thus the cost associated to the condensation of the algae 

biomass is a major bottleneck for algae to become an economically viable option as a future 

biofuel source [31]. To address this issue, a strain of cyanobacterium was engineered to not only 

overproduce fatty-acid, an important precursor for the biodiesel production, but also to secrete 

the fatty-acid into the broth, which has the potential to avoid the costly biomass recovery 

processes [32]. To further increase the fatty-acid production, this cyanobacterium was 

incorporated with a Green Recovery strategy to convert the membrane lipids into fatty-acids 

under CO2 limitation, which is a signature of termination of the culture [33].  
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1.1.5 The assumption of modularity and chapter 2  

As described in section 1.1.1, the assumption of modularity is central to the development 

of synthetic biology. In this dissertation, the validity of the assumption of modularity on the 

circuit level was also studied. We defined modularity as the relative insulation of small 

subnetworks or circuits inside a larger network from each other [34]. In other words, the 

synthetic circuits are assumed to maintain their essential properties characterized in isolation 

when they are combined to form larger synthetic networks. However, recent theoretical and 

experimental studies suggest that the interactions of synthetic circuits with each other [35–37] 

and with the host organisms [38,39] may lead to unexpected contextual effects and the invalidity 

of the assumption of modularity. One of the most interesting example of these unexpected 

contextual effects is called retroactivity. Synthetic circuits are connected via biochemical 

interactions with components (loads) from downstream circuits in the larger network, which is 

unlike electronic circuits connected by insulated wires. These biochemical interactions with 

loads therefore compete with the interactions inside the synthetic circuits themselves, and incur 

implicit feedback (retroactivity) between circuits without obvious feedback loops. For example, 

a recent theoretical analysis has shown that simple binding/unbinding reactions between an 

oscillator and DNA binding sites (loads) can not only switch the oscillator “on” and “off”, but 

also be used to tune its oscillating periods [40].  

In chapter 2, the effects of loads, and thus the effects of retroactivity, were studied with 

two types of canonical biochemical switches: the mutual-repression based toggle switch, as 

described earlier, and a positive feedback based switch found widely in natural signaling 

pathways. We found that adding loads is able to change the dynamical properties of the toggle 

switch, characterized as the time needed to switch the states of the toggle switch. Using a novel 
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computational tool to characterize the potential energy landscape, we also explored the 

underlying mechanisms of this change in dynamics. In some scenarios, the loads can actually 

abrogate its bistability, which is the fundamental property of the toggle switch as described in 

section 1.1.2. Using the same analytical and computational tools, we also studied naturally-

occurring autocatalytic signal transduction switches and showed that their switch-like behaviors 

can also be undermined and eventually lost when connected to downstream loads. Our work 

presented in chapter 2 underscores the necessity to consider the effects of retroactivity in 

simulating and designing synthetic networks from well-characterized synthetic circuits, and that 

retroactivity leads to crucial limitations of the assumption of modularity for synthetic toggle 

switches and natural signaling switches.  

1.1.6 Plant synthetic biology and chapter 3  

In the first decade since its emergence as a field, the characteristic techniques and 

methodology of Synthetic Biology was developed, and more sophisticated synthetic circuits were 

constructed and reported. Yet these studies were carried out in to prokaryotic and single-cell 

eukaryotic hosts, including bacterium, yeasts, and cultured mammalian cells, due to their low 

complexity and ease of genetic manipulation [41]. More recently synthetic circuits have been 

developed for multi-cellular structures and organoids by programing synthetic intercellular 

communications [42,43]. Plants were also engineered to sense external ligands and respond in 

visible color changes, which are potential to serve as sentinel plants [44]. However, the plants, 

among other multicellular and differentiated organisms, still remain an uncharted territory for 

synthetic biology’s predictive powers from the engineering-based methodology. If similar 

synthetic circuits, like the toggle switch, could be engineered in plants, both fundamental plant 

science and various practical applications could benefit significantly [45]. In plant studies, a gene 
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knock-out could be achieved by simply turning off a synthetic toggle switch controlling that 

gene, which is particularly valuable to study the lethal mutants of some genes. For practical 

applications, smart plants can be engineered to carry out novel functions. Genes related to 

desired plant traits, for example drought resistance or biofuel production, can be controlled more 

precisely using synthetic circuits rather than being constitutively expressed, thus preventing 

unnecessary wastes of valuable nutrients among other potential benefits.    

The challenges to advance plant synthetic biology are multifaceted, including greater 

complexity in plant genomes and protein networks, lack of characterized synthetic parts in 

plants, positional effects of T-DNA insertion, and lack of tools for data analysis and 

computational, to just name a few [45]. In a close collaboration with Medford lab, we first 

developed a semi-high-throughput method to design, construct, test and quantitatively 

characterize synthetic repressor-promoter pairs for plant synthetic biology using transient 

expression assays [9]. This study is a part of the initial development of methodology to expand 

the power of synthetic biology to plants [46].  

Chapter 3 reports our recent collaborative efforts with Medford lab to complete the 

engineering-based methodology as described in section 1.1.2 for plant synthetic biology. We first 

utilized mathematical analysis to identify two properties of the synthetic parts required by a 

functional toggle switch similar as in Gardner et al. [4]. Two toggle switches were designed 

based on these two principles using synthetic parts that we characterized using the transient 

expression assays using protoplasts [9].   

We then optimized a quantitative imaging protocol to test the functionalities of assembled 

toggle switches. We developed an in-house image processing software to measure luciferase 

expression level quantitatively for shoots and roots of individual plants. The quantitative data 
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enabled us not only to formulate statistical tests but also to devise quantitative modeling to verify 

that the designed characteristics are achieved. We developed a Markov Chain Monte Carlo 

(MCMC) based method to sample the space of good parameter values that fit the plant data to an 

ODE model of a toggle switch. This ODE model is similar to that in Gardner et al. [4], but 

different in terms of being dimensional to match the experimental data and including inducible 

terms to describe the switching dynamics. In the end, these parameter values were used to solve 

the ODEs numerically to assess the bistability of the toggle switch tested experimentally. We 

demonstrated that a functional genetic toggle switch can be constructed in plants using this 

engineering-based methodology integrating quantitative experiments and computational tools.  

1.2 Introduction on mechanobiology of mammalian cells  

The overall goal of our projects summarized in chapters 4 and 5 is to develop methods for 

characterizing the intracellular mechanical properties of mammalian cells and to gain deeper 

insights into the underlying mechanisms.  

1.2.1 General introduction on particle tracking microrheology  

The classic starting point to understand the general principle used to measure the 

intracellular mechanical properties, as applied and developed in chapters 4 and 5, is the case of a 

spherical particle suspended in water. The motion of this particle appears random as a result of 

random collisions by surrounding water molecules, known as Brownian motion. There are three 

factors involved in the Brownian motion: the thermal force from the collisions with water 

molecules, the mechanical property of water, or its viscosity, and the resulting motion of the 

particle. A relationship between the thermal force, viscosity and random motion is described by 

the classic Stokes-Einstein relation:  

〈∆𝑥$〉
4𝑡 = 𝐷 =

𝑘+𝑇
6𝜋𝜂𝑅 
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where 〈∆𝑥$〉 is the mean square displacement (MSD) which describes the particle motion, 

𝑘+𝑇 characterizes the level of the thermal force, 𝜂 is the viscosity of the fluid, R the radius of the 

particle and D the diffusion coefficient.  

Consider now what we would expect to observe when the same particle is embedded in a 

purely elastic material, such as a piece of rubber. The same thermal force still acts on the 

particle. As opposed to the response of a fluid, in an elastic material each time the particle is 

driven into a random direction, it is pushed back by the elastic forces immediately to its original 

position. The motion of the particle is thus limited to fluctuations in a relatively constant range. 

Here too there are also three players involved, the motion of the particle, the thermal force and 

the mechanical property (in this case the elasticity). With the thermal force known, we can also 

infer the mechanical property of the material by observing the motion of the embedded particle. 

A particle moving in a larger range indicates that the material has a smaller coefficient of 

elasticity, and a particle moving in a smaller range indicates a larger coefficient of elasticity.  

The cytoplasm of mammalian cells is viscoelastic, exhibiting both viscous and elastic 

characteristics when undergoing deformation. If we deliver the same spherical particle into the 

cytoplasm and let the same thermal forces act on the particle, we should be able to infer the 

viscoelasticity of the cytoplasm based on the motion of this particle following the same strategy 

introduced earlier. However, the relation between the particle motion and the forces become 

more complex in this case because a viscoelastic material exhibits a delayed response to a 

perturbation. The mathematical expression to relate the viscoelasticity and the motion of such a 

particle is called the generalized Stokes-Einstein relation (GSER) [47], introduced in more detail 

in section 1.2.6. Although the GSER is mathematically more complex than the classic Stokes-

Einstein relation, the basic idea is essentially the same as in the two starting examples. As with 
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the classic Stokes-Einstein relation, the GSER only works under thermal equilibrium, when 

thermal force is the only driving force for the particle motion.  

In living cells, there are many active forces generated in the expense of cellular energy, 

mostly in the form of adenosine triphosphate (ATP), in addition to the ubiquitous thermal force. 

These active forces include the contractile forces generated by myosins, which power our 

muscles, the forces generated by molecular motor-driven directed motions of vesicles, forces 

resulting from polymerization and depolymerization the cytoskeleton and so on. Therefore, the 

particle motion inside the cytoplasm is driven not only by the thermal force but also by these 

uncharacterized active forces. Although the resulting motion may still seem like a Brownian 

motion, the previous strategy does not hold any longer [48]. In this case, the active forces are 

also unknown, as is the viscoelasticity of the cytoplasm, and we are unable to infer two 

unknowns from one known quantity, the measured particle motion. Force spectrum microscopy 

(FSM) (3), covered in more details in chapter 4, was proposed to address this challenge to 

measure the intracellular mechanical properties and extract information on the intracellular 

active forces as well. The FSM also works by applying the general principle introduced earlier 

but in two steps. First, in an independent experiment, one particle embedded in the cytoplasm is 

driven by a known force, applied by an optical tweezer, dominating over the intracellular thermal 

force and active forces. Combining the known applied force and measurements of the resulting 

particle motion, the viscoelasticity of the cytoplasm can be determined. In the second step, the 

total forces combining thermal force and active forces can be determined from the spontaneous 

particle motion observed in cytoplasm in its native state and the intracellular viscoelasticity 

measured in the first step. Since the thermal force is essentially known, the information on the 

active forces can be extracted.  
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Despite apparent differences in particular theories and techniques, the general principle for 

the particle-tracking-based measurements of intracellular mechanical properties is the same: only 

one unknown can be determined from the other two known quantities among the three involving 

factors of driving force (thermal or active or both or applied), particle motion and intracellular 

mechanical properties. As introduced in detail in section 1.2.5, this general principle can be 

generalized to understand many other methods used to measure cellular mechanical properties, 

despite different technology-specific driving forces and experimentally measurable quantities 

like the particle motion.  

1.2.2 Importance of mechanical properties of mammalian cells  

Cellular mechanical properties play significant roles in many physiological activities, for 

example, cell motility, mitosis and differentiation. Cells with higher motility are generally found 

to be more pliable than their less motile counterparts [49]. Drastic changes in mechanical 

properties were characterized as cells progress through different phases in mitosis [50,51] and 

disruption in cellular mechanical properties could lead to mitotic arrest [51]. Undifferentiated 

human embryotic stem cells (hESCs) have lower elasticity and viscosity than their differentiated 

counterparts as measured by a variety of methods [52]. In addition, these intracellular 

mechanical properties were found to correlate with the degree of differentiation [53]. Deviations 

from normal cellular mechanical properties were found in tumorigenic and pathogenic processes 

of significant importance. Cancer cells were shown to be less elastic than normal cells generally 

and increasing softness appeared to correlate with an increased metastatic potential [54]. 

Different mechanical properties of the cancer cells are also required at different stages of the 

metastatic process to successfully form metastasis [55]. Changes in cellular mechanical 

properties were also reported in pathogenic processes other than cancer, including malaria, sickle 
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cell anemia and asthma [56]. Mechanical properties of plant cells were also reported to play 

significant roles in physiological processes, such as the gravisensors [57]. Therefore, better 

characterizations of cellular mechanical properties may provide more insights into the 

fundamental cell biology from a mechanical perspective, and could lead to novel medical 

applications. Thus, cancer diagnosis for example may be aided by mechanical signatures which 

are essentially label-free [58]. Furthermore, these established mechanical signatures can be used 

as physical biomarkers to screen and evaluate novel pharmaceutical chemicals targeting cancer 

metastasis and other pathogenic processes [59].  

1.2.3 Cytoskeleton and the mechanical properties  

The mechanical properties of mammalian cells are dominantly controlled by the 

cytoskeleton, which is an interconnected network of filamentous polymers and associated 

regulatory proteins [60]. There are mainly three types of cytoskeletal polymer: microtubules, 

actin filaments and various polymers collectively grouped as intermediate filaments.  

Microtubules are 24 nm-diameter hollow polymers of heterodimers of a-tubulin and b-

tubulin with a persistent length, a measure of filament flexibility that increases with stiffness, of 

around 3 mm. Microtubules can thus form bundles of rigid fibers that make excellent structural 

scaffolds, which plays an important role in determining cell shapes. Microtubules also serve as 

linear tracks for directed movements of organelles and small vesicles, yet microtubules are often 

found to bend significantly by compressive forces in cytoplasm of cultured mammalian cells 

[61]. Due to its inherent polarity endowed by a-tubulin and b-tubulin, these linear tracks of 

microtubules are able to support a two-way traffic. Microtubules are highly dynamic and 

constantly undergo stable growing and rapidly breaking-up, enabling the cell to respond to subtle 
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environmental changes promptly. Microtubules also play important roles in the error-proof 

segregation of chromosomes at mitosis and meiosis.  

Filamentous (F) actin is a polymer of two twisting chains of free actin monomers, G-actins 

(G for globular), with a diameter of 4~7 nm. F-actin assembles into various networks to perform 

different functions with the help of an array of actin binding proteins, including capping proteins, 

filament nucleation proteins, cross-linking proteins and severing proteins. These actin binding 

proteins also enable dynamical and regulated controls of the actin network. The actin network 

plays important roles in determining cell shape, cellular locomotion, cell division etc.  

Intermediate filaments include a diverse group of polymers with intermediate diameters 

(around 10 nm in average) compared to microtubule and actin. A monomer of an Intermediate 

filament polymer commonly consists of a central α-helical rod and nonhelical head and tail. Most 

variation across different monomers happens in the head and tail. The basic building block of 

intermediate filaments is a tetramer joined by their central α-helical region to form a coiled 

structure. In the cytoplasm, intermediate filaments tend to form wavy bundles that extend from 

the nucleus to the cellular membranes. Intermediate filaments are the most stable of the 

cytoskeletal filaments in terms of dynamics, and the most extensile due to their central α-helical 

region. Therefore, intermediate filaments are believed to play important roles to maintain cellular 

integrity.  

Interested readers can refer to more detailed coverage on the biophysical and biochemical 

properties of these cytoskeletal polymers in reviews, such as ref. [62], and cell biology 

textbooks, like [63]. In summary, the cytoskeleton, as a dynamical network of all three polymers, 

is able to resist deformations but also respond to externally applied forces and together determine 

the cellular mechanical properties [60].  
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1.2.4 Methods to measure cellular mechanical properties  

Many methods have been adopted or developed to measure the mechanical properties of 

mammalian cells. Despite the seeming differences in the underlying theories and enabling 

technologies, all these methods follow the general principle introduced in section 1.2.1.  

Atomic force microscopy (AFM) [64] is one of the most popular techniques to probe the 

mechanical properties of live cells [65]. AFM probes the cellular mechanical properties from the 

outside through direct contacts using the cantilever as an indenter. The force applied by the 

cantilever can be determined by the Hooke’s law using its bending (equivalent to the 

displacement) and stiffness (equivalent to the spring constant). The typical output from AFM is 

the force-versus-displacement curve (commonly referred as force curve). The cellular elasticity 

can be quantified with spatial resolution by fitting the force curves to quantitative models. 

Recently, direct extraction of the viscoelasticity from the force curves was developed [66]. The 

magnetic twisting cytometry [67,68] measures the rocking motions of tracers adhered to the 

apical cell surface by applying oscillatory magnetic forces. Both AFM and magnetic twisting 

cytometry mainly probes the mechanical properties of the cortical actin network underneath the 

cytoplasm membrane and the probing of intracellular cytoskeleton networks is therefore 

perturbed [69]. 

Micropipette aspiration [70,71], microfluidic optical stretching [72] and other microfluidic 

platforms [73,74] probe global mechanical properties of a suspended cell as a whole object by 

applying a known force and measuring the resulting deformations. More specifically, a 

suspended cell can be aspirated by a micropipette with a pre-determined force and the 

mechanical properties can be determined as a function of the deformation into the micropipette 

[70,71]. Similarly, optical stretching applies a known force via a pair of optical tweezers and the 
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deformation of a whole cell can be measured in a high throughput setting [72]. However, most 

cells in suspension are not in their physiologically relevant conditions. Therefore, the mechanical 

properties measured by these methods may not be a good representation of the properties of the 

cells in vivo or even of cultured cells on two-dimensional surfaces.  

1.2.5 Particle-tracking microrheology  

Compared to the methods described above, particle-tracking microrheology (PTMR) 

[75,76] has the ability to probe the intracellular mechanical properties without being perturbed 

by the cortical actin network,  to probe local mechanical properties (instead of the global 

mechanical responses of whole cells) with spatial resolution, and  to probe mechanical properties 

without direct contact with the cell (thus applicable for cells cultured in 3D matrixes as an 

example) among other benefits [69].  

The PTMR can be further classified into passive or active PTMR, depending on whether 

external forces are applied to drive the probe movements [75]. In passive PTMR, the probe 

particles are driven purely by thermal forces. Passive PTMR has its roots in the classic works by 

Einstein [77] and Perrin [78], as introduced in section 1.2.1. However, the classic Stokes-

Einstein equation can only be used to determine frequency-independent viscosity, and thus limits 

its applications to biological materials which are generally better characterized by frequency-

dependent viscoelasticity. To tackle this issue, the Stokes-Einstein equation was generalized to 

determine frequency-dependent viscoelasticity in 1995 [47], which is named the Generalized 

Stokes-Einstein Relation (GSER) [79].  

The application of GSER assumes that [79]:  1) the shear stress relaxation in the locality of 

the particle is identical to that of the bulk fluid subjected to a perturbing shear strain; 2) the 

complex fluid under study can be treated as an isotropic, incompressible continuum around a 
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sphere, and the continuum assumption is valid when the length scales of heterogeneity in the 

discrete microstructures within the fluid are much smaller than the probe particle; 3) inertia of 

the particle can be ignored, which only becomes an issue at timescales of microseconds; 4) 

implicitly Stokes drag for viscous fluids (with no-slip boundary conditions) can be generalized to 

viscoelastic fluids at all frequency. The last assumption is important and theoretical work has 

shown that the GSER is valid at best for a range of frequencies, which however may span the 

physiologically relevant range for cell mechanics measurements [80,81]. In addition, the GSER 

assumes that the system under study is at thermal equilibrium and that the movements of the 

probe particles are driven solely by thermal fluctuations, which is same as the Stokes-Einstein 

equation. When the system satisfies these assumptions, the viscoelasticity across a wide range of 

frequencies can be determined relatively easily through fluctuation-dissipation theorem (FDT) 

[47].  

The validity of GSER was tested by comparing the results of various complex fluids 

measured by GSER to well-established mechanical (rheological) measurements on bulk samples 

[47,79,82,83], which supports the above assumptions phenomenologically. On the numerical 

side, the accuracy of GSER was initially restricted not only by the limited frequency range of the 

data used for the calculation, but also by requiring an arbitrary functional form to fit the MSD 

[47,82]. These limitations were later released by avoiding the numerical transformations and 

using an algebraic approximation of the MSD in the form of either a first-order [79,84] or a 

second-order logarithmic time derivatives [83].  

After the introduction of GSER, its advantages, requiring only a small volume of sample 

and covering an extended range of frequencies, quickly drew attentions from the biophysical 

community to measure cell-free biological samples [79,85]. Quantitative mechanical properties 
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of live cells (COS7, a kidney epithelial cell line) were also extracted using GSER, in which the 

movements of single endogenous lipid granules was recorded using laser reflection single-

particle tracking [86]. This single-particle tracking was later generalized into video multiple-

particle tracking to enable subcellular resolutions on local mechanical properties and thus the 

ability to evaluate their heterogeneity [87]. Also in this study, carboxylated fluorescent particles 

were microinjected into the cytoplasm and used as probes, for the first time, rather than the 

endogenous granules tracked in previous live cell studies [87]. The MSDs measured in the live 

cells appear to be subdiffusive at short timescales and diffusive at long timescales [87], which 

resembles that of viscoelastic polymer solutions (flexible polymers that are not permanently 

cross-linked) [83]. Such behaviors of MSDs were used to determine the viscoelastic properties of 

the cytoplasm by applying the GSER directly [53,69,86–90].  

However, the cytoplasm is an active material driven by chemical energy, mainly in the 

form of Adenosine Triphosphate (ATP) [91,92]. The Brownian-like motions observed in the 

control cells are thus driven by both thermal and active forces, specially at long timescales 

[48,67,93,94]. Therefore, the assumption of thermal equilibrium in GSER is not valid and 

incorrect cellular viscoelasticity could be determined from MSDs when GSER is applied directly 

[48,67,95], as in studies previously described [53,69,86–90]. The presence of active forces limits 

the applications of GSER to either high frequencies in MSDs of control cells [94] or to an 

extended range of frequencies in ATP depleted cells [96]. The MSDs of the probe particles, in 

general, still convey important information about the active forces and cytoskeletal dynamics, 

which can be interpreted on their own [97] or in combinations with other techniques including 

active PTMR [48] and AFM [98].  
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In active PTMR, probe particles are driven by constant or oscillatory external forces, often 

applied by optical or magnetic tweezers [75]. Active PTMR is generally less accessible than 

passive PTMR with the requirement of specialized instrumentation and expertise to manipulate 

the probes. One important question is whether active PTMR measures the “true” viscoelasticity 

as experienced by the particles in cytoplasm in its native state. In particular, optical tweezers 

used in active PTMR may be strong enough to probe the non-linear responses of the cytoplasm 

[81,99,100]. Yet previous works have shown excellent consistency between active and passive 

PTMR [67,94], which lays the experimental foundation to combine the two techniques and 

obtain more accurate and complete measurements of intracellular mechanical properties. A 

representative technique following this strategy is the force spectrum microscopy (FSM)[48]. As 

introduced in section 1.2.1, viscoelastic properties can be first determined by active PTMR, then 

the spectrum of active forces can be extracted from the spontaneous fluctuations without external 

forces [48,101–103].  

1.2.6 Chapter 4 – simpler and noninvasive alternative to FSM  

Though a powerful technique, FSM, as it was originally developed, requires advanced 

instruments including optical tweezers, microinjectors and confocal microscopes simultaneously 

[48], which significantly limits its wider application. In addition, microinjecting fluorescent 

particles into single cells is not only labor-intensive and requiring experienced operators, but also 

introduces non-physiological disturbance to cells under study. An alternative of FSM that 

requires fewer instruments and is non-invasive would be of significant importance for wider 

applications of FSM.  

In chapter 4, we developed such an alternative to FSM. To be non-invasive, mitochondria 

were fluorescently labeled as our probe particles and morphological analysis were carried out to 
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identify mitochondria that are ideal as endogenous probes for intracellular mechanical properties. 

The morphological information of each mitochondrion was also used in the later FSM 

calculations to improve the accuracy. To make the FSM less instrumentation-demanding, we 

replaced the role of active PTMR by using passive PTMR in ATP depleted cells. This is based 

on the fact that previous work have shown excellent consistency between active and passive 

PTMR [67,94]. Furthermore, it has also been shown that the GSER can be applied to an 

extended range of frequencies in ATP depleted cells in passive PTMR [96]. We developed a 

method to identify a range of thermally dominated timescales in the MSDs of ATP depleted 

cells, so that we can determine the intracellular viscoelasticity using GSER. We then calculated 

the force spectrum of active fluctuations by combining the spontaneous fluctuations tracked in 

control cells and viscoelasticity measured in ATP depleted cells. Our results match quantitatively 

to those obtained by the original FSM. Using the developed experimental protocol and tools for 

data analysis, we studied the roles played by various cytoskeletal components on the active 

mitochondrial fluctuations to gain insights into the molecular bases of complex mechanical 

properties.  

1.2.7 Chapter 5: bead loading -- a general, robust and simple method to deliver fluorescent 

particles into the cytoplasm  

As discussed in more detail in chapter 4, mitochondria, other endogenous organelles 

[104,105], and fluorescent particles are probably measuring different aspects of cellular 

mechanical properties, at different length-scales and dominated by different components of the 

cytoskeleton. Further work is required to link different aspects of the cellular cytoskeleton 

together, as measured by fluorescent particles as well as endogenous probes, such as 
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mitochondria as well as other endogenous organelles [48,104,106]. To achieve this goal, we need 

to measure the intracellular mechanical properties probed by fluorescent particles.  

However, there is a lack of general, robust and simple methods to deliver exogenous 

probes into the cytoplasm for both passive and active PTMR. The most widely-used techniques 

for delivering probe particles into cells, used for both passive and active PTMR are 

microinjection [87] and ballistic injection [69,88]. Microinjection is the most classic and earliest-

applied method as mentioned earlier to deliver fluorescent particles into the cytoplasm for PTMR 

[87]. However, it is tedious, low-throughput and may cause non-physiological trauma to cells 

under study [69]. Ballistic injection was later optimized to deliver fluorescent particles in a high 

throughput manner [69,88]. There are also non-physiological perturbations like vacuum and non-

sterile conditions in the protocol of ballistic injection [69], similar as microinjection. The 

ballistic injection also suffers from its own disadvantages, which is the need for extensive 

optimizations of many operational parameters in the protocol for new cell types [69]. In addition, 

both techniques require sophisticated instruments and expertise to operate.  

In chapter 5, we proposed that an old technique called bead loading [107] could serve as a 

general, robust and simple delivery method for fluorescent particle into the cytoplasm. Bead 

loading works by disrupting the cellular membrane mechanically and creating transient channels 

to allow the fluorescent particles diffuse into the cells [108]. The generality of bead loading was 

supported by positive results in four different cell lines. Using various cytoskeletal drugs, the 

bead loaded fluorescent particles were shown to probe the mechanical properties of cytoplasm. 

In addition, the drug treatment results of bead loaded fluorescent particles indeed support that 

mitochondria and fluorescent particles are probing different aspects of the cytoskeleton, with 
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mitochondrial fluctuations influenced by both microtubules and actin, and fluorescent particles 

dominantly influenced by actomyosin.  
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CHAPTER 2: LOADS BIAS GENETIC AND SIGNALING SWITCHES IN SYNTHETIC 

AND NATURAL SYSTEMS 1 

 
 
2.1 Introduction 

A longstanding question about signal transduction and gene transcription networks is how 

modular are they. Here modularity means relative insulation of small subgraphs or motifs of the 

main network from each other [1]. This question is especially relevant for synthetic biology that 

aims to build artificial circuits from the bottom up [2]. It is also relevant for molecular biologists 

that aim to arrive at a quantitative understanding of a cellular decision, by, for example, isolating 

a crucial network module [3]. 

For synthetic biologists the challenge is now to move from simple network motifs such as 

pulse generators [4], genetic switches [5–8], logic gates [9], [10], and oscillators [11–13] to more 

complicated networks combining multiple motifs and networks in more complex organisms. 

Novel applications currently being explored include plant biosensors [14], hazardous waste 

remediation [15], clean fuel technology [16], and numerous medical applications [17–20]. 

Synthetic biologists hope to utilize biological modules in a manner similar to electrical circuit 

board components – plugging them together to attain a specific, and novel, function [21]. At the 

core of the concept of either breaking down complex biological systems into small modules, or 

                                                
1 The work presented in this chapter and in Appendix I has been published in PLoS 
Computational Biology and is reproduced here under the Creative Commons License. Lyons 
SM, Xu W, Medford J, Prasad A. Loads Bias Genetic and Signaling Switches in Synthetic and 
Natural Systems. PLoS Comput Biol. 2014; 10(3): e1003533. Author contributions: J.M. A.P. 
conceived and designed the experiments; S.M.L. W.X. A.P. performed the experiments; S.M.L. 
W.X. A.P. analyzed the data; S.M.L. W.X. J.M. A.P. wrote the paper. I am the co-first author on 
the publication. This work is being presented in this chapter in its entirety to maintain the 
intellectual coherence of the project. 
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even building complex systems from modules, is the belief that these modules will behave 

predictably in isolation and in connection. Recent theoretical and experimental work however 

[22-25] suggests that the functioning of modules may not be independent of the downstream 

components that they are connected to. Adding an additional binding reaction to the output of a 

gene regulatory network (or loading the network) may decrease system bandwidth [24] and 

substrate sequestration in covalent modification cycles may result in signaling delay [26]. In 

vitro studies find that there is significant load-induced modulation of the upstream module in an 

enzymatic signal transduction cascades [24]. Theoretical analysis has also shown that a load can 

change the fundamental properties of an oscillating circuit [27]. Thus understanding the effects 

of adding a load to the output of these technologically important network modules is required for 

a thorough understanding of the challenges of scaling up synthetic networks to higher levels of 

complexity. 

Loads could also have noteworthy unrecognized effects in natural systems. In fact all 

natural systems have loads in some ways or the other. Motifs in signal transduction networks are 

connected directly to a transcriptional response, or to downstream proteins that may function as 

transcription factors or go on to activate transcription factors. Motifs in gene transcription 

networks have transcriptional outputs with protein domains that bind nonspecifically and 

specifically to binding sites on the DNA, apart from interacting with other transcription factors. 

Circuits that function as switches play an important role in all biological signaling and 

gene transcription networks because they encode decisions. This change of state can be brought 

about by an external signal, or an internal accumulation of a protein, which can drive the system 

to a different steady state. Examples are the regulatory circuits for the cell cycle in yeast [28], 

mitogen-activated protein kinase cascades in animal cells [29–31], and the lysis-lysogeny switch 
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in the λ phage [32]. Since many small circuits can show this kind of behavior, switches are 

among the earliest and most well studied of protein interaction circuits [33]. The genetic toggle 

switch, which was one of the first two synthetic circuits constructed, is a well-known synthetic 

example [5]. Given the ubiquity and importance of switch-like motifs, it is important to 

understand how their function could be affected by binding downstream partners. 

These reasons prompted our theoretical study of the behavior of a simple genetic toggle 

switch [5], a toggle switch with positive feedback as well as a common positive-feedback based 

switch involving Ras activation in lymphocytes [29, 30] under a load on either one or both of its 

outputs. These circuits are shown in Fig. 4.1 and described below. The simple toggle switch is a 

widely studied and emulated synthetic network motif based on the mutual repression of two 

repressor proteins. However, naturally occurring toggle switches are often found connected to an 

additional positive autoregulatory component. For example in the competence system in B. 

subtilis, ComK represses the production of Rok and Rok represses the production of ComK; 

however ComK also has a strong positive feedback upon its own production [34]. Another 

example is found in the apoptosis network of many multicellular organisms, including mammals. 

Within the pathway controlling intrinsic apoptosis is a set of genes with double-negative 

repression, Casp3 and XIAP, again accompanied by positive autoregulation of Casp3 [35]. 

The Ras protein is a G-protein found on mammalian cellular membranes that is important 

in many cellular processes and is an upstream activator of the MAPK pathway. Ras goes from a 

GDP-bound inactive form to a GTP-bound active form, often in a digital manner [30], and 

previous studies in lymphocytes have shown that RasGDP is activated to RasGTP via a bistable 

switch that arises from a positive feedback loop on its own activation via SOS (Son of Sevenless) 

[30]. However the Ras switch very naturally has an associated load, since to transduce the 
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cellular signals down along the MAPK/ERK pathway, RasGTP naturally binds to Raf kinase. 

Thus the Ras switch system contains all the elements we need to study the effects of adding 

loads to a bistable switch which is based on a positive feedback loop. 

 
 
Figure 2.1. Schematic diagram of the circuits studied in this paper. 
(A). The basic toggle switch is the network shown without the dotted line. Repressor 1 represses 
the production of Repressor 2 and vice versa. The dotted line denotes a positive feedback motif 
found in some natural circuits. (B). A cartoon of part of the MAPK activation pathway in T 
lymphocytes, adapted from [29], showing the role of Ras activation. Signals from peptide-MHC 
complexes are received at the TCR and lead to phosphorylation of the cytoplasmic chains of the 
TCR by the Src kinase, Lck. This recruits the kinase ZAP70 which trans-autoactivates and 
phosphorylates a scaffold called LAT, which recruits Grb2 and SOS to the plasma membrane. 
SOS activates Ras as shown. (C) A simplified model of the Ras switch. RasGDP transforms into 
RasGTP via the enzyme SOS. However the catalytic rate of SOS increases when bound to 
RasGTP. This sets up an autocatalytic positive feedback. RasGTP is deactivated by enzymes 
called RasGAP's (among others). 
 
 
2.2 Methods 

2.2.1 Genetic toggle switch 

The basic genetic toggle switch consists of two mutually repressing genes as shown in Fig. 

2.1 along with an additional system to toggle the states. As shown in previous studies, with the 

right combination of parameters, the toggle switch will stay in one of two stable states, each 

characterized by a high concentration of one of the repressor proteins, and strong repression of 
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the other. The toggle switch can now be induced to switch states using two possible strategies for 

inducing a transition: decrease the level of highly expressed protein [5], [36] or increase the 

expression of one of the repressed proteins (Fig. 2.1) using an additional inducible system [36]. 

For a model which utilizes the latter protocol we obtain a system of four differential equations 

[36] after including a load. The load may be a protein, a small molecule or a binding site on 

DNA such that the bound complex prevents the repressor from binding to and repressing its 

conjugate promoter. In order to make the simplest and the most general model, we have assumed 

here that the repressors reversibly bind the load only in one copy. We assume that the total load 

L1T is a constant, L1 is the free load and conservation gives us the bound load as L1T−L1. 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

These four equations are presented in de-dimensionalized form, with u, v, l1, 

l2  representing the dimensionless concentrations of Repressor 1, Repressor 2, Load1 and Load2 

respectively and τ the de-dimensionalized time. The basal parameter values that we use are as 

follows: α1 = α2 = 0.2; β1′ = β2′ = 4; n = 3; kon1′ = kon2′ = 0.5; koff1′ = koff2′ = 0.5; k1 = k2 = 1; [L1T] and 
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[L2T] are variable. Note that Equations (1) and (2) without the last two terms incorporating the 

load are the standard equations for analyzing the toggle switch that have been widely used in 

both empirical and theoretical work [5], [36]. These equations are discussed in more detail in 

Supplementary Text S2.1 Section 1.1. The derivation of this model follows that of Kobayashi et 

al [33]. All parameters excluding load binding rates were sourced from Kobayashi et al [36]; 

extensive parameter sensitivity of the load binding rates was performed and are discussed in 

Appendix I: Supplementary Text S2.1 section 1.4 and Figs. S2.1, S2.2, Table S2.1 and Figs. 

S2.15 and S2.16. The effect of a load arises from the binding competition between the promoter 

where the repressor binds and the load. This competition is not directly incorporated into the Hill 

function, since the binding step with the promoter is not explicitly modeled and is treated in an 

effective way. In reality however the concentration of the promoter is so small compared to that 

of the load, that the use of Hill functions is justifiable [37]. There are possibly exceptional cases 

such as a high copy number of plasmids compared to load concentrations where this assumption 

does not apply. Note that the Hill function is an effective phenomenological equation describing 

gene transcription and protein production, and standard Law of Mass Action (LMA) methods to 

derive the Hill functional form may not apply for many transcription factors that nevertheless 

show Hill kinetics [38]. Thus it is preferable to use Hill function forms for this analysis. 

To calculate transition times, we first start the system in one state, say high Repressor 1. 

After the system has reached steady-state, we add a constant concentration of the inducer and 

measure the time taken for Repressor 2 to go from 10% of its maximum value to 90% of its 

maximum value. This is the “rise time”. Similarly the “decay time” is the time taken for 

Repressor 1 to go from 90% of its maximum value to 10% of its maximum value. The level of 

the inducer remains fixed. 
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In practice the inducer may decay and the transition would depend upon there being 

inducer present for a sufficiently long time to induce transition. In such cases the amount of 

inducer required may be of interest. When the inducer is applied as a bolus with a first order 

decay rate, it appears as an exponentially decaying pulse. We thus included a fifth differential 

equation governing the amount of Inducer. 

 

(5) 

Here  is the ratio of the inducer degradation constant to the repressor degradation 

constant. We used Eq. 5 only when estimating the amount of inducer required to switch states for 

different loads and different decay rates of the load (Appendix I: Supplementary Text S2.1 

section 1.4 and Supplementary Tables S2.3, S2.4). 

A genetic toggle switch can be induced to change states by the alternative method of 

repressing the highly expressed repressor, and in fact the original toggle switch used this form of 

induction [5], [33]. We repeated our calculations for the basic model for the case of alternative 

induction, but found no qualitative differences. The alternative induction model along with the 

equations is detailed in the Supplementary Text S2.1 section 1.4. 

Equations 1–4 assume that the load itself stays in steady state during the switching of the 

toggle between one state and another. However in reality if the load is another protein, it is also 

synthetized and degraded by the cell, and therefore its level could be dynamic. We also 

simulated this situation by incorporating a synthesis and a degradation rate for each load. This 

resulted in Equations 3 and 4 being replaced by: 
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(6) 

 

(7) 

Here  is the load-repressor complex and  and  are the synthesis and degradation 

rates respectively for Repressor 1, and correspondingly for Repressor 2. The parameters are 

defined in Appendix I: Supplementary Text S2.1, section 1.5. Since the total load is no longer 

conserved, we need to include additional equations for the load repressor complex. 

 

(8) 

 

(9) 

Our model assumes that when the repressor protein is bound to the load, it is protected 

from degradation. However it is also possible that even when the protein is bound to the load, it 

can still degrade. To check the impact of removing the protection assumption, we also consider 

an additional model where the repressor can still degrade with the same rate constant when 

bound to the load. The equations for that model are slightly modified versions of the equation 

above, and are presented in detail in Appendix I: Supplementary Text S2.1, section 3.2. 

We conducted parameter sensitivity analysis on models utilizing both forms of induction; 

these did not show any qualitative change on wide variation of key parameters (Appendix I: 

Tables S2.1, S2.2, S2.3, S2.4 and Supplementary Text S2.1). 



 
 

43 

2.2.2 Toggle with positive feedback 

A positive feedback was added to the R1 side of the toggle switch as an inducible promoter 

with a Hill coefficient of 1. We assumed that the positive feedback acted on the same promoter 

as the repression, resulting in a composite term for production of R1 from promoter 1 where ρ is 

the strength of positive feedback. 

 

(10) 

The derivation of this equation can be found in Appendix I: Supplementary Text S2.1, 

section 1.6.1. As before, α1 is the leaky production of R1 while α1+β1 represents the activity of 

the promoter in the absence of repression or positive feedback. We chose k2 and k5 = 1, d1 = 0.2, 

and for the figures in the main paper we chose ρ = 3.5. We address other values of the positive 

feedback in Appendix I: Fig. S2.6 and the Supplementary Text S2.1, section 1.6.2. 

2.2.3 Stochastic simulations 

We perform stochastic simulations and histogram the concentrations of the repressor 

proteins to construct their probability distribution. The quasi-potential of the toggle is given by 

the negative logarithm of this probability distribution [39]. In order to construct the probability 

distribution we make use of the phenomenon of noise-induced switching. Recent theoretical 

work has shown that multiplicative noises due to stochastic fluctuations can induce switching 

[40]–[42]. Experimental results demonstrate bimodal populations that correspond with theoretic 

predictions arising from noise-induced switching [41]. 

Stochastic simulations were carried out using a modified Gillespie algorithm using the 

standard rate expressions for every reaction (Table S2.5). We chose a reaction volume that would 

correspond to a small number of molecules in the system. Stochastic fluctuations then drive the 
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system to transition between states rapidly, allowing us to collect sufficient data points. In order 

to make sure that the system was not being biased by the small volume, we also repeated the 

calculations for a five times larger volume (and hence molecule number) and found qualitatively 

similar results (Appendix I: Fig. S2.4). 

For the positive feedback toggle switch the same equations were used except for the 

repressible production of Repressor 1, where we used instead the rate expression given by the 

right hand side of Eq. 10 in the Monte Carlo simulations. 

2.2.4 Ras-kinase system 

For our study we adapted the minimal model of the Ras switch proposed by Das et. al. [30] 

with the addition of a reversibly binding load in the form of the Raf protein (Fig. 2.1C). The 

model contains three proteins, Ras, which exists as RasGDP or RasGTP, SOS, the guanine 

exchange factor (GEF) that catalyzes the transformation from RasGDP to RasGTP and a 

GTPase, RasGAP. SOS on its own has very low GEF activities. However, the activity of the 

GEF pocket is strongly influenced by the binding state of an allosteric pocket in Cdc25 domain 

[29], [30]. When the allosteric pocket is bound by RasGDP, the GEF activity is increased by 5 

times. If the allosteric pocket is bound by RasGTP, its GEF activity is increased by 75 times. In 

this way, RasGTP can upregulate its own production rate by binding to SOS, thus constituting a 

positive feedback loop. RasGTP is deactivated by GTPase's such as RasGAPs that are 

constitutively present. 

After Raf binds RasGTP, the complex catalyzes the phosphorylation of Raf leading to a 

phosphorylation cascade. For this study we ignore Raf activation and only consider the effects of 

Raf as a binding partner for RasGTP. The Das paper [30] also models the systems using 

Michaelis-Menten (MM) forms for the actions of the enzymes which is quite standard for 
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modeling systems of enzymatic reactions. However since in this model the load competes not 

with a promoter, as in the toggle switch, but with another protein, it is possible that the quasi-

steady state assumption of the MM form could be introducing some inaccuracies in the results. 

To account for this possibility we wrote the entire model using the Law of Mass Action. We 

separately simulated the model using the MM functional forms (Supplementary Text S2.1 

section 2 and Figs. S2.7 and S2.9). The equations for the MM forms are listed and discussed in 

detail in the Supplementary Text S2.1. The reactions and rate constants for this model are listed 

in Table S2.6 and Table S2.7. 

We use the following notations for the species involved in the system: 

 

 
(11) 

 
(12) 

 
(13) 

 
(14) 

 
(15) 

 
(16) 
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(17) 

 
(18) 

 
(19) 

 
(20) 

 
(21) 

Moreover, four of the basic protein species along with the complexes they participate in 

have associated conservation laws. These are as follows: 

 
(22) 

 
(23) 

 
(24) 

 
(25) 

In the Ras model too we implicitly assume that when RasGTP is bound to Raf, it is 

protected from de-activation by a RasGAP. We also study the effects of relaxing this assumption 

on both the LMA and the PSSA models. The modifications to the original model are detailed in 

Appendix I: Supplementary Text S2.1 section 3.3.1. 

We used XPPaut to perform a bifurcation analysis of the Ras switch with changing levels 

of SOS, with and without a load. The quasi-potential landscape does not provide useful insights 

into load induced modulation of the Ras switch and hence the probability distributions are not 

reported. 
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2.3 Results 

2.3.1 The bistability properties of the toggle switch do not change unless the repressor can 

degrade when bound to the load 

The presence of a binding partner for either Repressor 1 or Repressor 2 (which we refer to 

thereafter as the load) introduces new terms in the differential equations describing the toggle 

switch, i.e. the last two terms in Eq. 1 and in Eq. 2, as well as two new equations, Eq. 3 and 4, in 

the dynamical system. However it can be easily seen that in steady state Eq. 3 and 4 are also 

independently set to zero, and therefore do not affect the bifurcation properties of the switch. 

Even in the case of a dynamic load, since Eq. S13 and S14 are set to zero to ensure the load-

repressor complex is in steady state, the additional terms in Eq. S9 and S10 are also zero. Thus 

the load makes no difference to either the bistability of the switch or to the parameter values 

where the bistability is seen. 

The exception is when the repressor molecule can degrade even when bound to the load, 

which may be relevant in some experimental situations. As Fig. 2.2A shows, when a load is 

added symmetrically to both sides of the toggle switch, the two stable states approach each other 

and eventually annihilate, leaving a monostable system. Fig. 2.2B shows that when a load is 

added only to one side, the system again goes from bistable to monostable at some critical value 

of the load. In effect, the upper stable point vanishes and is no longer accessible due to leakage 

of the repressor affected by the load. 
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Figure 2.2. Bifurcation diagram of the genetic toggle switch when the repressor can decay 
from the load-repressor complex. 
The thick lines are stable steady states, the dashed lines are unstable steady states. (A). A load is 
added symmetrically to both sides of the toggle. The stable states of only one Repressor 
molecule with respect to the load are shown. With zero load the toggle switch is bistable with 
well separated steady states. As the load increases, the two stable states approach each other and 
the unstable state, and eventually merge in a bifurcation at a critical value of the load. The 
system is monostable beyond this critical value. (B) A load is added only to Repressor 1. The 
high state of Repressor 1 approaches the unstable steady state as the load increases and merges 
with it at a critical value of the load, leaving only the lower state accessible to the system. 
 
 

The reason for the change in steady state behavior is made clear on examining the 

equations of the system. Here we need to incorporate additional reactions that represent the 

decay of the repressor-load complex into the load alone. This leads to an additional term in the 

equation for the load and the repressor-load complex (Eq. S44 and S45). However this term does 

not appear in the equation for the repressors, which continue to be governed by Eq. 1 and Eq. 2. 

As a consequence in the steady state, the additional terms in Eq. 1 and 2 no longer equal zero and 

the steady state properties of the switch are influenced by the presence of the load. 

As can be seen from an examination of the chemical reaction system, this mechanism of 

abrogation of bistability arises whenever the load-repressor complex participates in a non-
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reversible (from the repressor's point of view) chemical process that leads to an unbalanced 

leakage of the repressor from its function as a repressor by the presence of the load. A more 

interesting example of such a process could be provided by a chemical reaction system where the 

load is an enzyme for one of the repressor molecules, which is transformed by the enzymatic 

action into a protein no longer capable of repression. The mathematical analysis of this case is 

exactly the same as the model we are currently discussing hence we do not consider it separately 

here. 

However a load can significantly change the dynamic response of the basic genetic toggle 

switch as we shall see below. We examined two different measures of dynamic response, 

response time for state switching and the amount of inducer required for state switching. 

2.3.2 The response time for state switching of the toggle switch increases 

We measured two response times, the rise time which quantifies the time taken for the 

concentration of Repressor 2 to increase from its low or zero level in state 1 to its high level in 

state 2, and the decay time which measures the time taken for Repressor 1 to decay from its high 

level in state 1 to its low level in state 2, in both cases in response to a constant inducer. 

Specifically the rise time measured the time to go from 10% to 90% of the steady state 

maximum, while the decay time measured the time to go from 90% to 10% of the steady state 

maximum. These measurements were made using the deterministic model in the cases when the 

load was applied only to one side and to both sides of the switch. 

We found that both the rise time and the decay time increase with increasing load 

concentration. Interestingly, this relationship was approximately linear in all cases (Fig. 2.3A & 

B). The slope of the linear relationship represents the increase in response time due to unit 

increase in load. We found that the slope of the line was larger when the load was applied to the 
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opposite side of the system before the switching rather than the same side (Fig. 2.3A), indicating 

that it is harder to switch out of a state without a load to a state with a load than the reverse. 

However when a load was applied to both sides, the slope of the linear fit was higher than when 

the load was only on the opposite side, suggesting that both the “opposite side” and the “same 

side” delays are operating. 

 

Figure 2.3. Effects of a load on transition times of the basic toggle switch. 
(A). The time taken to reach 90% of maximum value for the protein undergoing a low-to-high 
transition as a function of the Load, normalized by the steady-state amount of Repressor 1. 
Normalized time is a unit-less number defined by the transition time (rise or decay) of the system 
at a given loading condition divided by the transition time (rise or decay) of an unloaded system. 
(B). The time taken for the concentration of the protein undergoing a high-to-low transition to 
reach 10% of its maximum value. The x- and y- axes are the same as for the previous panel. 
 
 

While we also found an approximately linear relationship between the decay time and the 

concentration of the load, there was little difference between the decay times for the state with 

the load (“same side load”) and the state without a load (“opposite side load”) at our base 

parameter values. Thus the load affects rise time and decay time differently. When a load was 

applied to both sides of the switch, the slope of the decay time linear fit was larger, again 

indicating the operation of both delays. 

We tested these results by changing parameter values for the binding of the load (Appendix 

I: Table S2.1) and found that in all cases we obtain a good linear fit for the response time. For the 

rise time, the slope was uniformly larger when the load was applied to the opposite side as 
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compared to the same side, and it was the largest when loads were applied on both sides. For the 

decay time, the slope could be larger or smaller when the load was applied to the opposite side of 

the decaying state compared with the same side, but it was always larger than both when a load 

was applied on both sides. The slope depended non-monotonically upon the dissociation constant 

(Kd) of the binding between the repressor protein and the load, with both low Kd and high Kd 

having a smaller effect that those in between (Appendix I: Fig. S2.1). This was because when the 

Kd was low, i.e. strong binding, the concentration of the load-repressor complex was unaffected 

by the state of the switch. However when the Kd was high, the maximum concentration of the 

load-repressor complex was smaller, thereby having a lesser effect on the system (Appendix I: 

Fig. S2.2). Thus response times are maximized when the load acts as a dynamic sink, i.e. it takes 

up newly synthesized repressor when the state changes from the unloaded to the loaded side, and 

releases the bound repressor when switching from the loaded side to the unloaded side. 

Previous studies of response times of biochemical networks with and without a load have 

also seen monotonic increases in the response time of simple transcriptional circuits [37]. 

However the extremely consistent approximately linear response we see under wide variation in 

parameter values is extremely intriguing. 

An increase in response time should also imply that the concentration of inducer required 

to shift states should also be affected, especially when it can decay. In accordance with this 

expectation we also found that the concentration of inducer required to switch states increased 

exponentially with increasing load, as seen in Appendix I: Table S2.2. The parameter of the 

exponential fit was dependent on the inducer decay rate, indicating that the amount of time the 

inducer remains above a threshold is the key factor governing the switching. We find that this 
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response to a load is unaffected by the mode of switching the toggle, and induction by repression 

of the current state yields the same qualitative results (Appendix I: Tables S2.2 & S2.3). 

In our analysis so far we have assumed that the total concentration of the load is fixed. We 

now analyze the case when the load is generated by a constitutively active promoter and can 

decay at a first order rate. We find that in this case too the qualitative features of the transition 

time remain the same as the toggle switch with a fixed load, i.e. it was approximately linear in all 

parameter regimes tested (Appendix I: Supplementary Text S2.1 section 1.5, Fig. S2.3 and Table 

S2.4). The reason why we do not see a difference from the basic toggle switch is that the 

transition times ultimately measures time between steady states, and we wait for the system to 

come quite close to the steady state value (90%). Thus the concentration of the load has also 

reached a steady state value and the system behaves as it would with a fixed load. 

We also tested the response times when the repressor can leak away from the systems after 

binding with the load. Here we find that (Fig. 2.4) when a load is applied to the same side, the 

rise time continues to increase monotonically linearly with the load but the decay times decreases 

monotonically with the load. However when a load is applied to both sides, we find a negative 

linear relation between the transition times for both rise and decay and the load. 

The reasons for the change in behavior is because as we saw previously, when the 

repressor can leak away from the repressor-load complex, a load has a dramatic effect on the 

bistability properties of the switch, abrogating bistability very quickly (Fig. 2.1). When only one 

repressor has a load, the high state of that repressor approaches the unstable state, indicating a 

decrease in the domain of attraction. Shifting out of that state thus becomes easier with 

increasing load. When both sides have loads, both stable states approach the unstable state, 

therefore shifting out of either state becomes easier, and both transition times decrease. 
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Figure 2.4. Effects of a load on transition times of a toggle switch without the protection 
assumption. 
(A). The time taken to reach 90% of maximum value for the protein undergoing a low-to-high 
transition as a function of the load. The system is de-dimensionalized as described in 
Supplementary Text S2.1 section 1.1 and 3.2.1. (B). The time taken for the concentration of the 
protein undergoing a high-to-low transition to reach 10% of its maximum value. Note that the 
linear relationship for both-sided load transition times, and same-sided decay time, and opposite-
sided rise time has a negative slope. The relationship for same-sided rise time and opposite sided 
decay time has a very small, but positive slope. 
 
 
2.3.3 Dramatic changes in the potential energy landscape and probability distributions of 

the toggle switch 

The modulation in the dynamic properties of the basic genetic toggle switch discussed 

above suggests that the load has altered the potential energy landscape of the toggle switch, 

making it harder to switch. For two-dimensional and higher systems, such as the toggle switch, 

analytical methods to construct the potential landscape are not available, but a quasi-potential 

can be constructed from the probability distribution function of the concentrations of the 

repressor molecules, where the quasi-potential is given by the negative of the natural logarithm 
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of the probability distribution [43], [44]. To calculate this we performed Monte Carlo 

simulations of the toggle switch using a Gillespie type algorithm elaborated in the Methods 

section. When the toggle switch is symmetrically balanced, both the probability distribution 

function and the potential energy landscape are completely symmetric. If the system is started in 

State 1, random fluctuations can drive it into State 2 and vice versa. The probability distribution 

can then be constructed by counting the frequencies of these random fluctuations. However since 

the genetic toggle switch can be very stable, a numerical computation of the potential energy 

landscape requires impractically long simulation times (as we show below). While computational 

methods to sample rare trajectories in such cases exist, they are very sensitive to choices of 

parameters [42], [45]. We developed a computational protocol in order to numerically obtain the 

probability distribution function of both protein concentrations and the transition times. We 

chose an appropriate volume for the genetic toggle switch such that exactly the same parameters 

as in the deterministic simulations led to the operation of the toggle switch with only a small 

number of proteins. The toggle remains bistable in this regime but the small protein numbers 

vastly increases spontaneous stochastic fluctuations arising out of multiplicative noise in the 

system and allows the simulation to explore parameter space and collect enough data. 

Our simulations showed that the switch switched states a large number of times. In order to 

account for differences in the time step in different states, the probability density function of the 

concentrations was constructed using a time trace collected after approximately 1 second 

intervals. As Fig. 2.5 shows, for a symmetric switch we obtain a symmetric bi-modal probability 

distribution that corresponds to a double-well potential. 
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Figure 2.5. The probability distribution function and the quasi-potential of the genetic 
toggle switch without a load. 
(A). The probability distribution function of a toggle switch without a load. The x- and y- axes 
here represent the number of molecules of Repressor 1 and Repressor 2 respectively, while the z-
axis is the frequency of its occurrence. Note that the distribution is symmetric as expected. (B). 
The quasi-potential of the symmetric toggle switch, showing the symmetric double-well potential 
constructed by taking the negative logarithm of the probabilities shown in (A). A small offset of 
0.001 was added to the probabilities to prevent taking the logarithm of zero. This does not 
change the shape of the well. 
 
 

When we add a load to the system asymmetrically, in the form of a binding partner for the 

Repressor 1, we find that the probability distribution becomes extremely skewed, and the total 

weight of the probability distribution corresponding to the other side, i.e. Repressor 2, 

dramatically increases (Fig. 2.6A). This indicates that the underlying double well potential has 

become skewed and the state 2, corresponding to high Repressor 2, has increased its stability at 

the cost of State 1 (Fig. 2.6C). When a load is applied to both sides symmetrically, the 

concentration probability distribution reverts to a symmetric bimodal distribution corresponding 

to a symmetric double-well potential (Fig. 2.6B & D). 
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Figure 2.6. The probability distribution function and quasi-potential of a toggle switch with 
a load. 
The 3-dimensional plot is viewed with the xy-plane horizontal for better contrast. The x- and y-
axes are numbers of molecules of R1 and R2 while the z-axis is either probabilities or the quasi-
potential. (A). The probability distribution function (pdf) of the toggle switch of Fig. 5 but now 
with a load of 20 molecules on Repressor 1 (R1). (B). The pdf of the toggle switch with a load of 
20 molecules on R1 and 20 molecules on R2. (C). The quasi-potential of the toggle with a load 
of 20 molecules on R1, i.e. corresponding to panel A. (D). The quasi-potential of the toggle with 
equal loads of 20 molecules on each repressor, i.e. corresponding to panel B. 
 
 

In order to test this directly we calculated the distribution of lifetimes in state 1 and the 

lifetimes in state 2. As shown in Fig. 2.7, when the switch is symmetric with no load, the lifetime 

distribution is exponential, as should be expected for a simple two-state system. However when 

the load is applied to Repressor 1, the probability distribution of the lifetime in state 2 increases 

dramatically. The average lifetime of state 1 also increases but only by a very small amount. The 

time spent in state 2 does not appear to saturate, and continues to increase with increasing load. 

When loads are applied symmetrically to both sides, the lifetime histogram in Fig. 2.7 indicates 

that both sides have been stabilized since the system spends significantly longer time in each 
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state. Note that in an equilibrium system this would have been indicated by the deepening of the 

potential well. However in non-equilibrium systems the potential well picture does not 

completely capture the dynamics and there is an additional contribution from a “curl flux” [43], 

[46] that needs to be taken into account. For our purposes calculating both the distribution of 

concentrations and the distributions of lifetimes captures the dynamics of the toggle switch. 

 

Figure 2.7. Distribution of the lifetimes of the toggle switch with and without loads. 
The time the system spent in either state R1 or state R2 was calculated from the time trace of the 
stochastic simulations and a histogram made of the results. The histogram is shown on a semi-
log plot to accommodate the data on a single chart. (A). Lifetimes in State R1. The unloaded 
state is the solid curve that is to the extreme left of the others, showing that the lifetimes in state 
R1 increase slightly on addition of load on R1 alone due to the “same side effect”. (B) Lifetimes 
in State R2 when load is on R1. The solid curve on the extreme left is the unloaded state. There 
is a significant increase in lifetimes due to the “opposite-side effect” of the load on R1. (C). 
Lifetimes with a balanced load, showing that both the states R1 and R2 get stabilized with a 
significant increase in lifetimes on addition of a small load on both sides. Note that the 
distributions for R1 and R2 for equivalent cases coincide as should be expected. 
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To test whether our results change for higher protein concentrations, we increased protein 

concentrations about fivefold and recalculated the probability distribution function. We find that 

our qualitative results remain robust despite the increase in protein concentrations (Appendix I: 

Supplementary Text S2.1 section 1.3 and Fig. S2.4). Switching between states is rare at these 

protein numbers, with a mean residence time in state R1 for the unloaded switch being 

approximately  min against about 700 min for the basal case considered, a difference of 

almost three orders of magnitude. However as for the basal case, the quasi-potential landscape 

skews significantly with the addition of a load on the switch. 

2.3.4 “Opposite Side effect” dominates the load effect in the basic toggle switch 

These results allow us to interpret the dynamic results that we obtained earlier. If the 

system is in state 2 and there is a load on state 1, a transition requires an increase in Repressor 1 

concentration in order to suppress the production of Repressor 2. A load on Repressor 1 however 

competes with the promoter of Repressor 2 for binding with Repressor 1, and thereby reduces the 

effective concentration of Repressor 1. This effectively stabilizes state 2. The dynamic analysis 

shows that state 1 not only remains an attractor state but in fact it takes a longer time, and more 

inducer, to shift out of state 1 as compared with the no-load situation. This is because the load 

also acts as a reservoir for Repressor 1, and in fact increases its total concentration. This slows 

down the transition to state 2. Interestingly this “same side effect” is generally weaker than the 

“opposite side effect” above. In agreement with this picture, the stochastic simulations show that 

the distributions of lifetimes in state 1 broaden slightly on addition of a load. 

If the load is present symmetrically on both sides, the concentration histograms in Fig. 2.6 

and the time histograms in Fig. 2.7 indicate that both states have been stabilized, due to a 

combination of the ‘same side’ and the ‘opposite side’ effect now acting together to stabilize 
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each state of the switch. In the dynamical simulations this is seen by the increased slope of the 

response time line for the case of a load on both sides. Results for additional parameter values 

are shown in Appendix I: Fig S2.15 and Fig S2.16. 

2.3.5 Positive feedback moiety makes toggle switch tunable 

When a positive feedback moiety is introduced in the toggle switch, we again see a linear 

relationship between the rise time and the decay time of the two states of the switch and the load 

(Appendix I: Fig. S2.5). Therefore here too the load appears to be skewing the underlying 

potential landscape of the switch. Using stochastic simulations we constructed the probability 

distribution function of this toggle switch as described above. We found that even in the absence 

of a load, when a positive feedback moiety is introduced on one side of a toggle switch, the 

probability distribution for the toggle switch, and hence the quasi-potential landscape, becomes 

extremely skewed in favor of the state with positive feedback as shown in Fig. 2.8A. Even with 

no load on the system, the switch is biased to State 1 and the lifetime spent in State 1 is much 

longer than in State 2. If a load is added to R2, the opposite side effect additionally favors State 

1. If a load is added to R1 however, the opposite side effect favors State 2 (Fig. 2.8B). It is 

possible to balance these effects resulting in a more even distribution by adjusting the load on R1 

and the strength of positive feedback. As the load on R1 is increased beyond this balance point, 

the opposite side effect dominates and the probability distribution becomes skewed toward State 

2 (Fig. 2.8C). As the opposite side effect increases with increasing load, the lifetime in State 2 

also increases in agreement with the findings for the regular toggle switch (Fig. 2.8D). The 

lifetime in State 1 also increases by a smaller amount, as for the regular toggle switch (Fig. 

2.8E). 
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For the toggle switch with the positive feedback moiety, we can also check the 

consequences of allowing repressor leakage through the repressor-load complex. As shown in 

Appendix I: Fig. S2.13, this addition to the system affects the steady state properties of the 

switch and bistability is abrogated after the load increases beyond a critical value, when load is 

present for both sides or only one side. 

 

Figure 2.8. The genetic toggle switch with a positive feedback motif on Repressor 1 (R1). 
(A). The probability distribution function (pdf) with no load. The positive feedback on Repressor 
1 leads to a pdf skewed in favor of R1. (B). The pdf with a load of 20 molecules on R1 showing 
the increase in the weight of R2 due to the “opposite side effect”. (C). The pdf with a load of 40 
molecules on R1. This load is more than enough to skew the pdf in favor of state R2. (D). 
Histogram of lifetimes in R1 with varying levels of load on R1. Comparison with panel A shows 
that the unloaded state has been stabilized by the positive feedback. Note that the lifetimes 
increase very slightly due to the “same side effect”. (E). Histogram of lifetimes in R2 with 
varying levels of load on R1. The unloaded case is the curve on the extreme left. Note the initial 
asymmetry in the lifetime distribution due to the positive feedback, as well as the large increase 
in lifetimes with the inclusion of a load. 
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2.3.6 Loads fundamentally transform positive feedback based switches in signal 

transduction 

The RasGTP system shows a bistable transition from a low RasGTP state to a high 

RasGTP state as the activating signal, in our case the number of SOS molecules, are varied. As 

Fig. 2.9 shows, a system with no Raf shows a classic Z-shaped bifurcation diagram with two 

bifurcations as SOS is varied. The first bifurcation marks the transition from a monostable low-

RasGTP state to a bistable system with a “high” RasGTP state (and an unstable intermediate 

state). The second bifurcation marks the transition from the bistable state to another monostable 

state with a high concentration of RasGTP. 

 

Figure 2.9. Bifurcation diagram of the Ras switch with different levels of Raf (load) on the 
system. 
The total number of SOS in the simulation box is used as the parameter being tuned, which 
varies from 0 to 1000. For Raf = 0, Raf = 10 and Raf = 30, there are two bifurcations as SOS is 
increased. In the first bifurcation a new high valued stable steady state appears along with the 
low valued stable steady state. In the second bifurcation, the low valued stable state disappears 
leaving behind only the high valued state. The dotted line marks the unstable steady state that 
also comes into existence in the bistable region. As total Raf increases, the two bifurcations 
approach each other. When Raf = 50, the system has lost both of its bifurcations and is 
characterized by a single stable steady state at all values of Raf. 
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When Raf is added to the system, the bifurcation diagram changes and the two bifurcations 

start approaching each other. This is because the effect of adding Raf is equivalent to 

sequestering away some of the activated RasGTP in an “inactive” complex. When Raf 

concentration crosses a threshold, the bifurcations annihilate each other and disappear. This 

system is now characterized by a single stable point for all concentrations of SOS, and the 

disappearance of the threshold for Ras activation. While there appears very little free Ras, in 

reality, even for low SOS concentrations there is a large concentration of the activated RasGTP-

Raf complex (since RasGTP in these complexes is also protected from the action of the Ras 

GTPases). 

This can be seen in another way in Appendix I: Fig. S2.8 where the stable state of RasGTP 

is plotted against the level of total Raf in the system, keeping the level of SOS constant. Again 

we see that a bistable system is transformed into a monostable system when Raf increases 

beyond a threshold. These results are exactly the same for the model which assumes Michaelis-

Menten kinetics, except for small changes in molecule numbers, as can be seen in Appendix I: 

Fig. S2.7 and S2.9. Results do not change on changing load-binding parameters (Appendix I: 

Fig. S2.10, S2.11) 

Thus the addition of the Raf scaffold, which is an integral part of the MAPK cascade, 

fundamentally changes the qualitative behavior of the positive feedback switch. The main reason 

why the steady state bifurcation properties are affected here in contrast to the basic genetic 

toggle switch is that for this signaling circuit, as seen in Eq. 22–25, total Raf and Ras are 

conserved, as is typical for a short timescale signal transduction system. These conservation laws 

couple Raf concentration to RasGTP concentration even at steady state. Therefore adding Raf to 
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the system effectively reduces total Ras concentration since Raf sequesters away Ras from the 

switch. 

To see this more generally, consider for example a chemical reaction system comprising of 

n-species . Let us assume without loss of generality that the species  is coupled to a 

downstream circuit through a binding reaction with a load, . The (n+2) differential equations 

describing this system are: 

 
(26) 

 
(27) 

 
(28) 

 
(29) 

Note that for simplicity of notation we have not indicated the dependence of the dynamical 

system on its own parameter values. Now in the steady state, if the set of equations is complete, 

the left side uniformly goes to zero and we recover the result that the steady state remains exactly 

the same with or without a load, as for the genetic toggle switch. However let us now assume 

that we have an additional conservation law, say, 

 
(30) 

This conservation law implies that one equation in our dynamical system is redundant, and 

we need to drop one equation to make the system linearly independent. We can decide to 

drop Eq. 19, and substitute  in Eq. 20 and Eq. 21 and solve the resulting (n+1) 

equations for the (n+1) unknowns, , obtaining  as a residual from Eq. 22. 

Thus the steady state solutions of the  now involve the amount of the load. Clearly, the 
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existence of the conservation law has led to a change in the steady state properties of the 

dynamical system. Note that  itself would usually enter (by itself or in the form of other 

complexes, which then would also need to be accounted for in the conservation law Eq. 22) into 

one or more of the equations for the remaining species, . This would result in the 

equations for those other species explicitly involving, and thus depending upon the level of the 

load. For the Ras system above, Eq. 16 couples the load, Raf, to the concentration of Ras. 

However Ras concentration and SOS concentration are also coupled. Thus the load explicitly 

affects the steady state values of all species concentrations in this system. This leads to a 

fundamental qualitative change in the bifurcation properties of the system. 

2.4 Discussion 

It has been pointed out previously that significant sequestration effects can abrogate zero 

order ultrasensitivity [26], [47], [48], can change the dynamics of simple phosphorylation 

circuits [23], [24] and change oscillatory behavior in some circuits [27]. We add to this body of 

work by demonstrating that the addition of a simple binding partner to the output protein of a 

genetic or signaling switch can have dramatic effects on its properties, and can fundamentally 

change the operation of the switch. 

For a genetic toggle switch with two mutually repressing proteins such as the classic 

switch built by Gardner et al. [5] we showed that even though the presence of the binding partner 

does not alter steady state properties of the switch, it can drastically change the dynamic 

properties. Using a novel potential landscape analysis, we showed that this is because the 

addition of the binding partner skews the underlying quasi-potential, making one state 

significantly more stable than the other. In practice therefore, a genetic toggle switch that is 

significantly skewed towards one side may never properly function as a switch. Thus the 
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downstream consequences of such loads need to be taken into account when designing larger 

synthetic circuits with the toggle switch as one of the elements. 

On the other hand this phenomenon actually provides a way of making artificial switches 

tunable. It is possible to engineer a biased switch merely by adding a load on the opposite side of 

the toggle, which is a useful device when engineering a switch that is designed to be switched on 

only in special circumstances. A load on both repressor proteins similarly stabilizes both sides of 

the toggle switch. This could be useful when working with synthetic components with low 

concentrations in cells, especially those that display stochastic switching. A load on both 

repressor proteins can significantly increase the stability of such a toggle. 

In natural systems, mutually repressing toggle switches are often found with other 

complexities, such as a positive feedback motif on one side. The positive feedback motif by itself 

biases the toggle switch by stabilizing the side it is on at the expense of the other side. A load on 

the same side then stabilizes the opposite side, and can re-establish balance between the two 

quasi-potential wells. For engineering circuits in multi-cellular organisms, it is worth noting that 

that feedback between the load on a toggle switch and the strength of the positive feedback may 

ensure that the switch operates efficiently even in the presence of cell to cell variability in the 

load. How loads vary between cells and in multi-cellular organisms is an interesting question to 

explore in future work. The presence of the positive feedback provides a potential target for 

evolutionary fine-tuning of the switch. 

In the above analyses we use novel potential landscape methods that have proved useful 

and insightful in fields such as protein folding to discuss the fundamental properties of a 

dynamical system that shows not apparent changes in its stability properties. We demonstrate 

that these methods, though still relatively underdeveloped for use with non-equilibrium chemical 



 
 

66 

reaction systems, hold promise for understanding the dynamics of such systems beyond what 

linear stability analysis can provide. However there are certain conditions when addition of a 

load changes the stability properties of the genetic toggle switch. One class of such effects 

happen when the repressor can leak away from the repressor-load complex, as can happen either 

when the repressor can decay or degrade when bound to the load, or when the load can modify 

the repressor and make it unable to repress. We show, employing standard bifurcation analysis, 

that additional loads in this system can abrogate the switch-like properties of the toggle switch 

entirely. 

In switches based on autocatalysis or positive feedback with an enzymatic deactivation, 

such as is often found in signaling systems, the effects of a load are equally dramatic. We show 

that in a simple model of Ras activation, adding a small concentration of Raf molecules changes 

the bifurcation diagram of the signaling circuit and can completely abrogate the bistability in the 

system. While we have chosen a specific example of Ras activation, our simplified model, with 

an autocatalytic forward reaction and an enzymatic backward reaction is a minimal model for a 

many positive feedback switches. The change in the bifurcation diagram arises from the 

conservation laws that couple the concentration of the load with the concentrations of the 

proteins in the upstream module. Given the sensitivity of non-linear dynamical systems to initial 

conditions, it should probably be expected that many, if not all, positive feedback based switches 

that operate at the short timescales of signal transduction, and therefore must possess these 

conservation laws, should exhibit this sensitivity to the effect of a load. 

Our results throw up an interesting puzzle for quantitative biologists. In many natural 

signal transduction systems such as the MAPK cascade, the concentration of the output of a 

bistable switch is quite comparable to the concentration of the load, thus significant changes in 
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load concentrations could have dramatic effects on the behavior of the switch. However it has 

also been shown that there is a significant cell to cell variability in protein concentrations [49]. 

How do cells ensure that positive feedback based switches such as the Ras switch continue to 

operate robustly in the bistable regime? Additional regulatory mechanisms involving feedback 

between the load and its partner protein may exist that confer robustness to the qualitative 

behavior of the biochemical switch. Arguably some of the bells and whistles of natural protein 

networks that are often disregarded when analyzing the network may in fact be performing this 

role. In other words, self-assembled switches have to be complex! In this context it is worth 

mentioning that it has been persuasively argued [50], [51] that some biological circuits maintain 

robustness of “fold-change’ behavior rather than absolute levels of protein concentration. It is 

possible that additional protein-protein interactions that couple concentrations of loads with 

output proteins may end up in performing this function. Another significant factor that needs 

consideration is the role of spatial segregation in producing feedback from the downstream 

module to the upstream one. In fact it has been shown experimentally that MAPK substrates 

sequester activated MAPK in the nucleus, and thus protect it from cytoplasmic phosphatases. 

Changing the concentration of one substrate therefore affects the concentration of activated 

MAPK [52]. 

Previous discussions of the effect of loads on the operation of circuits have suggested the 

use of insulators, that is circuit elements that insulate the upstream module from the downstream 

module [22]. The initial suggestions for building insulators in Ref. [22] involved incorporating 

signal amplification along with negative feedback in the upstream circuit. Another way of 

insulating the circuit is to ensure that the demand of the load for its cognate repressor is never 

significant compared to the total amount of repressor. For a genetic switch therefore, a possible 
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insulating mechanism is if the link to the downstream circuit is through a promoter. For example, 

consider making an AND gate from an output of the toggle switch. This can be done by inserting 

a constitutively produced protein Y that binds to R1 such that the complex is a transcription 

factor for another protein, say Z. Thus there is an AND relationship between the two inputs, Y 

and R1 and the output Z. To offset the effect of load induced modulation of the dynamics of R1, 

an additional step can be inserted such that R1 first binds to the promoter region of another gene 

that codes for protein X and activates its transcription, and it is the protein X, rather than R1, that 

can bind to Y and activate production of Z. The advantage of adding this extra step is that the 

concentration of the promoter for X is very small compared to the concentration of R1, and 

therefore load induced modulation of the upstream toggle can be kept at a minimum. Note 

however that this cannot be done without the additional cost of the time delay required for the 

transcription and translation of X. 

As can be seen, any additional step or series of steps that can amplify a weak signal can act 

as an insulator. Another standard example of an amplifying circuit is a phosphorylation cascade 

which is especially relevant when considering Ras activation since it directly leads to the MAPK 

phosphorylation cascade. Phosphorylation cascades are also very fast, and therefore do not face 

the additional time delays of an additional transcriptional step. From the point of view of 

synthetic circuit design, the insulating mechanism here could be constructed by designing a weak 

binding affinity of Ras (or the synthetic protein that plays that role) for Raf (or the equivalent 

protein). The bound complex then catalyzes a phosphorylation cascade that ends by connecting 

to the downstream circuit. 

Note that this method of insulation does not have the same time delay costs as the 

additional transcription steps. However it does come with the metabolic costs of having to 
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produce large amounts of proteins that are essentially serving no useful physiological purpose for 

the cell. This cost could be relevant in some synthetic biology applications, and certainly needs 

to be evaluated during circuit design. It has been shown in the context of phosphorylation cycles 

that insulation always carries a metabolic cost, and in general better insulation carries a greater 

metabolic cost [53]. 

The existence of the MAPK phosphorylation cascade however begs the question whether it 

serves the purpose of insulation of the upstream Ras circuit from the downstream circuit. While 

it is not possible to answer this intriguing question without further experiments, it does appear 

that the Ras-Raf complex is present is quite large numbers on activated cells. This would suggest 

that insulation is not the function for which the cascade may have evolved. Our own analysis of 

the genetic toggle switch with the positive feedback motif suggests that Nature may prefer more 

complicated forms of regulation that balance the different components of the circuit. However 

there is no reason why both methods cannot be utilized. To our mind this is a very exciting 

question that requires more attention from experimentalists and theorists alike. 

It should also be noted that due to non-specific binding of transcription factors with DNA 

as well as between proteins, every circuit in the cell, real or synthetic, operates in the presence of 

a load. Variability in the functioning of circuits that are seen when transferring synthetic circuits 

between species, or even in different cells, may be a result of not only differences in basic 

protein concentrations, but also of this undervalued but nevertheless tangible load. Based on this 

reasoning we predict that some of the host-dependent effects that complicate synthetic biology, 

i.e. a synthetic circuit that works in one organism not performing well in another, are in fact due 

to changes in the intrinsic load due to non-specific binding when changing hosts. 
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Our analysis underscores the importance of incorporating loads when simulating models of 

switches in natural and synthetic systems. Mathematical analysis of switch-like motifs therefore 

would do well to at least include a load on their output proteins, in order to incorporate the 

possible effects of load induced modulation on the circuit. 
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CHAPTER 3: A GENETIC TOGGLE SWITCH IN PLANTS2 
 
 
 
3.1 Main text  

Synthetic biology aims to develop programmable traits in organisms that could yield 

sustainable technologies for human and environmental needs. Previous work established that 

theoretical and practical design of complex gene networks with programmable functions can be 

achieved in bacteria. Subsequent studies showed similar programmable functions can be 

produced in cellular eukaryotic systems such as yeast, cultured mammalian cells and 

multicellular organoids [1–7]. Here, we expand synthetic biology’s predictive abilities to a whole 

eukaryote organism with functionality maintained through meiosis and in successive generations. 

Based on quantitatively characterized transfer functions of plant genetic components, we 

developed in silico predictive models to guide assembly of the first synthetic toggle switch 

circuit in a plant. Our predictions allow computer selection of specific genetic components that 

are assembled to form a toggle and tested in transgenic plants. Whole-plant data are 

quantitatively modeled to verify that the desired behaviors are achieved, and to allow genetic 

circuit refinement if not achieved. Using this approach, we produced plants that are able to 

switch states and maintain these states through complex eukaryotic processes. These results 

                                                
2 The collaborative work presented in this chapter and in Appendix II is an unpublished 
manuscript by Tessema K. Kassaw, Wenlong Xu, Christopher S. Zalewski, Katherine A. 
Kiwimagi, Ron Weiss, Mauricio S. Antunes, Ashok Prasad, June I. Medford. Author 
contributions: J.I.M. and R.W. conceived the idea, M.S.A. developed the protoplast 
methodology, K.A.K. and A.P. did the initial data analysis and initial models, A.P. and W.X. 
developed advanced models, W.X. developed plant imaging automation software, M.S.A., 
T.K.K., C.S.Z. and J.I.M. designed the synthetic genetic circuits, T.K.K. and C.S.Z. assembled 
and verified all genetic circuits, T.K.K. and support staff produced all transgenic plants, and all 
authors aided in data analysis, preparation and writing of the manuscript. I am the co-first author 
on the manuscript. This work is being presented in this chapter in its entirety to maintain the 
intellectual coherence of the project. 
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suggest that synthetic biology’s predictive and programmable abilities can be extended to whole 

organisms, including metazoans and humans, and open the possibility to predictably engineer 

nature’s untapped diversity into sustainable systems.   

A genetic toggle switch is a device capable of switching between, and maintaining, two 

distinct states. The general architecture of our synthetic bistable genetic circuit is based on the 

topology used for the first genetic toggle switch, described by Gardner et al.[6]. The ability to 

switch, and maintain, two distinct states is achieved by two constitutively active and repressible 

promoters that are cross-repressed by their respective repressor proteins (Figure 3.1a). For plant 

toggle function, our circuits have additional complexity so we can genetically encode the 

repressor’s inducibility, a function not required in the original bacterial circuit (Figure 3.1b, d).  

The genetic circuit output (readout) is likewise under the control of a repressible promoter and 

expression levels of the readout (gene of interest) determine the state of the circuit (Fig. 3.1b-e).  

We define our two states as high and low (HIGH State → high readout expression, LOW State 

→ low readout expression) with the transition between states controlled by a brief chemical 

induction (Fig. 3.1). Each state is maintained in the absence of the inducer, i.e., it shows memory 

(Fig. 3.1c, e).   

We previously quantitatively characterized the transfer function of synthetic repressible 

promoters and their cognate transcriptional repressors using a transient expression assay in 

Arabidopsis protoplasts [7]. We used our models to select, from this pool, quantitatively 

characterized genetic components with the best predicted ability to produce a genetic toggle 

switch. However, use of a transient expression system to measure quantitative function left two 

factors uncharacterized: the actual parameters of the multiplicative noise present in the protoplast 

system, and positional effects resulting from random stable integration of the genetic circuits (T-
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DNA) in transgenic plants. These factors could lead to quantitative variation in parameters 

ranging from about 0.2 to 2-fold, and thus affect our capacity to use this characterization for 

predictive fits in synthetic genetic devices. As shown by mathematical analysis (Appendix II: 

Section 8.4.1), a functional toggle switch requires repressor-promoter pairs with two properties: 

(i) the input-output functions characterizing the repressibility of a promoter by its repressor must 

have large Hill coefficients, and (ii) the maximal expression levels of the two promoters must be 

balanced. We selected the repressor-promoter pairs for our toggle design based on these two 

principles, and identified two combinations that satisfy these criteria. One combination consists 

of NOS2xGal4.EAR with two copies of 35S2xLexA.EAR (Toggle 1.0) (Appendix II: Fig. S3.2). 

The second consists of two copies of 35S4xLexATATA.OFPx and one copy of 

NOS2xGal4.EAR (Toggle 2.0) (Fig. 3.2). In both cases, the 2:1 combination was chosen to 

balance the maximal strength of the stronger Gal4-based promoter (see Appendix II: Section 

8.2.1 for a detailed discussion of the quantitative characteristics of these components). We 

generated transgenic plants [8] containing each distinct toggle circuit controlling expression of a 

quantitative reporter (luciferase). Initial screening of primary transgenic plants in the absence of 

any inducer showed plants in either the low or high expression states. We focused on plants 

initially in the low state (no luciferase expression), as plants initially in the high state (strong 

luciferase expression) could either have a functional toggle or they could simply have 

constitutive luciferase expression.   

We evaluated circuit performance using homozygous plants grown vertically in MS agar 

plates with or without the chemical inducers, 4-hydroxy-tamoxifen (4-OHT; switching to the 

high state using the synthetic repressors, LexA.EAR [Toggle 1.0] or LexA.OFPx [Toggle 2.0]) 

or dexamethasone (DEX; switching to the low state with the synthetic repressor, Gal4.EAR).  
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The switching time from the low to the high state and from the high to the low state was 

determined based on the time for the circuit to establish steady-state behavior after a continuous 

induction with 4-OHT or DEX, as shown in Fig. 3.5. We induced switching of circuit states after 

four days by moving plants to the opposite induction media (see Section 3.2 Online Methods).   

To quantitatively evaluate the bistability of our synthetic toggle switch, we utilized a 

custom-written image processing algorithm that extracts luciferase data from expression in an 

image of an entire plant, and can distinguish plant roots from shoots (Appendix II: Section 

8.1.2). We devised a novel method to sample all good parameter sets, i.e., parameter sets that fit 

the plant data to an Ordinary Differential Equation (ODE) model of a toggle switch. The system 

of ODEs is based on Hill functions to describe the input-output characteristics of each repressible 

promoter (Appendix II: Section 8.1.4). To sample the space of good parameter values, we used a 

Markov Chain Monte Carlo (MCMC) method with the Metropolis algorithm [9] to numerically 

maximize a likelihood function (Appendix II: Section 8.1.4). Parameter values that met the 

criteria of goodness of fit were used to simulate the ODE model to assess the bistability 

properties of the system (Appendix II: Section 8.1.4). Figure 3.3a shows fitted ODE simulations 

(blue lines) versus actual data points (red dots) for plants containing Toggle 1.0. Toggle 1.0 

correctly switched from the low state to the high state with 4-OHT induction, producing an 

average of 21-fold increase in luciferase expression (maximum of 32-fold; Figs. 3.6, 3.7). 

Similarly, Toggle 1.0 plants in the high state were able to switch back to the low state with DEX 

induction showing a 25-fold average decrease in luciferase expression (maximum 40-fold; Figs. 

3.6, 3.7). However, a hallmark of a bistable toggle switch is memory, i.e., the ability to maintain 

a stable state even in the absence of the inducer. Toggle 1.0 plants failed to show such a behavior 

(Figure 3.3a, Fig. 3.8, High Memory), and instead functioned as a monostable “doorbell” switch 
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that stays in the high state only while the inducer is present. This was confirmed by the 

quantitative analysis based on ODE simulations (Appendix II: Section 8.2.4).  

The Toggle 2.0 genetic circuit is assembled from 35S4xLexATATA and NOS2xGal4 

promoters in a 2:1 combination, respectively, and Gal4.EAR and the stronger LexA.OFPx 

repressor (Fig. 3.2). Toggle 2.0 plants correctly switched from the low to high state in the 

presence of 4-OHT (Fig. 3.3b, Fig. 3.9b) with an average induction of 80-fold (maximum 96-

fold; Fig. 3.10d) in roots. Moreover, unlike Toggle 1.0 plants, Toggle 2.0 plants showed an 

ability to retain the high state (Fig. 3.3b, Fig. 3.11a, High Memory). However, Toggle 2.0 plants 

switched poorly from the high state to the low state with DEX induction, demonstrating behavior 

indistinguishable from the High Memory treatment, where DEX was not added (Fig. 3.3b, High 

→ Low; Figs. 3.9g, 3.10a; Appendix II: Tables S3.6-S3.7). Similar to Toggle 1.0, untreated 

Toggle 2.0 control plants showed little or no background luciferase expression and remained in 

the low state throughout our experiments (Fig. 3.3b, Low Memory, and Figs 3.9d, 3.10a). These 

data suggest that the 35S4xLexATATA promoter is stronger than predicted in silico (Appendix 

II: Tables S3.10-S3.11), increasing production of the Gal4.EAR repressor that turns off the 

luciferase output without induction. However, its high cooperativity (Appendix II: Table S3.10), 

combined with strong repression from LexAOFPx, resulted in a toggle that when switched, 

produces plants that become trapped in the high state until reset by meiosis, when the plants 

return to the low state originally selected.   

Results from Toggle 1.0 and Toggle 2.0 (Appendix II: Sections 8.2.3-8.2.6, Figs. 3.8, 

3.11), indicate that we could produce a fully functional toggle by simply adding a second copy of 

the DEX-inducible Gal4.EAR repressor to Toggle 2.0 (Fig. 3.2). We assembled this genetic 

circuit, Toggle 2.1, and produced transgenic plants. Plants containing Toggle 2.1 correctly 
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switched from the low state to the high state with 4-OHT addition (Figs. 3.3c, 3.4b, 3.12b), 

producing a 34- and 19-fold increase in luciferase expression in the shoots and roots, 

respectively (Fig. 3.13c, d), and retained this state (Figs. 3.3c, 3.4d, High Memory). In addition, 

Toggle 2.1 plants were able to switch back from the high state to the low state and maintain this 

low memory state (Figs. 3.3c, 3.4a, c). To further quantitatively evaluate bistability shown in 

Figures 3.3 and 3.4, we used the MCMC scheme to fit the luciferase data from Toggle 2.1 plants.  

The MCMC analysis shows that for shoots all the parameter sets that met the goodness of fit 

criterion are bistable, i.e., they displayed two well separated states for a time period much longer 

than the experimental timescale (see Appendix II: Sections 8.2.7-8.2.8 and Fig. 3.14), whereas 

roots are bistable but have a smaller number of parameter sets that fit this criterion (Appendix II: 

Section 8.2.8). Toggle 2.1 is therefore the first bistable genetic toggle switch developed in a 

plant, and indeed in a complex multicellular organism. 

The quantitative difference in our toggle’s function between shoots and roots may suggest 

broader rules for predictive genetic circuits in entire organisms.  In plant development, one of the 

earliest differentiation events is distinction of the root from the shoot [10–13]. When we 

quantitatively examined switching and memory in shoots and roots, we found differences (Figs. 

3.7, 3.10, 3.13). Specifically, for Toggle 2.1, shoots appear to show both higher expression and 

better memory of the high state than roots (Figs. 3.4b-d, 3.12, 3.13; Appendix II: Tables S3.8, 

S3.9).  One possibility is that tissue specific differences have some scalar effect between roots 

and shoots, or simply that uptake of the inducers is very likely different in roots than in shoots; 

shoots could require transport.  Another possibility is that positional effects from the random T-

DNA integration [14,15] may result in variable accessibility for transcription factors, potential 

for post-integration modifications, and differences in spatial and temporal regulation of promoter 
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activity. In support of this, it is notable that the monostable toggle (Toggle 1.0) had higher 

expression in the roots than the shoots (Figs. 3.3a, 3.6, 3.7). 

Nonetheless, our genetic toggle maintains its function through meiosis, cell and tissue 

differentiation, and distinct life states, suggesting our synthetic circuits have robust abilities.  The 

functional retention through meiosis, with its characteristic chromatin resetting [16], is notable. 

Hence, our toggle switch extends synthetic biology’s programmability to differentiated 

multicellular organisms. Our quantitative predictions based on transient expression in 

protoplasts, while still not completely reliable for predictions, can be used to guide the design of 

synthetic circuits in plants reducing the combinations to test. In support of this, parameter values 

estimated by the fits to the ODE model in whole plants overlap with those previously estimated 

for transient expression of the individual genetic parts in protoplasts (Appendix II: Section 

8.4.3). The distinct behavior of Toggle 1.0 versus Toggle 2.0 and Toggle 2.1 in roots versus 

shoots suggests that design of genetic circuits for multicellular organisms could benefit by 

further quantitative tuning for specific tissues.  Because automated genetic design has already 

been demonstrated in bacteria [17], producing programmable functions in plant platforms may 

allow us to develop sustainable technologies for food security, material and devices to serve 

humanity and the environment in the post-industrial period.    
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Figure 3.1. General architecture of a plant toggle switch.  
a. General structure of toggle where PROM.1 and PROM.2 are mutually repressed by protein 
repressors (REPR.1 and REPR.2) whose expression is reciprocally directed by each promoter.   
b-d, Design of a synthetic toggle switch.  PROM.1 and PROM.2 are constitutive and repressible 
plant promoters that control expression of the orthogonal repressors, REPR.1 and REPR.2.  
REPR.1 and REPR.2 mutually repress transcription of each other. A second copy of PROM.1 
controls expression of a readout (GENE OF INTEREST). The state of the circuit is described by 
the expression level of the readout (HIGH → high expression, LOW → low expression). 
Switching states of the toggle circuit is controlled by chemical inducers, DEX (dexamethasone) 
and 4-OHT (4-hydroxytamoxifen).  a. DEX induces expression of the second copy of REPR.1 
that binds to and represses expression of PROM.1 (blue lines).  This enables the switch to the 
low state (b), and maintenance of this low state without the inducer (c). d. OHT induces 
expression of a second copy of REPR.2 that binds to and represses PROM.2 (blue line).  This 
enables the switch to the high state (d), and maintenance of this high state without the inducer 
(e). 
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Figure 3.2. Schematic showing assembled components in a plant toggle switch.   
Repressors GEAR (Gal4.EAR) and LOFPx (LexA.OFPx) mutually repress expression of each 
other by binding to the repressible promoters, NOS2xGal4 and 35S4xLexATATA, respectively. a-b. 
DEX induces a second copy of the GEAR repressor that binds to and represses two copies of the 
promoter, NOS2XGal4, enabling (a) the switch to the low state and (b) maintenance of the low 
state without the inducer. c-d. OHT induces a copy of the LOFPx repressor that binds to and 
represses two copies of the promoter 35S4XLexATATA enabling (c) the switch to the high state and 
(d) maintenance of the high state without the inducer. Firefly luciferase provides a quantitative 
readout of circuit function.   The inset shows a copy of DEX inducible GEAR repressor added in 
Toggle 2.0 to create Toggle 2.1.  
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Figure 3.3.  Quantitative analysis of bistability of the different toggle circuits in plants. 
Transgenic plants containing each of the toggle switch circuits were subjected to different 
inducer conditions (see Section 3.2 Online Methods for sample sizes) to test stability of the low 
and high states, as well as state transitions.  Each box contains a histogram representation of the 
quantification of luciferase expression in plants, plotted as pixel intensity before (red curves) and 
after (blue curves) induction of state transition, and an ODE model fit (blue line) to the 
experimental data collected (red dots). a, Toggle 1.0. b, Toggle 2.0. c, Toggle 2.1. Green boxes 
in a and b indicate where the corresponding toggle circuit failed to display the expected 
behavior. Low Memory, plants incubated with DEX inducer for 4 days to establish the low state, 
then moved to media with no inducer to test for stability (memory) of the low state. Low → 
High, plants incubated with DEX inducer for 4 days to establish the low state, then moved to 
media with 4-OHT inducer to switch the circuit to the high state. High → Low, plants incubated 
with 4-OHT inducer for 4 days to establish the high state, then moved to media with DEX 
inducer to switch the circuit to the low state. High Memory, plants incubated with 4-OHT 
inducer for 4 days to establish the high state, then moved to media with no inducer to test for 
stability (memory) of the high state. 
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Figure 3.4. Toggle 2.1 function in plants as visualized with false colored luciferase activity.  
Transgenic plants containing the Toggle 2.1 circuit were incubated under different inducing 
conditions and imaged for luciferase (readout) activity over 12 days. a, Low Memory. 3. b, Low 
! High. c, High ! Low. d, High Memory. The states of the plants (a-d) are described in Fig. 3. 
Intensity of luciferase activity is false colored according to the fire scale shown on the right. 
Arrows indicate when plants were moved to different inducer conditions, as described above. 
Panels to the right show images of corresponding plants at Day 12. 
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Figure 3.5. Steady state luciferase expression after continuous induction with 4-OHT or 
DEX.  
Shoots (a) and roots (b) of Toggle 1.0 steady state luciferase expression (FLUC Signal Intensity) 
over eight days of continuous induction. Shoots (c) and roots (d) of Toggle 2.0 steady state 
luciferase expression over ten days of continuous induction. Shoots (e) and roots (f) of Toggle 
2.1 steady state luciferase expression over twelve days of continuous induction. Dots represent 
the experimental data and solid lines of the same color represent the model fitted to the 
experimental data. Each solid line represents a successful parameter set, as defined in Appendix 
II: Section 8.1.4. 4-OHT switches the toggle on, to the high state, whereas DEX switches the 
toggle off, to the low state.  
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Figure 3.6. Luminescence heat maps (linear scale) of selected plants containing Toggle 1.0 
under different treatment conditions.  
Regions of Interest (ROI) drawn for the shoots are indicated by green lines, whereas those for the 
roots are indicated by yellow lines. All images use the same fire scale which false-colors 
luciferase intensity, with black representing zero and white representing saturation according to 
the scale shown at the bottom. The colors reflect luminescence intensity changes between 
different treatments. Inducer conditions were changed after imaging on Day 4, which is indicated 
by the red dashed line. a, Low Memory, plants incubated with DEX inducer for 4 days to 
establish the low state, then moved to media with no inducer to test for stability (memory) of the 
low state.  b, Low → High, plants incubated with DEX inducer for 4 days to establish the low 
state, then moved to media with 4-OHT inducer to switch the circuit to the high state. c, Low → 
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Low, plants incubated with DEX inducer throughout the experiment (low state). d, Control, 
plants incubated without inducer throughout the experiment. e, High Memory, plants incubated 
with 4-OHT inducer for 4 days to establish the high state, then moved to media with no inducer 
to test for stability (memory) of the high state. f, High → High, plants incubated with 4-OHT 
throughout the experiment (high state). g, High → Low, plants incubated with 4-OHT inducer 
for 4 days to establish the high state, then moved to media with DEX inducer to switch the 
circuit to the low state. 
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Figure 3.7. Quantitative data analysis of Toggle 1.0 performance.  
a-b, Mean temporal luminescence levels of shoots (a) and roots (b) of plants under different 
treatments (See Section 3.2 Online Methods for sample sizes). The x-axis shows the number of 
days on which luminescence data was collected starting from day 0. Data points on a same day 
are slightly shifted for clearer display. The y-axis shows the luminescence intensity. Error bars 
indicate standard errors. The red dashed line indicates the time when inducer was changed. c-d, 
Average fold changes in luciferase activity of shoots (c) and roots (d) under different treatments 
(See Section 3.2 Online Methods for sample sizes). Closed circles of different colors indicate 
fold change values of individual plants in corresponding treatment groups. The black closed 
circles represent the mean fold change and the black bar is the standard deviation. The number 
above each group of data-points is the average fold change of the corresponding group. Numbers 
in dark green represent increases in luminescence, while numbers in red indicate a decrease. The 
red dashed line marks a fold change of one, i.e., no change. All treatments are defined in detail in 
the Section 3.2 Online Methods and Fig. 3.6 legend. 
 
 

 

Figure 3.8. Parameter estimation results of Toggle 1.0 using MCMC method.  
Closed circles of different colors indicate mean luciferase intensity levels of shoots (a) and roots 
(b) of plants under different treatments from the experimental results shown in Figure 3.7a-b. 
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Data points on a same day are shifted a little for clearer display. Each curve represents numerical 
solutions of ODE using one estimated parameter set. Different colors correspond to different 
treatment conditions that are described in the legend to Figure 3.6. Fits plotted are best 
parameter sets as defined in Appendix II: Section 8.1.4.  
 
 

 

Figure 3.9. Luminescence heat maps (linear scale) of selected plants containing Toggle 2.0 
under different treatment conditions.  
Green lines indicate ROIs drawn for the shoots, whereas yellow lines indicate those for the roots. 
All images use the same fire scale to indicate false-colored luciferase intensity, with black 
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representing zero and white representing saturation according to the scale shown at the bottom. 
The colors are comparable and reflect luminescence intensity changes between different 
treatments. Inducer conditions were changed after imaging on Day 4, which is indicated by the 
red dashed line. a, Low Memory, plants incubated with DEX inducer for 4 days to establish the 
low state, then moved to media with no inducer to test for stability (memory) of the low state.  b, 
Low → High, plants incubated with DEX inducer for 4 days to establish the low state, then 
moved to media with 4-OHT inducer to switch the circuit to the high state. c, Low → Low, 
plants incubated with DEX inducer throughout the experiment (low state). d, Control, plants 
incubated without inducer throughout the experiment. e, High Memory, plants incubated with 4-
OHT inducer for 4 days to establish the high state, then moved to media with no inducer to test 
for stability (memory) of the high state. f, High → High, plants incubated with 4-OHT 
throughout the experiment (high state). g, High → Low, plants incubated with 4-OHT inducer 
for 4 days to establish the high state, then moved to media with DEX inducer to switch the 
circuit to the low state.  
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Figure 3.10. Quantitative data analysis of Toggle 2.0 performance.  
a-b, Mean temporal luminescence levels of shoots (a) and roots (b) of plants under different 
treatments (See Section 3.2 Online Methods for sample sizes). The x-axis shows the number of 
days on which luminescence data was collected starting from day 0. Data points on a same day 
are shifted a little for clearer display. The y-axis shows the luminescence intensity. Error bars 
indicate standard errors. The red dashed line indicates the time when inducer was changed. c-d, 
Average fold changes of shoots (c) and roots (d) under different treatments (See Section 3.2 
Online Methods for sample sizes). Closed circles of different colors indicate fold-change values 
of individual plants in corresponding treatment groups. The black closed circles represent the 
mean fold change and the black bar the standard deviation. The number above each group of 
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data-points is the average fold change of the corresponding group. Numbers in dark green 
represent increases in luminescence, while numbers in red indicate a decrease. The red dashed 
line marks a fold change of one, i.e., no change.  All treatments are defined in detail in the 
Section 3.2 Online Methods and Figure 3.9 legend. 
 
 

 

Figure 3.11. Parameter estimation results of Toggle 2.0 using MCMC method.  
Closed circles of different colors indicate mean luciferase intensity levels of shoots (a) and roots 
(b) of plants under different treatments from the experimental results shown in Figure 3.10a-b. 
Data points on a same day are slightly shifted for clearer display. Each curve represents 
numerical solutions of ODE using one estimated parameter set. Different colors correspond to 
different treatment conditions that are described in the legend to Figure 3.9. Fits plotted are best 
parameter sets as defined in Appendix II: Section 8.1.4.  
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Figure 3.12. Luminescence heat maps (linear scale) of selected plants showing Toggle 2.1 
behavior under different treatments.  
Green lines indicate ROIs drawn for the shoots, whereas yellow lines indicate those for the roots. 
All images use the same fire scale to indicate false-colored luciferase intensity, with black 
representing zero and white representing saturation according to the scale shown at the bottom. 
The colors reflect luminescence intensity changes between different treatments. Inducer 
conditions were changed after imaging on Day 4, which is indicated by the red dashed line. a, 
Low Memory, plants incubated with DEX inducer for 4 days to establish the low state, then 
moved to media with no inducer to test for stability (memory) of the low state.  b, Low → High, 
plants incubated with DEX inducer for 4 days to establish the low state, then moved to media 
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with 4-OHT inducer to switch the circuit to the high state. c, Low → Low, plants incubated with 
DEX inducer throughout the experiment (low state). d, Control, plants incubated without inducer 
throughout the experiment. e, High Memory, plants incubated with 4-OHT inducer for 4 days to 
establish the high state, then moved to media with no inducer to test for stability (memory) of the 
high state. f, High → High, plants incubated with 4-OHT throughout the experiment (high state). 
g, High → Low, plants incubated with 4-OHT inducer for 4 days to establish the high state, then 
moved to media with DEX inducer to switch the circuit to the low state. 
 
 

 

0 3 6 9 12
Days

103

104

105

FL
UC

 S
ig

na
l I

nt
en

si
ty

CONTROL
LOW MEM
LOW - HIGH
LOW - LOW

0 3 6 9 12
Days

103

104

105

FL
UC

 S
ig

na
l I

nt
en

si
ty

CONTROL
HIGH MEM
HIGH - HIGH
HIGH - LOW

0 3 6 9 12
Days

103

104

105

FL
UC

 S
ig

na
l I

nt
en

si
ty

CONTROL
LOW MEM
LOW - HIGH
LOW - LOW

0 3 6 9 12
Days

103

104

105

FL
UC

 S
ig

na
l I

nt
en

si
ty

CONTROL
HIGH MEM
HIGH - HIGH
HIGH - LOW

Low M
em

Low-H
igh

Low-Low

Contro
l

High M
em

High-H
igh

High-Low

Treatments

10-2

10-1

100

101

102

Fo
ld

 C
ha

ng
e

1.3

33.9

1.3 1.1

2.4

1.3

6.4

Low M
em

Low-H
igh

Low-Low

Contro
l

High M
em

High-H
igh

High-Low

Treatments

10-2

10-1

100

101

102

Fo
ld

 C
ha

ng
e 1.9

18.9

1.5 1.7

6.4

1.3

10.7



 
 

96 

Figure 3.13. Quantitative data analysis of Toggle 2.1 performance.  
a-b, Mean temporal luminescence levels of shoots (a) and roots (b) of plants under different 
treatments (See Section 3.2 Online Methods for sample sizes). The x-axis shows the number of 
days in which luminescence data was collected starting from day 0. Data points on a same day 
are slightly shifted for clearer display. The y-axis shows the luminescence intensity. Error bars 
indicate standard errors. The red dashed line indicates the time when inducer was changed or 
media was refreshed. c-d, Average fold changes of shoots (c) and roots (d) under different 
treatments (See Section 3.2 Online Methods for sample sizes). Closed circles of different colors 
indicate fold-change values of individual plants under corresponding treatments. The black 
closed circles indicate the mean fold-change and the black bars indicate the standard deviations. 
Numbers above the groups are the average fold-change of the corresponding treatment. Numbers 
in dark green colored number indicates an increase in luminescence level and red colored 
number a decrease. Red dashed line marks the baseline of one, indicating no change. All 
treatments were defined in details in the Section 3.2 Online Methods and Figure 3.12 legend. 
 
 

 
 
Figure 3.14. Parameter estimation results of Toggle 2.1 using MCMC method.  
Parameter values estimated by MCMC method fitted to experimental data of shoots (a) and roots 
(b) of plants under different treatments from the experimental results shown in Figure 3.13a-b. 
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Data points on a same day are slightly shifted for clearer display. Each curve represents 
numerical solutions of ODE using one estimated parameter set. The High to Low (green curve in 
right panel in (a)) shows the improvement in switching dynamics of Toggle 2.1 compared to 
Toggle 2.0 as shown in Figure 3.11a. Different colors correspond to different treatment 
conditions that are described in the legend to Figure 3.12. Fits plotted are best parameter sets as 
defined in Appendix II: Section 8.1.4.  
 
3.2  Methods  

3.2.1 Plasmid Construction 

All plasmids were constructed using standard molecular cloning techniques. Two types of 

plant transformation vectors were used for cloning (Appendix II: Section 8.1.1). The 

pCambia2300 binary vector was used to assemble the first toggle circuit, Toggle 1.0, in two 

separate T-DNAs. The pGREENII0229 vector was used to assemble Toggle 2.0 in one T-DNA. 

An additional DEX-inducible repressor to tune Toggle 2.0 was cloned in pCambia2300 and 

transformed into plants homozygous for Toggle 2.0 to create Toggle 2.1. The components used 

in individual toggle switch plasmids are described in Appendix II: Fig. S3.1. To quantify the 

high/low switching behavior, the plant codon optimized luciferase gene from Photinus pyralis 

(firefly) was placed downstream of one copy of the repressible synthetic promoter, NOS2xGal4, in 

all three circuits. Nucleotide sequences of individual parts used to assemble the toggle switch 

circuits are provided in Appendix II: Table S3.1 and/or Schaumberg et al. [7]. The detailed 

design principles and quantitative characterizations of synthetic transcriptional repressor proteins 

and cognate repressible promoters were reported in Schaumberg et al. [7]. For the schematic 

representation of the toggle switch circuits, see Fig. 3.2 and Appendix II: Fig. S3.2.  

3.2.2 Plant Materials and Growth Conditions  

Arabidopsis thaliana ecotype Columbia (Col-0) was used for all transformations. Plasmids 

were introduced into Agrobacterium tumefaciens GV3101 cells by electroporation. For Toggle 

2.0 in the pGREENII0229 vector, the pSOUP helper plasmid was co-transformed. Stable 
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transgenic plants were generated using the standard Agrobacterium floral dipping method [8]. 

Primary (T0) transgenic lines were selected on MS [18] media with 100 µg/ml Kanamycin, 34 

µg/ml BASTA and 100 µg/ml cefotaxime (Toggle 1.0 and Toggle 2.1), or 34 µg/ml BASTA and 

100 µg/ml cefotaxime (Toggle 2.0). Plants were screened initially for luciferase expression by 

spraying 500 µM d-luciferin solution (Gold Biotechnology, Inc.) containing 0.01% Tween 20 

and imaging. Homozygous plants were isolated at T3 (Toggle 1.0) or T2 generations (Toggle 2.0 

and 2.1).  For the luciferase assay, thirteen-day old homozygous lines were transferred to MS 

media supplemented with 20 µM 4-OHT or 20 µM DEX for Toggle 1.0, and 5 µM 4-OHT or 50 

µM DEX for Toggles 2.0 and 2.1, in 100 mm x 100 mm square plates (Fisher Brand, Cat No 

FB0875711A).  Plants were grown vertically under short-day conditions (10 h light/14 h dark) at 

22°C in a growth chamber. All experiments were conducted under seven different treatments 

conditions including control, Low → Low, Low Memory, Low → High, High → High, and High 

→ Low.  Control, plants incubated without inducer throughout the experiment.  Low → Low, 

plants incubated with DEX inducer throughout the experiment (low state). Low Memory, plants 

incubated with DEX inducer for 4 days to establish the low state, then moved to media with no 

inducer to test for stability (memory) of the low state. Low → High, plants incubated with DEX 

inducer for 4 days to establish the low state, then moved to media with 4-OHT inducer to switch 

the circuit to the high state. High → High, plants incubated with 4-OHT throughout the 

experiment (high state).  High → Low, plants incubated with 4-OHT inducer for 4 days to 

establish the high state, then moved to media with DEX inducer to switch the circuit to the low 

state. High Memory, plants incubated with 4-OHT inducer for 4 days to establish the high state, 

then moved to media with no inducer to test for stability (memory) of the high state. Both 4-OHT 

and DEX were obtained from Sigma-Aldrich. 



 
 

99 

3.2.3 Image processing 

Luciferase activity was measured using low light imaging with an XR/Mega-10 ICCD 

camera system (Stanford Photonics, Inc.) and available Piper software (v. 2.6.17) by spraying 

plants with 500 µM d-luciferin solution containing 0.01% Tween 20, and after a minimum of 30 

minutes dark adaptation. Five data points, initial (0 hour), 24, 48, 72 and 96 hours were collected 

before switching inducers. Immediately before switching, plants were rinsed with MS liquid 

media for two hours by shaking.  Four data points for Toggle 1.0 (24, 48, 72 and 96 hours), six 

for Toggle 2.0 (24, 48, 72, 96, 120 and 144 hours), or seven for Toggle 2.1 (24, 48, 72, 96, 120, 

144, 168 and 192 hours) were collected after switching. To obtain proper plant boundaries for 

quantification purposes, a color high-resolution image was taken with a digital camera (Canon 

EOS Digital Rebel XTi) and a rough bright-field image was taken with the XR/Mega-10 ICCD 

camera immediately before measuring luciferase.  An in-house image processing software was 

developed in Matlab (Mathworks). Briefly, masks of Arabidopsis shoots and roots were first 

generated from the color images using color thresholding. These two masks were then aligned 

based on the bright-field images to determine the location of plants. The registered plants masks 

were applied to the low light images of luciferase activities to generate quantitative 

measurements for shoots and roots of individual plants. More details are in Appendix II: Section 

8.1.2. 

3.2.4 Data analysis  

Similar to that reported in our previous work [7], we found the distributions of pixel 

intensity of either shoots or roots were better described by log-normal distributions than by 

Gaussian distributions. Therefore, the mean intensity and standard deviations were calculated in 

logarithmic scale of base 2 for shoots and roots of an individual plant. Fold changes were 
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calculated by dividing the mean luciferase intensity on the last day in the experiment by the 

mean intensity on the day immediately before changing an inducer. We used a two-sample 

Student’s t-test to test whether the logarithmic transformed fold changes of plants under two 

different treatments are statistically different. P-values smaller than 0.05 were deemed as 

statistically significant. More details are in Appendix II: Section 8.1.3. 

3.2.5 Modeling  

In order to quantitatively test whether the observed changes in plant luminescence 

represented a bistable or a monostable switch, we devised a novel method to fit a simple ODE 

representation of the toggle switch to the plant data. The ODE representation (details in 

Appendix II: Section 8.1.4) consists of two Hill functions describing the input-output 

characteristics of the two repressible promoters. The behaviors of the inducible promoters under 

different treatments were modeled using a product of a binary term (𝑘123  and 𝑘456 , with a value 

of either 0 or 1 based on the absence or presence of inducer, respectively) and a constitutive 

expression term (𝛼123  and 𝛼456 , promoter strengths of the inducible promoters) in the ODEs. 

The values of binary terms were changed to either zero or one based on the inductions applied at 

that time point. 

3.2.6 MCMC parameter fitting  

To fit the data to this model, we constructed a log likelihood function as the negative 

logarithm of the squared distance between the experimental data and numerical values from 

simulations of the ODE model. The log likelihood function is evaluated as a weighted average of 

experimental results from the seven different treatments. To estimate the maximum likelihood 

parameters of the toggle switch tested in plants, we used Markov Chain Monte Carlo (MCMC), 

specifically the Metropolis MCMC algorithm, where a proposed parameter value is accepted if it 
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increases the log likelihood (details in Appendix II: Section 8.1.4). The MCMC run was 

terminated if either the maximum number of runs (10,000) was reached, or convergence was 

achieved (defined as no significant change in log likelihood for more than 500 steps), or the log 

likelihood reached a pre-set threshold for a good fit. The latter two instances were treated as 

success of obtaining parameter values that matched the data. We also added an additional quality 

control step of eliminating fits with Hill coefficients greater than 6 on the grounds that such high 

Hill coefficients are not expected to be seen in these genetic circuits. The procedure was repeated 

500 times for each of the three toggle switches and the successes recorded. The parameters in 

each success were then evaluated for bistability. 

3.2.7 TAIL-PCR 

Shoot and root genomic DNA was extracted from homozygous transgenic lines using the 

DNeasy plant mini kit (Qiagen) based on the manufacturer’s protocol. To identify the T-DNA 

insertion location in the Arabidopsis genome and the copy number of the transgene, thermal 

asymmetric interlaced polymerase chain reaction (TAIL-PCR) was employed [19]. Three 

insertion-specific (nested) primers were designed to anneal to the left T-DNA border of the 

transgene and used in combination with arbitrary degenerate primers (AD primers) found in the 

literature (Appendix II: Tables S3.2-S3.3). Three subsequent TAIL-PCR reactions were 

performed and only the second and third round PCR products were analyzed on 1% agarose gels 

(Appendix II: Fig. S3.4a). To recover unknown genomic sequences flanking the insertion, gel 

purified third-round TAIL-PCR products were either directly sequenced or cloned in pJET2.1 

vector and sequenced using pJET-specific forward and reverse primers. Flanking sequences were 

identified by a BLAST search of the Arabidopsis thaliana Genome (TAIR10) to find the exact 
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location of the transgene (Appendix II: Fig. S3.4b). The transgene insertion was further 

confirmed by PCR amplification using insertion flanking primers. 
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CHAPTER 4: FORCE SPECTRUM MICROSCOPY USING MITOCHONDRIAL 

FLUCTUATIONS OF CONTROL AND ATP DEPLETED CELLS3 

 
 

4.1 Introduction  

The mechanical properties of the cytoskeleton of mammalian cells influence how the cells 

move, deform, adhere and sense their mechanical environments [1], which are altered in many 

processes of great significance like tumorigenesis [2–4] and differentiation[5,6]. Therefore, a 

better understanding of these mechanical properties may not only lead to deeper insights into 

fundamental cell biology of these processes, but also novel medical applications. Passive particle 

microrheology, which is based on analysis of the thermal motion of a tracer particle, is one such 

technique that can probe the mechanical properties of soft materials with relatively little 

perturbation of the material itself. However, the cellular cytoskeleton is an active mechanical 

system, being able to convert chemical energy, mainly in the form of adenosine triphosphate 

(ATP), into mechanical work and motion. At any given instant, in a living cell, there are 

thousands of processes, involving polymerization and depolymerization, transport, enzymatic 

reactions and global movements of cell migration or cytoskeletal reorganization, that agitate and 

liquidize the cytoskeleton and the cytoplasm [7–9]. Thus the spontaneous fluctuations of a 

particle embedded in the cytoskeleton are determined by the sum of thermal and active forces 

acting on the material properties of the cytoplasm. A more complete understanding of the 

                                                
3 The work presented in this chapter and in Appendix III has been published in Biophysical 
Journal. Xu W, Alizadeh E, Prasad A. Force spectrum microscopy using mitochondrial 
fluctuations of control and ATP depleted cells. Biophy. J. 2018; 114: 2933–2944. W.X. and A.P. 
designed the research. W.X. performed the research. W.X. contributed analytic tools. W.X., 
E.A., and A.P. analyzed the data. W.X. and A.P. wrote the manuscript. I am the co-first author 
on the publication. This work is being presented in this chapter in its entirety to maintain the 
intellectual coherence of the project. 
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mechanical properties of the cytoskeleton thus requires measurements of not only its viscoelastic 

material properties but also the spectrum of active forces (active mechanical properties)[10] that 

liquidize the cytoplasm. At thermal equilibrium, the viscoelastic properties can be related to the 

thermally driven fluctuations through the fluctuation dissipation theorem (FDT). However, it is 

complicated to disentangle the particle fluctuations driven by thermal agitation from the ones 

driven by active forces in live cells [11–13]. To tackle this issue, the viscoelastic properties can 

be first determined by applying a known force and measuring the resulting displacement, then 

the spectrum of active forces can be extracted from the spontaneous fluctuations [3,13–15]. A 

representative technique following this strategy is force spectrum microscopy (FSM)[3]. FSM 

consists of two independent measurements: the viscoelastic properties are measured using active 

microrheology while spontaneous fluctuations are measured by confocal microscopy. The active 

force spectrum is calculated using a generalized Hooke’s law to combine the two measurements. 

Though a powerful technique, FSM as it was originally developed, requires access to advanced 

instruments such as optical tweezers, microinjectors and confocal microscopes at the same time, 

which significantly limits its wider application. In addition, microinjecting fluorescent particles 

into single cells is not only tedious but introduces non-physiological disturbance to cells under 

study. A version of FSM that requires fewer instruments and is non-invasive would be of 

significant value.  

A proposed alternative approach to separate the effects of thermal forces and active forces 

on the spontaneous fluctuations of intracellular particles is to inhibit general motor, 

polymerization and other activities by depleting cellular ATP [3,16,17]. If the inhibition level is 

sufficient, the remaining fluctuations are primarily driven by thermal forces and the 

viscoelasticity of cytoskeleton can be determined from the mean square displacement (MSD) 
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using the generalized Stokes-Einstein relationship (GSER)[16]. The results were shown to be 

similar to measurements made by active microrheology [16,17]. Therefore, applying ATP 

depletion may remove the requirement for active microrheology measurements. However, this 

method is controversial. The major criticism is that the treatment with ATP depleting chemicals 

cannot remove all ATP-dependent processes without significant cellular damage [18]. To deal 

with this, the convergence of the MSDs of control and ATP depleted cells over short timescales 

was used to test if the cell damage induced by ATP depletion is significant [3,15,16]. However 

residual ATP levels and other intracellular energy sources, like guanosine triphosphates (GTPs), 

may still drive active fluctuations over long timescales, and lead to inaccuracy in the viscoelastic 

properties measured. Indeed, residual ATP levels of 1-8% of normal were reported after ATP 

depletion [16], and the viscoelastic modulus and the scaling of the MSD with time were 

qualitatively different between short and long timescales [16], leading to possibly systematic 

errors in the determination of the viscoelastic modulus.  

Subcellular organelles such as mitochondria have been proposed as an alternative to 

exogenous fluorescent particles, with the caveat that interpreting measurements may face 

additional challenges due to hard-to-characterize interactions with other subcellular structures 

[19].  Mitochondria have been used as probe particles in several studies to measure intracellular 

mechanical properties of several cell types [3,20]. Mitochondria have the additional benefit that 

they are abundant in most cell types and can be often found spatially distributed across cells, 

which enable the probing of intracellular mechanical properties with spatial resolutions [20]. But 

using mitochondria also poses additional challenges compared to fluorescent particles. 

Mitochondria are highly dynamic organelles that move, fuse and divide [21,22]. Different 

activities of fusion and fission (division) result in different mitochondrial morphologies, which 
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can be roughly classified into three types: short, fragmented (punctate) ones, elongated, highly 

branched (filamentous) ones and intermediate ones [21–23]. As probe particles, punctate 

mitochondria are preferable among these three types since they are close to the shape of 

synthetic fluorescent particles. Even so, due to intrinsic heterogeneity, the morphologies (shapes 

and sizes) of punctate mitochondria are more variable than commercially available fluorescent 

particles. In previous studies that use mitochondria as intracellular probe particles, the 

complexity of their morphology was not addressed explicitly. It is unclear if mitochondrial 

morphologies are heterogeneous within these studies, if this heterogeneity plays any role in 

determining the mitochondrial fluctuations, and if this heterogeneity has been considered in the 

quantification. To make mitochondria function reliably as endogenous probe particles, we need 

to screen for punctate mitochondria of suitable morphologies, and address their morphological 

heterogeneity.  

In this paper, we develop methods to carry out FSM using fluorescently labeled 

mitochondria as our probe particles, in which we tackle both issues summarized above. We first 

use morphological analysis to characterize those mitochondria that can be ideally used as an 

endogenous probe for intracellular mechanical properties. Using confocal imaging of ideal 

mitochondria, we calculate their MSD as a function of lag time, as well as the creep compliance 

and the distribution of directional change. We study the effect of various cytoskeletal drugs on 

the active mitochondrial motion to gain insights into its driving mechanisms. We analyze the 

distribution of directional change after ATP depletion and identify a thermally dominated time-

scale that we then use for viscoelasticity measurements. We calculate the force spectrum of 

active fluctuations by combining the spontaneous fluctuations tracked in control cells and 

viscoelastic properties measured in ATP depleted cells. Our results are quantitatively very 



 
 

109 

similar to those obtained by others using active microrheology. Visualizing mitochondrial 

motion therefore may be a non-invasive method, with relatively low requirements for advanced 

instruments beyond a confocal microscope, for characterizing intracellular mechanical 

properties.      

4.2 Materials and methods  

4.2.1 Cell culture 

C3H-10T1/2 cells, a murine embryonic mesenchymal cell line, were obtained from the 

American Type Culture Collection (ATCC, Manassas, VA) and were used at their passages of 5-

15. Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich, St 

Louis, MO) supplemented with 10% fetal bovine serum (FBS, Atlas Biologicals, Fort Collins, 

CO), 100 Units/ml penicillin and 100 µg/ml streptomycin (Fisher Scientific-Hyclone, Logan, 

UT) at 37 °C with 5% CO2. Cells were seeded at 5×104 cells/ml the night before experiments in 

uncoated glass-bottom 35 mm petri dishes (MatTeK, Ashland, MA). Mitochondria were 

fluorescently labelled with 200 nM MitoTracker Green FM (Molecular Probes, Eugene, OR) or 

500 nM MitoTracker Red FM (Molecular Probes, Eugene, OR) in DMEM for 30 min.  

4.2.2  Chemical treatments  

All chemical treatments (Appendix III: Table S4.1) were carried out right after the 

MitoTracker staining and incubated for 30 min for cytoskeleton-targeting chemicals or 2 hr for 

ATP depletion at 37 °C with 5% CO2. Imaging was completed in 2-3 hours after the treatments. 

The chemicals were maintained during imaging to prevent recovery. Jasplakinolide and 

cytochalasin D were purchased from Calbiochem (San Diego, CA), blebbistatin was from 

Cayman Chemical (Ann Arbor, MI), taxol was from Goldbio (St Louis, MO), nocodazole, NaN3 

and deoxy-glucose were from Sigma-Aldrich (St Louis, MO).  
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4.2.3 Imaging using confocal microscopy  

We optimized a protocol consisting of imaging, image processing, mitochondrial tracking 

and data analysis (Appendix III: Fig. S4.1 A). Cells were imaged in a 37 °C environmental 

chamber in CO2-independent imaging medium which consists of Leibovitz’s L-15 media (Gibco, 

Carlsbad, CA) supplemented with 10% FBS, 7 mM HEPES (Sigma-Aldrich, St Louis, MO) and 

4.5 g/l D-glucose (pH 7.0). Random isolated cells were imaged using inverted spinning disk 

confocal microscope (Nikon Instruments, Inc., Melville, NY) under a 60× oil-immersion 

objective. SlideBook 6 (Intelligent Imaging Innovations, Inc., Denver, CO) was used to control 

the hardware. Recording was taken at 10 frames per second (fps) for 100 s using a cascade II 

EMCCD camera, with a spatial resolution of 167 nm per pixel. The emission filter of 488 nm 

was used for MitoTracker Green FM and the 580 nm filter for MitoTracker Red FM when 

blebbistatin was used.  

4.2.4 Image processing and Tracking mitochondrial fluctuations  

Image processing was carried out by in-house codes programmed in Matlab 

(Mathworks Inc., Natick, MA), which are available upon request. The time-lapse images of 

mitochondria were processed using an image processing protocol (details in Appendix III: 

Supplemental Note 4.1) optimized based on an approach previously described [24,25], including: 

1) Histogram matching (Appendix III: Figs. S4.1 B. c-d); 2) Two-dimensional (2D) 

deconvolution (Appendix III: Figs. S4.1 B. e-f); 3) Bandpass filtering (Appendix III: Figs. S4.1 

B. g-h); 4) Grayscale thresholding (Appendix III: Figs. S4.1 B. i-j); 5) Mitochondria spanning 

the entire imaging period and with no interaction with other mitochondria were selected 

(Appendix III: Figs. S4.1 B. k-l). The 2D centroid weighted by intensities of each selected 

mitochondrion was recorded to generate the 2D tracks for further analysis.  
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4.2.5  Data analysis  

From the 2D tracks, the ensemble-averaged, time-averaged MSD was calculated as:   

〈∆r$(τ)〉 = 〈<X(t + τ) − X(t)A
$
+ <Y(t + τ) − Y(t)A

$〉     [1] 

where τ is lag time and brackets indicate the average over all possible lag times.  

At thermal equilibrium, the creep compliance of a material is directly proportional to MSD 

and characterizes its deformability [19,26]. The creep compliance can be calculated as:  

𝛤(𝑡) = DEF
$GH6

〈∆𝑟$(𝑡)〉          [2] 

where 𝑎 is the particle radius, 𝑘+ the Boltzmann constant, and 𝑇 the absolute temperature.  

For systems at thermodynamic equilibrium, the frequency-dependent viscoelasticity can be 

determined based on the GSER [27], which is briefly recapitulated in Appendix III: 

Supplemental Note 4.2.  

To incorporate the irregularities of mitochondrial morphologies, the hydrodynamic radius 

of a prolate (football-shape) ellipsoid is used in place of 𝑎 to calculate creep compliance and 

viscoelasticity:  

𝑎K =
√MNOPN

QR	(TUVTNWXN
T )

           [3] 

Where 𝑎K indicates the hydrodynamic radius, m and n the major and minor axes of the 

ellipsoid respectively. Basic morphological measurements were carried out to selected 

mitochondria in their first frame, where their areas, major and minor axes of minimal enclosing 

ellipses and convex hull areas were measured. The aspect ratio is defined as the ratio of major 

axis to minor axis and the solidity as the ratio of convex hull area to mitochondrial area. Both 

parameters are larger than one.  
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Directional change was calculated from each set of three points along the trajectory 

determined by the lag time as defined previously [28]. Then an ensemble-averaged, time-

averaged distribution of directional change was obtained as a function of lag times [28]. We have 

chosen to display the distribution in a [-π, π] window, so that we can emphasize directionally 

persistent motions. To summarize the rich information contained in the distributions of 

directional change, an index of directional persistence, Pd, was calculated as the difference 

between the probabilities of forward and backward motions [18]. If the motion is purely 

diffusive, the Pd is close to zero at all time scales. Negative Pd values indicate that the anti-

persistent motion is dominating. Positive Pd values show that persistent motion is dominating.  

4.2.6 Force spectrum  

The calculation of force spectrum proposed in [3] is based on the fundamental force-

displacement relationship in elastic medium, the Hooke’s law, 𝑓 = 𝐾𝑥, where f is the driving 

force, K the spring constant and x the resulting displacement [3]. To account for the frequency-

dependence of the material properties and the stochasticity of the intracellular forces, the 

Hooke’s law is generalized into quadratic form of the averaged quantities in the frequency 

domain 〈𝑓$(𝜔)〉 = |𝐾(𝜔)|$〈𝑥$(ω)〉. The frequency dependent effective spring constant (𝐾(𝜔)) 

can be related to the complex shear modulus 𝐺∗(𝜔) through a generalization of the Stokes 

relation |𝐾(𝜔)| = 3𝜋𝑑|𝐺∗(𝜔)|, where d is the radius of particle. The 〈𝑥$(𝜔)〉 is obtained as the 

Fourier Transform of the MSD 〈∆𝑥$(τ)〉.  

In the two terms to calculate the force spectrum,	〈∆𝑥$(τ)〉 comes from spontaneous 

fluctuations of probe particles and |𝐾(𝜔)| comes from the independent measurement of the 

viscoelasticity. In our system, an equivalent form was developed:  

〈𝑓$(𝜔)〉 = (3𝜋)$|𝐺∗(𝜔)|$(𝑎K$〈𝑥$(𝜔)〉)       [4] 
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|𝐺∗(𝜔)| was calculated from the mitochondrial fluctuations in ATP depleted cells and the 

mitochondrial hydrodynamic radii associated were used rather than fluorescent particles of same 

sizes in the active microrheology using optical tweezers. 𝑎K$〈𝑥$(𝜔)〉 was calculated from 

spontaneous mitochondrial fluctuations in control cells and the Fourier Transform 〈𝑥$(𝜔)〉 was 

multiplied by the square of the corresponding mitochondrial hydrodynamic radius in the control 

cells. Then, the active force spectrum 〈𝑓$(𝜔)〉 can be determined.  

4.2.7 Statistics  

The distribution of MSDs of diffusive particles is not Gaussian [29,30] and our results 

appear log-normal distributed (Supplemental Note 3) as also observed previously [17]. In this 

study, the reported means and standard deviations are computed using logarithmic transformed 

data (Appendix III: Supplemental Note 4.3). The geometric coefficient of variance (GCV) is 

defined as V𝑒cdXN − 1, where 𝑠gP$  is the variance of the logarithmic transformed data.  

Wilcoxon rank sum test is a nonparametric alternative of Student’s t test on the null 

hypothesis that the two samples are from continuous distributions with equal means, which does 

not assume the normality of the data and is generally insensitive to the actual distribution 

[31,32]. Matlab function ranksum() was used and differences are deemed as statistically 

significant for p-values less than 0.05. 

To minimize the day-to-day variance, all the comparisons were made between control cells 

and chemical-treated cells imaged on the same day, which may give rise to slightly different 

results of control cells (Appendix III: Supplemental Note 4.4).  



 
 

114 

 

Figure 4.1. Measurements based on mitochondrial fluctuations.  
(A, C) Individual and population mean with standard deviations of (A) MSDs (n=211) and (C) 
creep compliance (n=169). Gray curves are for individual mitochondria and red circles indicate 
population mean. Red dashed lines are standard deviations. Short black line is a visual guide of 
slope one. (B) Distribution of mitochondrial morphologies in a 2D space of solidity and aspect 
ratio. Filled circles are individual mitochondria color-coded with local normalized frequencies in 
accordance to the colormap. The two dashed red lines represent the morphological filtering 
criteria of solidity less than 1.1 and aspect ratio less than 2. (D) Distributions of directional 
change of control cells at different lag times. Green dashed horizontal line indicates a uniform 
distribution which is characteristic of pure diffusion.  

 
 
4.3 Results  

4.3.1 Normalizing the morphological heterogeneity of punctate mitochondria 

In contrast with the relatively tight distribution of sizes of commercially available 

fluorescent particles, mitochondrial morphologies are very heterogeneous (Figs. 4.1 B and 
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Appendix III: Fig. S4.1). A plot of the solidity against the aspect ratio shows a wide distribution 

of 2D projected mitochondrial morphologies, though many mitochondria were located close to 

the point (1, 1) that corresponds with a round shape (Fig. 4.1 B). For simple diffusion processes, 

particle size heterogeneity affects the MSD through its effect on the diffusion constant, which 

scales as 1/a, where a is the particle size, by the Stokes-Einstein relation. The creep compliance, 

as shown in Eq. 2, scales out the dependence on particle size, and should be able to reduce the 

variance contributed by morphological heterogeneity in MSD. In Eq. 2, the radius of a spherical 

particle is incorporated, which is not appropriate for most punctate mitochondria tracked in our 

cells (Fig. 4.1 B). We generalized the definition of creep compliance by substituting the radius of 

a spherical particle with the hydrodynamic radius of a prolate (football-like) ellipsoid (Eq. 3). 

This is analogous to the elegant work of F. Perrin to generalize the Stokes-Einstein equation 

[33,34]. To make sure that this generalization is appropriate, we filtered the mitochondria close 

to prolate ellipsoids as being less than 1.1 for solidity and being less than 2 for aspect ratio (Figs. 

4.1 B and Appendix III: Fig. S4.1 B. k). At least 70% of all punctate mitochondria tracked pass 

this morphological filtering criteria in all datasets presented in this study (data not shown). 

Heterogeneity in the hydrodynamic radii is still present in the filtered mitochondria (Appendix 

III: Fig. S4.2). Similar to MSDs, the distribution of the hydrodynamic radii is better described by 

a log-normal distribution than a normal distribution (Appendix III: Fig. S4.2).  

The variance in creep compliance reduces significantly after the morphological filtering, 

especially over the short timescales (Appendix III: Fig. S4.3). To quantify and compare the 

variances at different levels of population means, GCVs were calculated at every lag time for 

both MSD and creep compliance. The GCV shows the reductions in variances by the 

normalization using creep compliances and it shows even more pronounced reduction after 
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applying the morphological filtering (Appendix III: Fig. S4.4 A). This quantification also 

supports the conclusions from the visual comparisons made in Appendix III: Fig. S4.3. In all the 

datasets reported in this study, the morphological filtering and normalization using creep 

compliance are able to reduce the variances (data not shown). Therefore, creep compliance after 

morphological filtering is reported rather than MSD in the rest of this study, if not stated 

otherwise.  

4.3.2 Distribution of directional change as a hypothetical signature of mechanisms 

underlying mitochondrial fluctuations 

We observed different power-law scaling at different timescales in the control cells similar 

to earlier publications [3,14,16,35,36]. Over short timescales (0.5 – 1.5 s), the MSD curves show 

weak lag-time dependence with a mean power-law scaling factor of 0.35, suggesting that the 

mitochondrial fluctuations are dominantly subdiffusive (Appendix III: Figs. S4.4 B-C). A 

stronger lag-time dependence with a mean power-law scaling factor of 0.82 is observed over 

long timescales (6 – 8 s) (Appendix III: Figs. S4.4 B-C). The high variance observed in the 

MSDs is also significant in terms of the power-law scaling factors. Interestingly, a significant 

portion of the power-law scaling factors over the long timescales is larger than one (Appendix 

III: Fig. S4.4 C). This superdiffusive behavior is consistent with previous studies showing that 

mitochondria are occasionally directly transported by molecular motors [37], thus suggesting that 

the mitochondrial fluctuations are also driven by active forces over long timescales, in addition 

to thermal forces.  

It has been shown using simulations that distribution of directional change can provide 

more information about stochastic processes than MSD, which is essentially a 1D measurement 

[28]. In addition to the power-law scaling factors, we also calculated distribution of directional 
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change as a function of lag-time (Fig. 4.1 D). Over short timescales (0.1 s and 1 s), only one peak 

at ∆ø = π is present, indicating anti-correlated motion, i.e. a forward step is more likely to be 

followed by a backward step. This is similar to the distribution of directional change reported for 

subdiffusive motion in a viscoelastic environment due to caging and escape dynamics [28]. 

Along with the increase in lag-time, the peak at ∆ø = π gradually decays, and the peak at ∆ø = 0 

grows and eventually becomes dominant. Thus at the long timescales (10 s), the probability of 

going forward, i.e. persistent motion, dominates. The combination of “bouncing in a cage” at 

short timescales and persistent motion at long timescales suggests that the cage itself is drifting, 

probably driven by directed transport or active cytoskeletal remodeling. In fact the distribution of 

directional change qualitatively matches that of a particle in a harmonic potential with drift [28]. 

This trend is also revealed by the index of directional persistence, Pd (Appendix III: Fig. S4.4 D). 

The Pd of control cells starts with negative values, suggesting anti-persistent motions and in our 

case the caging effects by cytoskeletal networks. With the increase in lag times, Pd gradually 

increases to positive values, indicating the increasing dominance of persistent motion at longer 

times.  

Multiple ATP-dependent mechanisms are able to drive the mitochondrial fluctuations and 

likely to dominate over long timescales, while thermal forces are likely to dominate over short 

timescales (3, 12, 37, 42, 43). This argument is supported by our results of both power-law 

scaling factor and distribution of directional change. To further understand the underlying 

mechanisms of the mitochondrial fluctuations observed in the control cells, we carried out a 

series of chemical treatments targeting components of the cytoskeleton that may be involved.  
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Figure 4.2. Mitochondrial fluctuations are ATP dependent.  
(A) Population mean creep compliances with standard deviations of control (n=169) and ATP 
depleted cells (n=156). Markers of different shapes and colors indicate population means and 
lines of same colors are standard deviations. Short black line is a visual guide of slope one. (B) 
Distributions of directional change of ATP depleted cells at different lag times. Green dashed 
horizontal line indicates a uniform distribution which is characteristic of pure diffusion.  
 

  
4.3.3 Mitochondrial fluctuations are ATP-dependent over long timescales 

We first tested the ATP-dependence of the mitochondrial fluctuations. The C3H-10T1/2 

cells were treated with 2 mM NaN3 and 2 mM deoxy-D-glucose, which inhibits the ATP 

synthesis in the electron transfer chain and glycolysis respectively [38,39]. Despite an overlap at 

the shortest timescales, the decrease in the population mean creep compliance of ATP depleted 

cells is statistically significant over all timescales compared to that of the control cells (Figs. 4.2 

A and Appendix III: Fig. S4.5 A), with significant decreases in power-law scaling factor as well 
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(Appendix III: Figs. S4.5 C-D). The distributions of directional change remain almost the same 

from 0.1 s till 2 s in lag time, with the anti-persistent motion dominating (Figs. 4.2 B and 

Appendix III: Fig. S4.6). Along with the increase in lag time, decrease in anti-persistent motions 

is observed and the motion appears increasingly diffusive (Fig. 4.2 B). More importantly, no 

preference for persistent motion is observed at any timescales in the ATP-depleted cells. This 

trend is recapitulated in the Pd curve, which maintains a constant value from 0.1 s till around 2 s 

and then starts to approach the limit of zero (Appendix III: Fig. S4.5 E).  

These results indicate that thermal forces are the dominating mechanism over the short-

timescale, and ATP-dependent and thus active processes dominate the longer timescales in 

control cells. In addition, the distributions of directional change of ATP-depleted cells remain 

flat at ∆ø = 0 over timescale longer than 2 s (Appendix III: Fig. S4.6). This trend suggests that 

the increase in creep compliance of ATP-depleted cells over long timescales is likely due to 

passive escape from local “cages” due to the polymerization-depolymerization dynamics of 

microtubules that are driven by GTPs which are not depleted by the ATP-depletion treatment. 

Active yet random motions powered by residual intracellular ATP probably contribute as well. 

Therefore, the timescales from 0.1 s to 2 s are dominated by thermal forces in ATP depleted cells 

(Figs. 4.2 B and Appendix III: S4.5 E). The ATP dependence also implies that the creep 

compliance does not relate directly to the viscoelastic properties of the control cells, since the 

system is out of thermal equilibrium. However, we will continue using creep compliance to 

reduce morphological heterogeneity, while placing no interpretation on its physical meaning.  

The cellular interior is highly heterogeneous which is reflected in the heterogeneity of the 

MSD of single mitochondria and the convergence of the cell-wise creep compliance to the 

population mean (Appendix III: Fig. S4.14 A). The overall heterogeneity in the creep compliance 
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is dominated by intracellular heterogeneity (Appendix III: Fig. S4.14 B). We saw no evidence of 

spatial correlation of intracellular mechanical properties (Appendix III: Fig. S4.14 C), possibly 

because the mitochondria were on average tens of microns away from each other.   

We further hypothesized that the microtubule network and actin network may play 

important roles in forming the local cages for mitochondria. To test this, we carried out chemical 

treatments targeting these two important players in the cytoskeletal network.  

 

Figure 4.3. Microtubule network plays a significant role in mitochondrial fluctuations.  
(A) Population mean creep compliances with standard deviations of control cells (n=87), 
nocodazole treated cells (n=106) and taxol-treated cells (n=131). Markers of different shapes and 
colors indicate population means and lines of same colors are standard deviations. Short black 
line is a visual guide of slope one. (B-D) Distributions of directional change at different lag times 
of control, nocodazole-treated and taxol-treated cells respectively. Green dashed horizontal line 
indicates a uniform distribution which is characteristic of pure diffusion. 
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4.3.4 Microtubule network plays a significant role in mitochondrial fluctuations  

Two widely-used microtubule-targeting chemicals, nocodazole and taxol (also known as 

paclitaxel), were applied to C3H-10T1/2 cells. Nocodazole de-stabilizes microtubule 

polymerization [40]. Destabilizing microtubules by nocodazole statistically significantly 

increases the creep compliance over the short timescales yet the changes over long timescales are 

not significant (Fig. 4.3 A and Appendix III: Fig. S4.7 A). The distribution of directional change 

and the Pd of the nocodazole-treated cells show reduced persistent motions, especially over the 

longer timescales when compared with control cells (Figs. 4.3 B-C and Appendix III: Fig. S4.7 

C). By de-stabilizing microtubules, nocodazole appears to increase the effective cage size, 

leading to an increase in creep compliance over short times. However nocodazole inhibits the 

longer time directed motion. Since mitochondria are transported along microtubules, 

destabilizing microtubules very likely abrogates or impedes the active motion seen in control 

cells. Taxol inhibits the normal dynamic reorganization of the microtubule network, and leads to 

the formation of extensive and hyper-stable parallel arrays of microtubules [41–43]. Taxol 

treatment leads to statistically significant decrease of creep compliance over the long timescales, 

which becomes insignificant in the limit of short timescales (Fig. 4.3 A). Decrease in directional 

persistence is observed over timescales shorter than 5 s and an increase thereafter compared to 

control cells (Figs. 4.3 BD and Appendix III: Fig. S4.7 C). Despite the increase in directional 

persistence, a two-fold decrease in creep compliance was observed (Appendix III: Fig. S4.7 B). 

Taxol therefore strengthens the confinement of the mitochondria by the microtubule network, 

and slows network dynamics, leading to a smaller creep compliance at longer times. However 

even though the extent of motion is low, directed transport is even more apparent at longer 

timescales, probably due to the extensive microtubule network. 
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Taken together, our results show that the microtubule network plays important roles in the 

mitochondrial fluctuations, probably by a dual-mechanism (Fig. 4.3). Over the short timescales, 

microtubules confine mitochondria to local “cages”. Over longer timescales, the mitochondria 

show a persistent drift probably due to a combination of polymerization-depolymerization 

dynamics and active transport along the microtubule tracks. Destabilizing the cages using 

nocodazole increases the confinement volume of the mitochondria and thereby increases their 

creep compliances at short timescales, but decreases the longer time persistent motion. 

Stabilizing the network using taxol leads to stronger confinement of the mitochondria and makes 

the longer-time drift slower, and happen much later. These results also support the hypothesis 

that microtubule dynamics may contribute to the increase in creep compliance of ATP-depleted 

cells over long timescales. It is also possible that the inhibition of normal dynamics by taxol can 

result in a decrease in active forces generated by uncorrelated dynamics of microtubule network, 

and lead to a decrease in the creep compliance. However, the increase in directional persistence 

after taxol treatment as compared with control cells implies that this mechanism is insignificant 

(Figs. 4.3 BD and Appendix III: Fig. S4.7 C). 
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Figure 4.4. Actin network is required for active mitochondrial fluctuations.  
(A) Population mean creep compliances with standard deviations of control cells (n=98), 
jasplakinolide treated cells (n=141) and cytochalasin D treated cells (n=44). Markers of different 
shapes and colors indicate population means and lines of same colors are standard deviations. 
Short black line is a visual guide of slope one. (B-D) Distribution of directional change at 
different lag times of control, jasplakinolide and cytochalasin D treated cells respectively. Green 
dashed horizontal line indicates a uniform distribution which is characteristic of pure diffusion. 

 
 

4.3.5 The actin network is required for active mitochondrial fluctuations in a myosin II 

independent manner  

To test the roles played by the actin network on the mitochondrial fluctuations, the C3H-

10T1/2 cells were treated with two widely-used actin-targeting chemicals. Jasplakinolide is a 

potent inducer of actin polymerization and hyper-stabilizes actin filaments [44]. Jasplakinolide 

can be expected to increase mitochondrial confinement over short timescales and decrease the 
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escape probability, or reduce active fluctuations, over longer timescales. Our data shows that 

jasplakinolide leads to no statistically significant change at a high concentration of 1 µM in terms 

of both creep compliance and directional changes (Figs. 4.4 A-C and Appendix III: Fig. S4.8). 

Thus stabilizing the actin network had no significant effect on mitochondrial fluctuations. 

Cytochalasin D is a widely-used inhibitor of actin dynamics, which binds to the barbed 

ends of actin filaments and inhibits both actin polymerization and depolymerization [45,46]. 

Cytochalasin D has been shown to only inhibit the actin dynamics, and the net effects on the 

stability and density of the actin network depend on other cellular conditions [46]. Therefore, 

cytochalasin D can specifically affect actin network dynamics as well as active driving forces 

generated by actin polymerization and depolymerization. Cytochalasin D statistically 

significantly increases the population mean creep compliance over both short and long 

timescales (Figs. 4.4 A and Appendix III: Fig. S4.8 A), which suggests a net increase in the 

confinement volume of the mitochondria, probably due to a reduction in the density of the actin 

network. However, the distributions of directional change suggest that the cytochalasin D made 

the confinement of the mitochondria last longer, with a significant peak at ∆ø = π even at the 

longest timescale of 10 s (Fig. 4.4 D). In addition, the decrease in persistent motions suggest that 

the actin network is also involved in active transport (Figs. 4.4 BD). This is consistent with the 

report that actin network could serve as tracks for active transportation over short length scales 

[37]. Similar to earlier published studies [47], the microtubule and actin results suggest that the 

microtubule network is a primary local “cage” and actin network forms a secondary local cage, 

but both networks appear to be required for the active motion at long timescales.  

We also tested the role of non-muscle myosin II, which binds to the actin filaments and 

generates contractile forces on actin network in an ATP dependent manner. Myosin II had been 
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shown to play important roles in driving active fluctuations of fluorescent particles in previous 

studies [3,13–16,35,48]. We treated the C3H-10T1/2 cells with blebbistatin, which specifically 

binds to myosin II and inhibits its binding to actin filaments [49–51]. However, our results with 

three different concentrations of blebbistatin show statistically insignificant changes in creep 

compliance (Appendix III: Fig. S4.9). Although minor decreases can be observed in the 

distributions of directional change (Appendix III: Fig. S4.9 D), especially in the 10 µM, this 

effect is small. Thus, in contrast to fluorescent particles that may become trapped in the actin 

network, the mitochondria are not dominantly affected by the dynamics of myosin II. 

 

Figure 4.5. Mitochondrial fluctuation based force spectrum calculation.  
(A) Population mean complex shear modulus (open red cycles) with standard deviations (red 
dotted lines) determined from ATP depleted cells. Light blue line is a linear fit to the population 
mean. Black triangles indicate published measurements made on A7 cells using active 
microrheology [3]. (B) Force spectrum determined by combining the results from control cells 
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and ATP depleted cells using Eq. 4. Red triangles indicate published measurement of 
mitochondria using the original FSM [3].  
 
 
4.3.6 Force Spectrum Microscopy using the control cells and ATP depleted cells  

To improve the accuracy of viscoelastic properties determined from ATP depleted cells, 

we propose to use the distribution of directional change and Pd to make the selection of the 

timescales over which thermal forces are dominating. In our results, these two measurements 

suggest that the relevant thermally dominated timescales are up to 2 s in ATP-depleted cells 

(Figs. 4.2 B and Appendix III: Figs. S4.5 E and S4.6). In addition, comparing the MSDs and 

creep compliance of control and ATP-depleted cells shows that the population means converge 

at the shortest timescale, which is evidence that the ATP depleting treatment has not altered the 

cytoskeleton structures in any significant way [3,15–17].  

The power-law scaling factor over the timescales between 0.1 and 1 s has a mean of 0.15-

0.2, which is consistent with reported values [17] and reminiscent of sub-diffusive fluctuations in 

a nearly elastic medium (Figs. 4.2 A and Appendix III: Fig. S4.5 CD). Similar as in creep 

compliance, mitochondria after morphological filtering were used to determine the 

viscoelasticity to make sure the utilization of hydrodynamic radius is appropriate. The 

viscoelasticity determined using the MSDs of ATP depleted cells under 2 s suggests that the 

elasticity modulus is indeed more than five times larger than the viscosity modulus (Appendix 

III: Fig. S4.10). The corresponding amplitude of the complex shear modulus (|G*|) shows a 

temporal dependence following a power-law form with a scaling factor of 0.12 and a R2 value of 

0.99 (Fig. 4.5 A). To test the validity of our result, we compared our values of |G*| to those 

measured for A7 cells using active microrheology (a scaling factor of 0.16 and R2 value of 0.99) 

(Fig. 4.5 A) in Ref. [3]. Given the differences in cell lines, the two results are very similar and 



 
 

127 

within a two-fold difference, which supports the reliability of the alternative method we 

proposed.  

From the MSDs measured in the control cells, we calculated the corresponding Fourier 

Transform of individual MSDs multiplied by the square of the corresponding mitochondrial 

hydrodynamic radius as in Eq. 4. Finally, the force spectrum was calculated as the product of the 

effective spring constant determined from ATP depleted cells and the displacement in control 

cells in frequency domain (Eq. 4 and Fig. 4.5 B). We first calculated only the force spectrum 

over the timescales shorter than 2 s selected for ATP depleted cells, as the black curve in Fig. 4.5 

B. Since no obvious change in time dependence was observed for the |G*| in the measured 

frequency range, we assumed linear frequency dependence for the whole frequency range 

covered in the MSD [3,36] and calculated the force spectrum of the whole range, shown as the 

light blue curve in Fig. 4.5 B. Again, we compared our force spectrum results to that of 

mitochondrial fluctuation by the original FSM in Ref. [3]. Surprisingly, our results are almost the 

same as the original FSM (Fig. 4.5 B), despite the differences between cell types and the 

differences in viscoelastic parameters.  

4.4  Discussion 

4.4.1 Spontaneous fluctuations of endogenous particles are valuable probes for 

measurement of intracellular mechanical properties    

We show that a careful treatment of mitochondrial fluctuations along with chemical 

treatments, especially the ATP depletion, can allow for estimation of intracellular mechanical 

properties. Our measurements show that the intracellular cytoskeletal network form a weakly 

elastic microenvironment, and that the |G*| measured is well described by a power-law form with 

a scaling factor of 0.12 (Fig. 4.5 A). These results are consistent with previous studies in which 
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spontaneously internalized fluorescent particles and vesicles were tracked [47,52], which are 

probing similar mechanical microenvironments [53]. Such a weak frequency dependence is also 

consistent with measurements made by not only active microrheology techniques [3,54] and but 

also other methods (including optical magnetic twisting cytometry, uniaxial stretching rheometer 

and atomic force microscopy) [55–57], in spite of different cell types (Table S4.2). The 

measured |G*| in our ATP depleted cells is approximately 1 Pa, which is similar to the 

intracellular measurements [3,54] yet orders of magnitudes lower than that measured on the actin 

cortex [54,55,57]. This supports the argument that the intracellular cytoskeletal network is 

mechanically distinct from cortical actin networks and is more dilute.  

Our results also suggest that the weakly elastic microenvironment is liquidized by ATP-

dependent processes. The ATP-dependent processes that exert forces on the mitochondria could 

arise from polymerization-depolymerization dynamics of microtubules and actin, as well as from 

motor-driven forces. Our data shows that stabilizing the microtubule or actin network and thus 

repressing polymerization-depolymerization dynamics had no effect on the short-time 

fluctuations, but intriguingly different effects at longer times. While stabilizing actin did not 

significantly affect fluctuations at longer timescales, stabilizing microtubules decreased the 

extent of fluctuations but increased their persistence. Destabilizing microtubules increased the 

short-timescale fluctuations but had little effect at longer times, while destabilizing actin had no 

effect at shorter times but increased the extent of fluctuations at longer times. However for both 

cases the persistence of long time motion was significantly reduced, which is consistent with the 

hypothesis that persistent motion is an effect of motor-driven transport on microtubule and actin 

tracks. Many published results have reported that contractile forces generated by myosin II play 

important roles in driving active fluctuations of fluorescent particles [3,13–16,35,48]. However, 
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myosin II was shown not to play a significant role in our study, which is also consistent with 

studies using spontaneously internalized fluorescent particles and vesicles [47,52].  

While mitochondria can be actively transported to regions of the cell where they are 

required, their positioning at these regions has been shown to be mediated by protein anchors 

[58] that can tether them to the endoplasmic reticulum as well as the actin and microtubule 

cytoskeleton. Moreover, stationary mitochondria may also remain attached to the molecular 

motors responsible for transporting them to the present location in the cell. The tethering may 

lead to the short timescale confined fluctuations observed in both the creep compliance and the 

directional persistence. The longer-timescale motion, which we show is ATP-dependent, is 

probably associated with the movement of the tethers themselves, due to remodeling of the 

cytoskeleton as well as motor mediated movement, or both. The fact that destabilization of both 

actin and microtubules does not significantly increase the average creep compliance but 

decreases persistence, suggests that the confinement probably involves other intracellular 

structures such as the endoplasmic reticulum, but active motion requires the cytoskeleton.  

Active mitochondrial transport has been best studied in neurons, due to its role in 

neurodegenerative diseases [59]. Kinesin and dynein can move mitochondria toward microtubule 

plus end and minus end respectively for a long distance. The actin network is more important for 

short-range transport and anchoring of mitochondria [37,59]. Myosins are responsible to move 

mitochondria toward actin filament plus end (e.g. myosin V) or minus end (e.g. myosin VI) [59]. 

Mitochondria can also be completely released of these motor proteins and remain relatively 

stationary [59]. We therefore hypothesize that the active forces driving mitochondrial 

fluctuations are generated by motor proteins like dynein, kinesin and myosins other than myosin 

II, (e.g. myosins V and VI).  
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The special nature of the confining environment of mitochondria is probably the reason 

why they are insensitive to suppression of myosin II mediated actomyosin contractility. Passive 

polyethylene glycol (PEG) coated probe particles may, in many cases, get confined by the actin 

meshwork and show significant sensitivity to suppression of myosin II. Given the heterogeneity 

of the cytoskeletal network, mitochondrial fluctuations and fluorescent probe particles are very 

likely measuring cellular mechanical properties at different length-scales, and possibly somewhat 

specialized to different components of the cytoskeleton. Future work is required to link the 

different aspects of the cellular cytoskeleton together, as measured by fluorescent particles as 

well as endogenous probes such as mitochondria as well as peroxisomes, lysosomes and lipid 

vesicles [3,52,60].  

4.4.2 Limitations of passive microrheology with mitochondria 

Microrheology, whether active or passive, cannot provide information on the bulk 

rheology of the cell as a whole, which would require other assays. However, microrheology does 

provide an insight into internal and local cytoplasmic properties, including its viscoelastic 

characteristics that the present study focuses on. The alternative method we propose in this study 

has the advantages of non-invasiveness and low instrumentation requirements. However, like 

every technique, it also holds some limitations, some of which are shared by other particle 

tracking based methods. First of all, we used ensemble averaging measurements, including MSD, 

creep compliance and distribution of directional change, to characterize the mitochondrial 

fluctuations in this study. However, different mechanisms may dominate some specific 

timescales in particle motions, rather than impact uniformly across all timescales, which would 

be obscured in the ensemble averaging. To gain deeper understanding on the underlying 

mechanisms, temporal analyses of individual trajectory become necessary. This field has seen 
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rapid advances recently, including rolling window based methods [61] and hidden Markov 

Model based methods [62]. Although not included in this current study, these temporal analyses 

will be incorporated in our future studies.  

In this study, mitochondria were chosen as the probe due to its universal presence in 

different cell types and cellular states, yet the morphological complexity of the mitochondria 

may limit the applicability of this method in some cell types. As shown previously [23], the 

morphology of the mitochondrial network is dynamically regulated, mostly due to the important 

physiological roles played by mitochondria in cell biology. So the punctate mitochondria used in 

our study may not be abundant in some cell types. However, the fluctuating motion of 

intermediate and filamentous mitochondria could be included into the analysis to broaden future 

applications of this method. An automated classification scheme of mitochondrial morphology, 

like the one developed in [23], could be integrated into the analysis pipeline.   

Although ATP depletion enables directly extraction of mechanical properties from passive 

microrheology measurements, it also poses some unique limitations. Each new cell type requires 

optimization of the ATP depleting cocktail, and unintended effects may increase when different 

treatments are combined, for example to measure the mechanical properties of taxol-treated cells. 

The treatment of ATP depletion may also introduce side-effects to the “true” mechanical 

properties of the cytoplasm, for example by increasing actin network density [63] and possibly 

by crosslinking of actin filaments by inactive myosin II motors. To make sure that the side-effect 

by the ATP depletion is not significant, the convergence on the short timescale was used in our 

study. Our results also showed that stabilizing the actin network does not affect the MSD of the 

mitochondria, suggesting that ATP-depletion side-effects should be minimal in our results.  
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Finally, the use of microrheological techniques in living systems raises many questions 

that are yet to be settled, and that are the subject of current research. The first overarching 

assumption is that the cellular cytoplasm can be treated as an isotropic continuous substance at 

the length scale of the probe particle. Another major assumption of the field is the use of the 

GSER to calculate the rheological parameters. This is an important assumption and theoretical 

work has shown that the GSER is valid at best for a range of frequencies, which however may 

span the physiological relevant range for cell mechanics measurements [64,65]. The use of any 

type of probe particle also relies on the assumption that boundary conditions at the surface are 

not perturbing the results. Another important question is whether results from passive 

microrheology of ATP-depleted cells are equivalent to results from active microrheology. In 

particular active microrheology using optical tweezers may be probing the non-linear response of 

the cytoplasm, and theoretical papers have suggested that the non-linear response may be 

strongly affected by local microstructures [65–67], though previous work has shown excellent 

consistency between active and passive microrheology [17].  The existence of these debates is 

proof of the complexity of the cytoplasm, but also an indication of the promise of microrheology 

in elucidating cytoplasmic properties, including, but not confined to, viscoelastic properties.      

4.4.3 Non-invasive Force Spectrum Microscopy  

We extract the viscoelastic moduli G’ and G” using GSER in ATP depleted cells, by using 

a statistical test to identify thermally dominated timescales. Based on the distribution of 

directional change and the probability of persistent motion, Pd, we identify a range of timescales 

over which thermal forces are dominating in the ATP depleted cells. Even though this results in a 

smaller range of timescales to determine the viscoelastic properties from the ATP depleted cells, 

we found that the accuracy is good compared to measurements made by active microrheology 
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[3]. We could then calculate the force spectrum based on the spontaneous fluctuations of 

mitochondria in control cells and the complex shear moduli measured in ATP depleted cells. The 

resulting force spectrum is interestingly almost identical to the force spectrum of mitochondria 

measured previously [3]. This relatively simple protocol should help expand the use and 

application of microrheology in living cells, and may facilitate novel applications like measuring 

mechanics and motor-driven forces within cells in 3D culture, in tissue models and during 

embryonic development.   
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CHAPTER 5: GLASS BEADS LOAD 100 NM FLUORESCENT PARTICLES INTO LIVE 

CELLS TO PROBE INTRACELLULAR MECHANICAL PROPERTIES  

 
 
5.1 Introduction  

The mechanical properties of the cytoskeleton of mammalian cells are involved in normal 

physiological activities of cells to adhere, deform, move and sense their mechanical 

microenvironments [1], to divide [2], translocate endogenous organelles and protein complexes 

[3], which are changed in many physiological and pathogenic processes of great significance like 

differentiation[4–6], tumorigenesis [7,8] and other diseases [9]. Better characterizations and 

studies of these mechanical properties may not only lead to deeper understandings of the 

fundamental cell biology of these processes, but also novel applications for medical purposes, 

including label-free cancer diagnosis [10] and pharmaceutical screening and evaluation [11]. 

Many methods have been developed or adopted to measure the cellular mechanical properties, 

including particle-tracking microrheology (PTMR) [12], atomic force microscopy (AFM) [13], 

micropipette aspiration [14,15], magnetic twisting cytometry [16], optical tweezers[17], 

microfluidic optical stretching [18] and other microfluidic platforms [19,20]. PTMR gains its 

popularity due to its ability to probe the intracellular mechanical properties without being 

perturbed by the cortical actin network, its ability to probe local mechanical properties (as the 

opposite of global mechanical responses) with spatial resolutions and its ability to probe 

mechanical properties without requirements on direct contacts among other benefits [21].  

The PTMR can be further classified into passive or active PTMR, depending on whether 

external forces are applied to drive the probe movements [12]. Passive PTMR has its roots in the 

classic works by Einstein [22] and Perrin [23]. Passive PTMR is able to measure the mechanical 
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properties of soft materials based on the analysis of the spontaneous Brownian motion of a tracer 

particle and incur relatively little perturbations to the material under study. This is similar to the 

viscosity of the solute embedding the probe particles being determined by the spontaneous 

particles fluctuations via Stokes-Einstein equation. Without the requirement of additional 

instrumentation to manipulate the probes, passive PTMR is more accessible than its active 

counterpart. However, the classic Stokes-Einstein equation can only be used to determine 

frequency-independent viscosity, and this limits its application to biological materials which are 

better characterized by frequency-dependent viscoelasticity. The Stokes-Einstein equation was 

generalized to determine frequency-dependent viscoelasticity in 1995 [24], which is called the 

Generalized Stokes-Einstein Relation (GSER) [25]. As with the Stokes-Einstein equation, the 

GSER assumes that the system under study is at thermal equilibrium and that the movements of 

the probe particles are driven solely by thermal fluctuations. When the system satisfies this 

fundamental assumption, the viscoelasticity across a wide range of frequencies can be 

determined relatively easily through fluctuation-dissipation theorem (FDT) [24].  

However, the cytoplasm is an active material driven by chemical energy, mainly in the 

form of Adenosine Triphosphate (ATP) [3,26]. The Brownian-like motions observed in the 

control cells are thus driven by both thermal and active forces, specially at long timescales 

[27,28]. Therefore, the assumption of thermal equilibrium in GSER is not valid and incorrect 

cellular viscoelasticity could be estimated from the mean squared displacement (MSD) of probe 

particles if GSER is applied directly [28–30]. This limits the utility of GSER to high frequencies 

in MSDs of control cells [31] or to an extended range of high frequencies in ATP depleted cells 

[32,33]. The MSDs of the probe particles, in general, still conveys important properties of the 
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active forces and cytoskeletal dynamics, which can be informative on their own [34] or 

interpreted in combinations with other techniques like active PTMR [29] or AFM [35].  

In the passive PTMR, fluorescent particles embedded into the cytoplasm and endogenous 

organelles are typically used as the tracking probes. However, due to the hard-to-characterize 

interactions between the organelles and other subcellular structures, the interpretation of the 

results may be challenging [36]. In contrary, the interactions of fluorescent particles with 

subcellular structures can be well-controlled by surface coating [37]. Fluorescent particles are 

also preferred due to its photostability, high signal-to-noise ratio and regular morphology. 

Multiple methods have been adopted to deliver fluorescent particles into cytoplasm in the field of 

passive PTMR, including microinjection [17,29], ballistic injection [21,38] and endocytosis 

[39,40]. Fluorescent particles can be spontaneously engulfed by the cell through endocytosis 

pathway [39,40]. However, they become trapped inside lipid vesicles without direct contacts 

with cytoskeletons and may be actively transported by molecular motors [21]. The heterogeneity 

in the particle-cytoskeleton contacts may further complicate the interpretation of the results, 

especially the absolute magnitudes [27]. It is thus necessary to circumvent the endocytosis 

pathway and deliver the fluorescent particles directly into the cytoplasm. This necessity led to 

the adoption of microinjection and ballistic injection, both of which requires advanced 

instrumentation and expertise to operate. Microinjection also suffers from being labor-intensive 

and low-throughput [21]. The lack of a general, accessible and reliable particle delivery method 

of fluorescent particles directly into cytoplasm is a barrier for passive PTMR to become a routine 

measurement.  

Glass bead loading has been widely used as a simple method to deliver fluorescently 

labelled proteins into mammalian cells [41–44], by disrupting the cellular membrane 
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mechanically and creating transient channels to allow the fluorescent particles diffuse into the 

cells [45]. These disruptions typically reseal very promptly similar to microinjection and ballistic 

injection, which was shown to happen within 10-120 s depending on the extracellular calcium 

level [46]. This simple yet elegant technique is drawing increasing attentions due to its simplicity 

recently. Studies have delivered 34 nm PEG coated quantum dots [45] and 40 nm magnetic 

nanoparticles [47] into mammalian cells using bead loading. It was also shown that the bead-

loaded nanoparticles is able to disperse homogeneously inside the cytoplasm of mammalian cells 

[45,47]. However, there is no study showing, directly or indirectly, that the bead loading 

technique is able to deliver fluorescent particles larger than 40 nm.  

In this study, we optimized the bead loading protocol into the field of passive PTMR. We 

tested its general applicability by bead loading 100 nm fluorescent particles in three different cell 

types. We then tested whether the bead-loaded 100nm fluorescent particles are able to probe the 

intracellular mechanical properties using pharmaceutical chemicals targeting specific 

components of cytoskeleton. This study shows that bead loading technique is able to deliver 

fluorescent particles directly into cytoplasm to measure the mechanical properties of the 

cytoplasm. Our results further showed that quantitative measurements of MSD and distribution 

of directional changes could generate deeper insights into the cytoskeletal mechanical properties.  

5.2 Materials and Methods  

5.2.1 Cell culture 

C3H-10T1/2, a murine embryonic mesenchymal cell line was purchased from the 

American Type Culture Collection (ATCC, Manassas, VA). MCF7 and MDA-MB-231 cells 

were gifts from Dr. Brian McNaughton at Colorado State University. C3H-10T1/2, MCF7 and 

MDA-MB-231 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-
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Aldrich, St Louis, MO) supplemented with 10% equaFETAL fetal bovine serum (FBS, Atlas 

Biologicals, Fort Collins, CO), 100 Units/ml penicillin and 100 µg/ml streptomycin (Fisher 

Scientific-Hyclone, Logan, UT). C3H-10T1/2 cells at their passages of 5-15 were used in this 

study. All cells were cultured at standard condition of 37 °C with 5% CO2 supplemented. Cells 

were seeded at a concentration of 2.5×104 cells/ml the night before imaging in uncoated glass-

bottom 35 mm dishes (MatTeK, Ashland, MA) for C3H-10T1/2 and the same dishes coated with 

fibronectin for the rest of the cell lines. Experiments were carried out after cells spread and 

attach to the substrate.  

5.2.2 Preparation of the PEG-coated fluorescent particles  

100 nm fluorescent carboxylate-modified polystyrene spherical particles 

(Molecular Probes, Eugene, OR) were rendered inert by grafting short amine-terminated 

poly(ethylene glycol) (PEG, Sigma-Aldrich, St Louis, MO) as described previously [37], in order 

to reduce nonspecific interactions with intracellular components which may result in directed 

transportation or entrapping by vesicles [48]. The PEG coated fluorescent particles were 

separated from unreacted reagents by dialysis in PBS buffer using Biotech cellulose ester 

membrane with a molecular weight cut-off of 100 kD (Spectrum Laboratories, Inc., Rancho 

Dominguez, CA). PEG-coated fluorescent particles were stored at 4 °C and used within 4 weeks.  

5.2.3 Bead loading  

The PEG-coated fluorescent particles were delivered into the cytoplasm of live cells using 

the bead-loading method [42–44]. The growth medium was aspirated, 4 µl PEG-coated 

fluorescent particles were added onto the top of the cells, and 106 µm glass beads (Sigma-

Aldrich, St Louis, MO) sprinkled. After tapping the dish against the bench four to eight times, 

glass beads and undelivered fluorescent particles were washed away using 1×PBS and growth 
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medium was added to the dish. The cells were allowed to recover by incubation at standard 

growth conditions for 1 hr.  

5.2.4 Chemical treatments  

An array of chemical treatments were carried out in this study (Table 5.1). ATP depletion 

was achieved by incubation in PBS with 2 mM NaN3 and 2 mM 2-deoxy-D-glucose for 2 hour. 

Cytoskeleton-targeting chemicals were added into the film media and cells were incubated for 30 

min. The chemicals were maintained in the film media during imaging to prevent recovery. 

Imaging was typically completed in 2-3 hours after the incubation.  

Table 5.1. Chemical treatments  

Target  Treatment/Drug name Concentration  Reference  

Actin  
Jasplakinolide (Calbiochem) 0.2 µM  [49] 
Cytochalasin D 
(Calbiochem) 2 µM [50,51] 

Myosin II  Blebbistatin (Cayman 
Chemical) 10 and 25 µM [52–54]  

Microtubule  Nocodazole (Sigma) 10 µM [55] 
Taxol (Goldbio) 10 µM [56–58]  

All ATP 
dependent 
processes  

ATP Depletion  2 mM NaN3 (Sigma) + 2 mM 
Deoxy-glucose (Sigma) [59,60] 

 
5.2.5 Imaging using confocal microscopy  

Cells were imaged at 37 °C in CO2-independent imaging medium made of Leibovitz’s L-

15 media (Gibco, Carlsbad, CA) supplemented with 10% FBS, 7 mM HEPES (Sigma-Aldrich, 

St Louis, MO) and 4.5 g/L D-glucose (pH 7.0). Random isolated cells were imaged using 

inverted spinning disk confocal microscope (Nikon Instruments, Inc., Melville, NY) under a 

100× oil-immersion objective (FA ×1.45). NIS Advanced Research software (Nikon Instruments, 

Inc., Melville, NY) was used to control the hardware. The motions of fluorescent particles were 

recorded at 10 frames per second (fps) for 200 s using a cooled Andor DU897 X-10679 camera, 

with a spatial resolution of 140 nm per pixel. A 561 nm laser and the associated filters were used.  
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5.2.6 Image processing and Tracking mitochondrial fluctuations  

The cell shape was traced manually in an in-house Matlab (Mathworks Inc., Natick, MA) 

and only the fluorescent particles enclosed in the cell boundary was tracked in uTrack [61]. A 

threshold on fluorescent intensity (1.5e6) is applied to eliminate the particles out of focus from 

further analysis.  

5.2.7 Data analysis  

The 2D trajectories of fluorescent particle tracked in the previous step were used to 

calculate the Mean Squared Displacement (MSD) as a function of lag time:   

〈∆r$(τ)〉 = 〈<X(t + τ) − X(t)A
$
+ <Y(t + τ) − Y(t)A

$〉     [1] 

where τ is lag time and brackets indicate the ensemble over all time points.  

Directional change was calculated from two consecutive steps separated by the lag time for 

all time points in one trajectory and across all trajectories, which results in an ensemble-

averaged, time-averaged distribution of directional change as a function of lag times [62]. The 

distribution of directional change was displayed in a window of [-π, π] to emphasize 

directionally persistent motions. An index of directional persistence, Pd, was calculated to 

summarize the information in the distribution of directional changes, defined as the difference 

between the probabilities of forward and backward motions [34]. If the motion is purely 

diffusive, the Pd is close to zero at all timescales. Negative Pd values indicate that the anti-

persistent motion is dominating and vice versa.   

5.2.8 Statistics  

The means and standard deviations reported in this study were calculated by 

exponentiating the means (𝜇̅gP) and the standard deviations (𝑠gP) of the logarithmic transformed 

data.  
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Wilcoxon rank sum test was used to test the null hypothesis that the two samples are from 

continuous distributions with equal means. As a nonparametric alternative to Student’s t test, 

Wilcoxon rank sum test does not assume normality and is generally insensitive to actual 

distributions [63,64]. Wilcoxon rank sum tests, using the Matlab function ranksum, were carried 

out on the mean MSDs between control and chemical treated cells at all timescales, with p-value 

smaller than 0.05 deemed as statistically significant.  

Control and chemical-treated cells compared in this study were imaged on the same day to 

minimize the day-to-day variance. Therefore, the mean MSDs of control cells of different days 

may be slightly different.  
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Figure 5.1. Glass beads load 100 nm fluorescent particles in C3H-10T1/2 cells under 
control condition.  
A) Bright-field (DIC channel) and B) fluorescent (561 nm) images of C3H-10T1/2 cells bead-
loaded with 100nm fluorescent particles respectively. Insets on the right and bottom sides are 
maximum intensity projection along x and y axes respectively. For the right inset, left side is the 
bottom of the cell and the right side the top of the cell. For the bottom inset, upper side is the 
bottom of the cell and the lower side the top of the cell. C) Individual and population mean with 
standard deviation of MSDs (n=217). Blue curves are MSDs of individual mitochondria and red 
filled circles indicate population mean. Red dashed lines are standard deviations. Black dashed 
line is a visual guide of slope one. D) Distributions of directional change of control cells at 
different lag times. Green dashed line indicates the uniform distribution which is characteristic of 
pure diffusion.  
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5.3 Results  

5.3.1 Control cells  

The confocal images (Figure 5.1 AB) show uniform dispersions of bead-loaded 100 nm 

fluorescent particles inside the cell yet well excluded from the nucleus. In contrast, no or very 

few fluorescent particle inside the cell was observed in the negative control condition with no 

glass bead added. This drastic difference suggests the efficacy of bead loading to deliver 

fluorescent particles directly into the cytoplasm. We further tested the general applicability of the 

bead loading technique using two widely studied breast cancer cell lines, MCF7 and MDA-MB-

231, as models for benign tumor cells with low metastatic potential and malignant cancer cells 

with high metastatic potential respectively [7]. With some minor optimizations on the bead 

loading protocol, our preliminary results suggest homogeneous distributions of 100 nm 

fluorescent particles inside the cytoplasm of both cell types (Appendix IV: Figure S5.1).  

We then calculated the MSDs based on trajectories of bead-loaded fluorescent particles in 

control cells. Similar to earlier studies, we observed a wide spread in the MSD results of 

individual particles (Figure 5.1C). The population mean slope is close to one at both long and 

short timescales (Appendix IV: Figure S5.2 CD), which is consistent with pure diffusion. 

However, previous studies suggested that such diffusion-like particle motions can also be driven 

by ATP-dependent (thus active) yet random intracellular forces [29,65].  

To gain more insights into the mechanisms driving the observed motions of bead-loaded 

fluorescent particles, we calculated the distribution of directional change, which was shown 

using simulations to summarize more information about stochastic processes than MSD [62]. 

The distributions of directional change of the control cells at all timescales are not close to 

uniform distribution (Figure 5.1 D), suggesting that indeed the seemingly diffusive motions 
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observed in MSD cannot be attributed to just a purely diffusive processes. The distribution of 

directional change provides additional insights into the underlying mechanism (Figure 5.1 D). 

There is a dominating anti-persistent peak at ∆ø = π in the distribution of directional change, i.e. 

a backward step is more likely to follow a forward step. This is consistent to subdiffusive motion 

in a viscoelastic microenvironment due to caging and escape dynamics [62]. With the increase in 

timescales, the anti-persistent peak at ∆ø = π decreases gradually, and the persistent peak at ∆ø = 

0 becomes dominating at the longest timescale (10 s). The combination of “bouncing in a cage” 

at short timescales and persistent motion at long timescales suggests that the confinement is 

moving with the particle, probably driven by actively remodeling cytoskeleton or molecular 

motor activities. This trend is also revealed by the index of directional persistence, Pd (Appendix 

IV: Figure S5.2 E). The Pd is negative at the shortest timescales, suggesting that anti-persistent 

motions and in our cells the confinements formed by cytoskeletal networks. Pd gradually 

increases to positive values with the increase in timescales, indicating the increasing dominance 

of persistent motion. These insights provided by the distribution of directional change and the Pd 

suggest that the mechanisms driving the particle movement, at least in the long timescales, are 

active in nature. 

5.3.2 ATP depletion  
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Figure 5.2. Fluctuations of fluorescent particles are ATP-dependent.  
A) Population mean MSDs with standard deviations of control (n = 217) and ATP-depleted cells 
(n = 195). Closed markers indicate population means and dashed lines of the same color are 
standard deviations. Short black line is a visual guide of slope one. B) Distribution of directional 
change at different lag times of ATP-depleted cells. Green dashed line marks the uniform 
distribution, indicating no directional preference which is characteristic of pure diffusion.   
 
 

We directly tested whether active forces are driving the particle movements observed in 

the control cells by a treatment with NaN3 and Deoxy-glucose, which inhibit the ATP synthesis 

through electron transfer chain and glycolysis respectively [59,60]. We observed statistically 

significant decreases in the magnitudes of MSD in all timescales measured, ranging from 2 folds 

at the shortest timescale to almost 10 folds at the longest timescale (Figures 5.2 A and Appendix 

IV: Figure S5.2 AB). The power-law scaling factor at short timescales decreases from 0.8 to 0.5, 

while a slight recovery can be observed at the long timescales, probably due to incomplete ATP 

depletion [32] (Appendix IV: Figure S5.2 CD).  

The distributions of directional change remain almost the same from 0.1 s till 1 s in lag 

time, with the anti-persistent motion dominating (Figure 5.2 B). Along with the increase in lag 

time, decrease in anti-persistent motions and increase in persistent motions are observed (Figure 

5.2 B). At the longest timescale of 10 s, persistent motions become dominant but significantly 

less in magnitudes than the control cells, consistent with the results of local power-law scaling 

factor (Figure S5.2 CD). The Pd values reveal the same trends.  

Therefore, the ATP depletion revealed that the apparently diffusive particle in the control 

cells are actually embedded in an elastic microenvironment that is liquidized by ATP-dependent 

forces, same as reported earlier [29,65]. It is thus incorrect to determine the viscoelasticity 

directly from MSD through GSER since the system is out of thermal equilibrium [24]. As 

discussed earlier the persistent motions at long timescales may be driven by active forces from 
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the molecular motors and/or cytoskeletal remodeling. In the rest of the study, we carried out 

chemical treatments to test different hypothetical contributors to the active forces in the 

cytoskeletal network. 

5.3.3 Myosin II  

 

Figure 5.3. Myosin II plays a role in driving fluorescent particle fluctuations.  
A) Population mean MSD with standard deviation of control cells (n = 195) and cells treated 
with 10 µM (n = 144) and 25 µM (n = 142) blebbistatin. Circles indicate population means and 
dashed lines are standard deviations. Short black dashed line is a visual guide of slope one. B-D) 
Distribution of directional change at different lag times of control cells and cells treated with 10 
µM and 25 µM blebbistatin respectively. Green dashed line marks the uniform distribution, 
indicating no directional preference which is characteristic of pure diffusion.  
 
 

Contractile forces generated by myosin II were reported to play important roles in driving 

active fluctuations of intracellular fluorescent particles [29,32,65–69]. To test the roles played by 
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myosin II in the movements of bead-loaded fluorescent particles, C3H-10T1/2 cells were treated 

with blebbistatin, a potent anti-cancer drug that binds to myosin II and inhibits its binding with 

the filamentous actin, leading to its dissociation from the actin network [52–54].  

10µM blebbistatin results in no statistically significant difference in the MSDs (Figures 

5.3A and Appendix IV: Figure S5.3 A). An increased concentration of 25µM blebbistatin results 

in a decrease in the MSD in all timescales, which is statistically significant with an 

approximately 2-fold decrease in timescales longer than 2 seconds (Figures 5.3A and Appendix 

IV: Figure. S5.3 B). In terms of the directionally persistent motions, neither concentration leads 

to significant changes in the anti-persistent peak, indicating the local confinement. For the 

persistent peak, 10 µM blebbistatin does not result in significant difference compared to the 

control cells, while the higher concentration of 25 µM results in decrease at short timescale of 

0.1 and 1 seconds. Interestingly, this reducing effect by 25 µM blebbistatin is reversed at the 

longest timescale of 10 s. The seemingly contradicting results at different timescale probably are 

consistent with the two structural roles played by Myosin II, as both an actin cross-linker and 

molecular motor. At the short timescales, dissociated Myosin II mainly leads to the reduction in 

driving force. While at the long timescales, the dissociation of Myosin II may reduce the overall 

crosslinking level in the actin network, and decrease actin density, thereby increasing the active 

and directionally persistent movement driven by other active mechanisms with characteristic 

timescales longer than Myosin II, like cytoskeletal remodeling or other molecular motors. Taken 

together, both MSD and the distribution of directional change support the main role played by 

the myosin II as one of the driving forces for cytoskeletal fluctuations [29,32,65–69].  



 
 

153 

 

Figure 5.4. Actin network plays a major role in hindering fluctuations of fluorescent 
particle.  
A) Population mean MSD with standard deviation of control cells (n = 194) and cells treated 
with 0.2 µM jasplakinolide (n = 190) and 2 µM cytochalasin D (n = 110). Circles indicate 
population means and dashed lines are standard deviations. Short black dashed line is a visual 
guide of slope one. B-D) Distribution of directional change at different lag times of control cells 
and cells treated with 2 µM cytochalasin D or 0.2 µM jasplakinolide respectively. Green dotted 
line marks the uniform distribution, indicating no directional preference which is characteristic 
of pure diffusion.  
 
 
5.3.4 Actin network  

C3H-10T1/2 cells were treated by two widely-used and actin-targeting chemicals to test 

the roles played by actin network on the fluctuations of bead-loaded fluorescent particles. 

Jasplakinolide induces actin polymerization and hyper-stabilizes filamentous actin [49]. 

Cytochalasin D binds to the barbed ends of actin filaments and inhibits the actin dynamics, both 
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the polymerization and depolymerization [50,51]. Its net effects on the density and stability of 

the actin network vary with other cellular conditions [51]. Therefore, cytochalasin D is able to 

specifically inhibit actin network dynamics and the resulting active driving forces. 

Jasplakinolide results in statistically significant decreases of around two-fold in the MSD 

at all timescales (Figure 5.4A and Appendix IV: Figure S5.4 AB). In terms of the distribution of 

directional change, the treatment of jasplakinolide leads to a slight increase in the anti-persistent 

peak at all timescales, indicating stronger local confinements by higher concentrations of actin 

filaments. Interestingly, increase in the persistent peak is also observed at long timescales similar 

as the results of 25 µM blebbistatin (Figure 5.4C), thus suggesting a similar dual role as well. 

Hypothetically, actin filaments may serve as tracks for the persistent movement of local actin 

confinements, similar as its role as tracks for the active transportation of mitochondria in short 

length scales [33,70].  

Cytochalasin D leads to statistically significant increase at every timescales, which is 

around 2-fold at the shortest timescale and increases to around 4-fold at the longest timescale 

(Figures 5.4 AB and Appendix IV: Figure S5.4 AB). The MSD results suggest a net increase in 

the volume of local confinements, probably due to a reduction in the density of the actin 

network. Surprisingly, the distributions of directional change at all timescales appear to be 

timescale-independent and close to the uniform distribution (Figure 5.4 D). Therefore, the 

particle movements after the treatment of cytochalasin D appear to be more diffusive in both 

measurements of MSD and distribution of directional change. Although both of the persistent 

and anti-persistent peaks are close to the uniform distribution, small peaks can be observed. This 

could be attributed to the slow convergence of the distribution of directional change [62] or 
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weaker confinement by other intracellular structures, like microtubules or endoplasmic 

reticulum.  

 

Figure 5.5. Microtubule network plays a minor role in determining fluctuations of 
fluorescent particle.  
A) Population mean MSD with standard deviation of control cells (n = 183) and cells treated 
with 10 µM nocodazole (n = 251) and 10 µM taxol (n = 205). Circles indicate population means 
and dashed lines are standard deviations. Short black dashed line is a visual guide of slope one. 
B-D) Distribution of directional change at different lag times of control cells and cells treated 
with 10 µM nocodazole or 10 µM taxol respectively. Green dashed line marks the uniform 
distribution, indicating no directional preference which is characteristic of pure diffusion.  
 
 
5.3.5 Microtubule network  

We then tested the role played by the microtubule network. C3H-10T1/2 cells were treated 

with nocodazole and Taxol (also known as paclitaxel), two widely-used microtubule-targeting 
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drugs. Nocodazole de-stabilizes microtubule network [55]. Taxol prevents the microtubule 

network from its normal dynamical reorganization and leads to the formations of extensive and 

hyper-stable parallel arrays [56–58].  

Interestingly, both nocodazole and taxol result in similar responses in both MSD and 

distribution of directional change, whose magnitudes are both small compared to actin-targeting 

treatments (Figure 5.5). Both drugs lead to a slight reduction of less than 2-fold in MSD at the 

longest timescale, which are both statistically significant (Figure 5.5 A and Appendix IV: Figure 

S5.5 AB). In terms of distributions of directional change, treatments of both chemicals result in 

decrease in persistent motions at short timescales and enhanced persistent motion at the longest 

timescale (Figure 5.5 B-D). While these results are interesting, and reflect the complexity of 

active processes in the cytoplasm, the overall small impacts on the MSDs suggest that the 

microtubule network serves as a minor contributor to both the confinement at short timescales 

and the active motion at long timescales.   

5.4 Discussion  

5.4.1 Glass beads load fluorescent particles directly into the cytoplasm  

100 nm fluorescent particle is widely used as exogenous probe to measure intracellular 

mechanical properties. In this study, we studied whether we could modify the bead-loading 

procedure to deliver fluorescent particles inside cells, and whether the bead-loaded fluorescent 

particles probe the mechanical properties of the cytoplasm directly, or get trapped inside 

endocytosis vesicles. Confocal images across different z-planes of the cell show that the bead-

loaded fluorescent particles disperse homogenously inside the cytoplasm (Figure 5.1 AB). 

However, the confocal images alone are not able to rule out the possibility that the observed 
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fluorescent particles are enclosed inside endocytosis vesicles and thus are screened from the bulk 

mechanical properties.  

Chemical treatments targeting specific cytoskeletal components provide further tests on the 

subcellular localization of the bead-loaded fluorescent particles. First of all, earlier studies found 

that ATP depletion and blebbistatin have no effect on the movements of particles attached to 

membrane as measured by the magnetic twisting cytometry [27], while ATP depletion and 

blebbistatin result in significant decreases in the MSD of fluorescent particles microinjected 

directly into the cytoplasm [29,66]. In our study, the treatments of ATP depletion (Figure 5.2A) 

and blebbistatin (Figure 5.3A) result in statistically significant decrease in MSDs, which is 

consistent with the fluorescent particles microinjected directly into the cytoplasm. Secondly, the 

actin-targeting treatments (Figure 5.4A) lead to more significant changes in the MSDs than the 

microtubule-targeting treatments (Figure 5.5A). Such a difference in response is opposite from 

particles endocytosed [40] and endogenous probes [33], which can be actively transported along 

microtubule tracks. The bead-loaded fluorescent particles are thus not screened by lipid vesicles 

and are able to probe the mechanical properties of the actin network directly. Combining the 

confocal imaging and these results, we are able to conclude with confidence that glass beads are 

able to load 100 nm fluorescent particles directly into cytoplasm and probe the mechanical 

properties of the embedding cytoskeleton.  

5.4.2 Minimize number of factors contributing to the heterogeneity of intracellular 

mechanical properties 

Similar to earlier intracellular particle tracking studies, we also observed a wide-spread 

distribution of individual MSDs (Figure 5.1A). Although the variance in MSD is informative 

about the intracellular heterogeneities of the mechanical properties, other factors may also 
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contribute to the heterogeneity in MSDs and make accurate interpretation of the measurements 

challenging. Therefore, we tried to minimize these contributing factors, so that the variances in 

MSDs reflect to the largest extent the heterogeneity in mechanical properties. As an example, a 

recent study reported that the cell-cell contact influences the organization of actin network in a 

cell-type specific manner and differences in cellular mechanical properties were found across 

isolated cells, cells on the periphery of clusters and cells inside clusters [71]. In addition, as cells 

progress through different phases in the mitosis, cells undergo drastic changes in cytoskeletal 

organizations and therefore mechanical properties [71]. To minimize these two contributing 

factors of cell-cell contact and cell cycle, only isolated and well-spread cells were chosen for 

imaging in our study. Significant heterogeneity in the MSD can also arise from different 

boundary conditions between the particles contained in lipid vesicles and the cytoskeleton [27]. 

Glass beads are able to load the PEG-coated fluorescent particles directly into the cytoplasm, 

thus this issue should be circumvented. In future studies, it would further simplify interpreting 

the results by minimizing the cell-cell heterogeneity using adhesive micropatterns to standardize 

the cell morphology [72].   

5.4.3 Mechanisms underlying the movement of bead-loaded fluorescent particles  

The MSD of bead-loaded fluorescent particles is linear and appears to be diffusive in the 

control cells. Using treatments of different cytoskeletal drugs, insights into the complexity of the 

apparently diffusive motion in the cytoplasm was generated by analyzing the MSDs of bead-

loaded fluorescent particles. Our results are consistent with a picture [28,29] in which the 

particles are trapped within the actin cytoskeleton, which confines their motion at short 

timescales, but due to ATP-dependent processes including molecular motors and cytoskeleton 

remodeling, the confining cage itself moves at the long timescales. The particle fluctuations are 
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therefore strongly affected when the ATP is depleted and the actin network is dissolved, and 

weakly affected by stabilizing the actin network, inhibiting the myosin II activities or by 

perturbing the microtubule network. Therefore, the particle movements are not as simple as they 

appeared to be. These results suggest that the mechanical environment of the fluorescent beads is 

strongly dominated by the actin cytoskeleton. This is different from the local viscoelastic 

environment around mitochondria, which we showed is dominated by the microtubule network 

[33]. Such a consistency with previous studies supports that bead-loaded fluorescent particles are 

probing the intracellular mechanical properties in the same way as microinjected and ballistically 

injected fluorescent particles [29,31].  

In addition to MSD, we also calculated the distribution of directional change as a higher-

dimension measurement on the particle trajectories, which indeed brings in deeper understanding 

into the underlying mechanisms. In control cells, the anti-persistent peak is consistent with the 

elastic nature of the actin microenvironment embedding the bead-loaded fluorescent particles as 

discussed. The persistent peak, on the other hand, is characteristic of ATP-dependent active 

forces. Interestingly, the distributions of directional change suggest that different roles played by 

myosin II and actin at different timescales, which are otherwise impossible to be revealed by 

MSD alone. Myosin II behaves as a driving force at short timescales and hypothetically also as 

an actin crosslinker, which affects random motion at long timescales. This is consistent with its 

known intracellular functions. Similarly, actin filaments act as local caging structures at short 

timescales, but support active and persistent movements at long timescales, most probably by 

serving as tracks for molecular motors. Using a combination of MSD and distribution of 

directional change, we showed that the movements of bead-loaded fluorescent particles, without 
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sophisticated techniques like active microrheology, are able to provide insights into the 

cytoskeletal dynamics.   

5.4.5 Conclusion  

Based on a combination of confocal imaging and the single particle tracking results under 

different chemical treatments, we are able to conclude with confidence that glass beads are able 

to load 100 nm fluorescent particles directly into cytoplasm and probe the mechanical properties 

of the embedding cytoskeleton, mainly the intracellular actomyosin network. Our preliminary 

results in MCF7 and MDA-MB-231 cell lines also suggest that bead loading, a mechanical 

delivery method, is a promising method to serve as a general delivery method of fluorescent 

particles across different cell types. Due to the simplicity of the technique and no requirements 

for specialized instrumentation and expertise, the bead loading technique is potentially very 

useful to make the measurements of intracellular mechanical properties using single particle 

tracking a routine procedure in more laboratories compared to microinjection and ballistic 

injection. Furthermore this technique can also be used to introduce quantum dots as well as 

functionalized beads within cells, which could be useful in many different types of assays 

[45,47,73].  
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CHAPTER 6: THE CONCLUDING CHAPTER    
 
 
 
6.1  Conclusion  

In this chapter, I conclude the dissertation with a brief summary of some of the most 

interesting questions, in my view, that stem out of the studies presented in earlier chapters, and 

discuss potential future work to address these questions. 

6.2  Conclusions from Chapter 2: Loads Bias Genetic and Signaling Switches in Synthetic 

and Natural Systems 

The study presented in Chapter 2 depends heavily on nonlinear ODE models describing the 

behaviors of the synthetic and natural switches. We used bifurcation analyses and numerical 

solutions of the ODEs to characterize how loads (retroactivity) are able to impact the properties 

of the two switches. It would be helpful if we can generalize our methodology to study how 

loads can change the properties of a broader range of synthetic circuits in terms of number of 

steady states. Chemical reaction network theory (CRNT) established several theorems that are 

able tells us the number of steady states of an ODE model when certain conditions are met [1]. 

We could, in theory, adapt the CRNT to study the effects of loads on the number of steady states 

of some synthetic circuits satisfying the conditions required by the CRNT. This could help us to 

reach more general conclusions and designing principles to assemble larger networks from 

characterized synthetic circuits.  

The structures of natural circuits are typically more complex than the synthetic circuits. 

However, the production of proteins is costly to cells and there should be potential benefits 

associated with the additional complexity from an evolutionary viewpoint. Implied by our study 

presented in chapter 2, the additional complexity found in natural networks may hypothetically 
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play roles in reducing the effects of loads to make the natural networks more robust under 

various conditions. Further studies are needed to test this hypothesis. If it is true, new design 

principles may be learnt to construct synthetic circuits that are more robust against the presence 

of loads among other perturbations.  

6.3 Conclusions from Chapter 3: A Genetic Toggle Switch in Plants  

6.3.1 Future works on the two factors uncharacterized in the transient expression system 

As described in chapter 3, there are two factors uncharacterized in the transient expression 

system developed to measure quantitative response functions of repressor-promoter pairs in 

protoplasts [2]: the multiplicative noise in the protoplast system, and the positional effects of 

random stable genetic integration (T-DNA) of the genetic circuits in plants. A factor ranging 

from about 0.2 to 2-fold was found in absolute parameter values estimated between the 

protoplast and stably transgenic plants, as a result of these two factors. Such a factor impairs our 

ability to quantitatively predict the behaviors of toggle switch designes constructed from these 

repressor-promoter pairs. Therefore, it is particularly useful to characterize or standardize these 

two random factors in future work to improve the engineering-based methodology for plant 

synthetic biology.  

The multiplicative noise describes the batch variability (protoplast prepared on different 

days) as supported by experimental results [2]. We were not able identify the origin of the batch 

variability. We hypothesized that different compositions of differentiated plant cells in each 

batch of protoplast preparation may contribute to such a batch variability [2]. In future works, we 

could attempt to reduce such a variability in protoplast compositions using flow cytometry. We 

could at first attempt to find the signatures of healthy protoplasts in flow cytometry and take 

advantage of cell sorting to create populations of pre-determined number of healthy protoplasts 
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for the original transient-expression assays as described in [2]. This should reduce the variability 

arising from the number of healthy protoplasts. In addition, we could exploit cell sorting further 

to create more homogenous protoplast subpopulations in terms of cell types, distinguished by 

protoplast properties like cell sizes and chlorophyll contents. The relation between the cell types 

and behaviors of synthetic parts can then be better characterized and understood for future 

applications. Furthermore, the variability in protoplast compositions could be reduced by 

defining a standard composition of these homogenous protoplast subpopulations.   

Moreover, the next generation of the transient-expression assays [2] may be fully 

developed on the basis of flow cytometry, which is able to measure single-protoplast behaviors 

of the repressor-promoter pairs, instead of bulk measurements on the entire population inside one 

well. This could reduce the variability in the compositions of differentiated plant cells as 

mentioned earlier. In addition, the distribution of single-protoplast behavior could be informative 

on the plasmid copy numbers in each protoplast by comparing to the protoplasts prepared from 

stable transgenic plants as in [2]. However, the dual-luciferase output used in the transient-

expression assays is not yet compatible with the flow cytometry. This technical challenge could 

be overcome by introducing fluorescent proteins into the transient-expression assays as outputs.  

A major challenge is the strong auto-fluorescence of the chlorophylls in leaf protoplasts, which 

dwarfs even high expression levels of Green Fluorescent Protein as shown in our unpublished 

preliminary results and other studies [3,4]. This could be potentially solved by using fluorescent 

proteins in frequencies that chlorophyll auto-fluorescence is relatively weak. In addition, the 

amount of chlorophyll could be measured at independent frequencies, its auto-fluorescence in the 

frequencies of interests calculated using their characterized absorption spectra and subtracted to 

generate more accurate measurements of the amount of fluorescent proteins. Root protoplasts 
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could be used as well, which do not have chlorophyll. However, the tissue-specific effects may 

need to be characterized and taken into account as discussed in chapter 3 and in section 6.3.3.  

In general, it is challenging to integrate the transient-expression protoplasts assays with 

flow cytometry. As suggested by our preliminary results and the literature [3,4], the large amount 

of debris produced during the protoplast preparation may produce false positives. Efforts are 

needed to optimize the protoplast preparation protocol and gating strategies to filter the 

protoplasts from the debris. In addition, protoplasts, plant cells without the protections from cell 

wall, are very fragile. The configurations of the flow cytometer need to be optimized so that 

forces acting on the protoplasts are minimized and protoplast bursting during the process can be 

avoided or reduced. However challenging, the integration of flow cytometry into the transient-

expression protoplasts assays may prove fruitful to reduce the variability in the transient-

expression protoplasts assays, to gain single protoplast resolutions and to improve the 

engineering-based methodology for plant synthetic biology.  

The positional effects were produced by random integration of the genetic circuits into the 

plant chromosome using Agrobacterium-mediated transformation to produce transgenic plants 

[2]. CRISPR/Cas9, a recently developed tool to introduce site-specific double-stranded DNA 

break, may help us to characterize and standardize the positional effects. A recent study reported 

that CRISPR/Cas9 is able to integrate a 1.8 kb resistance cassette into the ADH1 locus of A. 

thaliana by homologous recombination [5]. Therefore, it is promising that CRISPR/Cas9 is able 

to integrate the genetic circuits into a specific pre-determined locus of the plant chromosome. A 

standard locus can then be chosen for all the integration of genetic circuits and the positional 

effects can then be characterized and standardized by comparing the parameter estimated from 
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the transient-expression protoplast assays and protoplasts prepared from stable transgenic plants 

as in [2].  

6.3.2 Future work on the tools developed for plant synthetic biology  

In chapter 3, we optimized a quantitative imaging protocol to characterize the behaviors of 

toggle switches in shoots and leaves of individual plants. The luciferase camera utilized in 

chapter 3 is able to capture single photons from plants quantitatively. However, a basic limitation 

is that luminescence images are essentially two-dimensional (2D) but the plant is, of course, a 

three-dimensional (3D) structure. Plant roots in Arabidopsis are relatively more spread-out in the 

agar gel and more transparent, therefore, they should be more accurately represented in the 2D 

imaging than leaves. On the other hand, overlap between leaves are inevitable despite of the 

delicate leaf arrangements, especially when plants grow larger. Since plant leaves are less 

transparent, these overlaps may lead to underestimation of the luciferase activities in leaves and 

thus inaccurate evaluations of the toggle switch tested experimentally. With recent advances in 

3D scanning in plant biology [6], it is possible to develop a system for 3D scanning of luciferase 

activities in plant leaves.   

The image processing software developed in chapter 3 is fully supervised visually by the 

operating researcher at each step to improve the accuracy and minimize the artifacts potentially 

introduced, making this step relatively time-consuming in the data analysis. With the recent 

developments in machine learning and computer vision, the image processing could be fully 

automated with careful validations. Thus, the luciferase data could be processed and analyzed 

with previous results immediately after the imaging. Prompt adjustments to the ongoing 

experiments could be made, for example, the experimental duration could be extended if the 

response is slower than anticipated.  



 
 

172 

The current version of MCMC, as used in chapter 3, fits to the population mean of the 

luminescence of the entire tissue, while richer information may be available in the distribution of 

pixel intensities that is not fully utilized now. As shown in single-cell bacterial or yeast studies, 

the whole distribution of intensities may convey valuable information about the stochasticity of 

the synthetic circuits [7], or about the heterogeneity in the host cells in our system. In future 

work, the MCMC could be improved in this direction. A complication that needs to be overcome 

is that the sources of the stochasticity in the distribution of pixel intensities are not well 

understood, and they probably include many other factors apart from intrinsic noise due to 

stochastic chemical reactions. Some of these factors will be discussed in more details in the 

following section.  

6.3.3 Challenges and opportunities in plant synthetic biology  

Using the image processing software developed in chapter 3, we are also able to 

approximately measure the growth rate of plants under different treatments given the limitation 

of 2D images as discussed above. We found that the plants with the toggle switch in its HIGH 

state generally grow slower (data not shown) than the ones in the LOW state. This could be 

explained by the metabolic burdens associated with the HIGH state, when both the repressor and 

the luciferase are expressed in large amount [8]. In addition, cellular ATP was converted to 

luminescence by the luciferase during the imaging. Therefore, significant cellular resources are 

possibly diverted from normal growth when the toggle switch is in its HIGH state. 

Mathematically, this leads to a decrease in the effective degradation rate constant (a sum of 

protein degradation rate and dilutions due to growth, expansion and division). In future works, 

this could be exploited to design circuits that are more robust when realizing functionalities of 

interest. Similarly ideas have been tested experimentally in bacterial systems [8].  
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Plants are multi-cellular differentiated organisms, which have heterogeneity not only on 

cell level (as discussed in section 6.3.1) but also on tissue levels. In chapter 3, we found that the 

shoots and roots in same plants generally behave in different manners, which suggests tissue-

specific influences on the behaviors of synthetic circuits. We also observed interesting leaf-to-

leaf variabilities and even variabilities across different subregions of one leaf in the behaviors of 

toggle switches. Different leaves may be at different developmental stages and different 

subregions may correspond to various differentiated tissues. All these variabilities could be 

understood, in part, by different gene expression profiles in differentiated tissues, which may 

result in different contextual effects on the same toggle switch designs. There may be differences 

in terms of transportation and global parameters (like rates of transcription, translation and 

degradation).  

These possible contextual effects on the behaviors of toggle switches brings back the 

discussion on the limitations of the validity of the assumption of modularity at question. In 

addition to the effects of retroactivity studied in chapter 2, these observed contextual effects also 

emphasize the limitations of the useful analogy to electrical engineering (section 1.1.1), 

especially when we are trying to expand the predictive power of synthetic biology to multi-

cellular differentiated organisms.   

Although these contextual effects pose additional challenges to construct reliably 

functional genetic circuits, they may provide more aspects to be engineered for novel 

functionalities as well. Synthetic circuits with tissue-specific behaviors can be engineered based 

on accumulating knowledge on these contextual effects. For example, it is more economical to 

make biofuel production more in shoots and less in roots, which are hard to harvest. In summary, 

all these complexities associated with multi-cellular differentiated organisms are not only 
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challenges, but also promising and unique opportunities of plants, compared with other hosts 

currently used in synthetic biology. 

6.4  Conclusions from Chapter 4: Force Spectrum Microscopy Using Mitochondrial 

Fluctuations of Control and ATP Depleted Cells 

In chapter 4, we hypothesized that the active forces driving mitochondrial fluctuations may 

be generated by motor proteins like dynein, kinesin and myosins (e.g., myosins V and VI, but not 

myosin II). Furthermore, we can hypothesize that the force spectra of mitochondrial fluctuations 

carry important information about these molecular motors, for example relative abundances and 

properties like dragging force. Indeed, the active force spectra in cancer cells with different 

metastatic potential were reported to be significantly different [9]. This hypothesis can be 

explored using cell lines with relevant mutants or pharmaceutical drugs targeting these molecular 

motors.  

We also found that the frequency-dependent spectrum of active forces acting on 

mitochondria in C3H-10T1/2 cells is almost same as the one of A7 cells measured by other 

researchers [9]. Such a similarity in active force spectra across different cell lines leads to 

interesting questions. One possibility is that the active force spectra acting on mitochondria are 

conserved, at least in the same species, which may be necessary for some cellular functionalities 

under the pressure of evolutionary selection, like the effectiveness in transporting mitochondria 

around to maintain the energy homeostasis. Furthermore, it is interesting to explore whether 

these force spectra are organelle-specific, e.g., if the force spectrum of lipid vesicles is different 

from the one measured for mitochondria. These hypotheses can be tested by applying the method 

based on mitochondrial fluctuations to more systems and generalize the method to track and 

study other endogenous organelles, like peroxisomes, lysosomes and lipid vesicles.  
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6.5 Conclusions from Chapter 5: Glass Beads Load 100 nm Fluorescent Particles into 

Live Cells to Probe Intracellular Mechanical Properties 

6.5.1 Further optimizations of the bead loading protocol  

In chapter 5, we reported that glass beads are able to load 100 nm fluorescent particles 

directly into the cytoplasm. In microrheology, larger fluorescent particles (200 nm, 500 nm or 

even micron-sized particles) are also widely used. It is therefore valuable to test the upper size 

limit of the bead loading to deliver fluorescent particles into the cytoplasm.  

In chapter 5, we briefly mentioned that the mechanical disruption induced by bead loading 

on the cellular membrane can reseal promptly depending on the extracellular calcium level [10]. 

Therefore, it is possible to optimize the calcium level in the growth medium used after the bead 

loading, so that the resealing of the cellular membranes is facilitated. This may improve the bead 

loading to deliver larger fluorescent particles in larger quantities.  

Comparing to traditional particle delivery methods (i.e., microinjection and ballistic 

injection), a significant advantage of bead loading is its low requirements on instruments and 

expertise to operate. However, this introduce additional issues. Mainly the consistency and 

repeatability of a same researcher or researchers across different groups may be lower than the 

two traditional methods. Simple and inexpensive devices can be developed in future works to 

improve this, for example acoustic rocking or magnetic rocking, or even ultrasound-guided bead 

loading.  

6.5.2 The fate of particles loaded into the cytoplasm  

Fluorescent particles, even coated with PEG, are foreign to the cytoplasmic environment. 

The fate of these particles delivered into the cytoplasm is largely unknown. Important questions, 

like whether they are entirely immune to the exocytosis system, are still left unanswered. If the 
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answer is no, what’s the characteristic timescale of their recognition by the exocytosis system? 

The particles enclosed in the exocytotic vesicles probe different mechanical properties and thus 

complicate the interpretation of results. Furthermore, what is the mechanisms leading to the 

recognition by the exocytosis system? The answer to this question may help us to engineer better 

surface coating of the fluorescent particle to help them stay free in the cytoplasm for a longer 

period, which enables long-time tracking across cell generations.  

6.6 Common Conclusions from chapters 4 and 5  

6.6.1 The trajectory-based analysis  

In chapter 4 and 5, we discussed the limitations of ensemble-average and time-average 

based measurements, including MSD, creep compliance and distribution of directional change, 

on both mitochondrial fluctuations and particle movements. Interesting information about the 

trajectory heterogeneities would be obscured by the ensemble averaging. For example, there may 

be different movement states (the persistent strokes of active forces for example) and the 

mitochondria/particle may explore different states along one trajectory. Therefore, it would 

provide deeper understanding on the underlying mechanisms driving the movements if we are 

able to dissect the temporal trajectory into segments of different movement modes. Such a 

dissection can potentially be achieved by some advanced methods developed recently, including 

rolling window based methods [11] and hidden Markov Model (HMM) based methods [12–14]. 

These methods were developed to mainly separate apart the diffusive motion from directed 

transportation. In our results, there are also the active yet random fluctuations, whose direction is 

random with lower persistence when compared to the directed transportation. Our preliminary 

results (data not shown) showed that these developed methods are not able to separate the active 

fluctuations accurately yet. This trajectory-based analysis will be part of our future work. We 
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will try to develop a HMM based method modified to integrate information from multiple 

timescales, similar to the idea of so called multi-rate or multi-scale HMM [15,16].  

6.6.2 The relationship between the mechanical properties measured by mitochondria and 

fluorescent particles.  

Combining the results in chapters 4 and 5, the intracellular cytoskeletal network forms a 

weakly elastic microenvironment that is liquidized by ATP-dependent processes. The 

movements of both mitochondria and fluorescent particles are both driven by ATP-dependent 

processes. This is consistent with the ubiquitous role of the active yet random forces [9,17]. In 

addition, our results suggest that mitochondria and fluorescent particles may not probe the same 

aspects of the intracellular mechanical properties. As shown in chapter 4, mitochondrial 

fluctuations are influenced by both microtubules and actin networks with the microtubule 

network playing a dominating role. While shown in chapter 5, the movements of fluorescent 

particles are mainly determined by the intracellular actomyosin network and the microtubule 

network plays a relatively minor and possibly indirect role. There are also differences in 

subcellular localizations between the mitochondria and fluorescent particles. The football-like 

mitochondria tracked in chapter 4 are relatively rare in the subcellular regions close to nuclei and 

more abundant in cell peripheries. On the other hand, the intracellular fluorescent particles are 

more located in the peri-nuclei region and are less represented in the peripheries as in our study 

presented in chapter 5 and other studies [18]. There are also differences between the two kinds of 

probes in other aspects as discussed in more details in chapter 4. Further work is therefore 

required to generate a more complete understanding of the cellular cytoskeleton in different 

subcellular regions, as measured by fluorescent particles and mitochondria as well as other 
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endogenous organelles including peroxisomes, lysosomes and lipid vesicles. Ideally, both the 

fluorescent particles and endogenous organelles should be tracked in the same cells.   

6.6.3 Better control of the chemical treatments    

When we were carrying out different treatments using chemicals and pharmaceutical 

drugs, there is generally a lack of precise control over these treatments on the single-cell level. 

All the cells in one petri dish were started with treatment at a same time. They were then imaged 

in a variable duration of 2~3 hr. The general assumption is that the cells should have reached 

their new steady state after an initial incubation time (ATP depletion for 2 hour and 

cytoskeleton-targeting chemicals for 30 min). However, this might not be true since cytoskeletal 

network is a complex network and multiple characteristic times may exist. Therefore, different 

cells imaged at different time points may not constitute a uniform population and this may incur 

extra challenges to interpret the treatment results. It is even more complicated taking into 

account of the hard-to-characterize side-effects of the drugs and chemicals used. In addition, cell 

cycles are generally not synchronized.  

Multiple tools developed recently may help to improve our capability to control these 

complex factors, including optogenetic tools and microfluidic devices. Optogenetic control of 

RhoA was reported to enable real-time and local activations of RhoA on a single-cell level [19]. 

In Mak et al. [20], a microfluidic chamber was used to culture the cells under study and growth 

media was exchanged continuously in microfluidic channels. Such a chamber can be paralleled 

into a 96-well plate format with a drug mixing module integrated. Precise treatments on a single-

cell level can then be achieved if we study just one cell per well. Furthermore, such a 

microfluidic unit can be integrated with single cell culture array reported earlier [21], so that 
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there is only one cell per well. This would also enable long-term study on single cells with 

careful indexing of wells and automated stage control.  

6.6.4 A potential interface between the mechanobiology and synthetic biology  

As discussed earlier, the methodology used in chapters 4 and 5 is mainly top-down. Due to 

the current limitations in the experimental system as discussed in section 6.6.3, we lack the 

ability to precisely control the underlying contributing factors. Therefore, it is sometimes 

challenging to interpret the experimental results, especially since the cytoskeleton consists of 

hundreds of proteins that interact with each other.  

Designed and constructed to perform designed biological functions, synthetic circuits may 

endow us with more power to manipulate and study intracellular mechanical properties. For 

example, toggle switches, as the one constructed in chapter 3, can be integrated into mammalian 

cells to control the expressions of dynein, one of the molecular motors hypothesized to drive the 

mitochondrial fluctuations. Then, we will be able to measure the force spectra of mitochondria in 

high or low expression levels of dynein. In addition, we can use fluorescent proteins as a proxy 

to the expression level of dynein. Such a system would establish a quantitative response function 

with the expression levels of dynein as the input and the intracellular mechanical properties as 

the output, thereby yielding deeper mechanistic insight into the mechanical properties of 

mammalian cells.  
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APPENDIX I: SUPPLEMENTARY INFORMATION FOR CHAPTER 2 
 
 
 
7.1 Genetic Toggle Switch 

7.1.1 Derivation and Dedimensionalization of Genetic Toggle Switch 

Let [R1], [R2] be the concentration repressors 1 and 2. Let [L1F] and [L2F] be the 

concentration of unbound load 1 and 2 with total load concentration [L1T] and [L2T], and which 

can bind R1 and R2 reversibly. Let [C1] and [C2] be the concentration of a load-receptor 

complex. 

 

 

R1 is produced at a maximal rate of β1 and is repressed by R2. R2 is produced at a maximal 

rate of β2 and repressed by R1. R1 and R2 degrade as a first order process at rate δ. Thus the 

differential equations governing [R1] and [R2] are: 

 

 

We now de-dimensionalize these equations and define the following parameters. L10, L20 

are total amount of load 1 and 2 respectively. 

      

     

   

 

 

  
R1⎡⎣ ⎤⎦ + L1F⎡⎣ ⎤⎦

kon1

koff 1

⎯ →⎯⎯← ⎯⎯⎯ C1⎡⎣ ⎤⎦

  
R2⎡⎣ ⎤⎦ + L2 F⎡⎣ ⎤⎦

kon2

koff 2

⎯ →⎯⎯← ⎯⎯⎯ C2⎡⎣ ⎤⎦

  

d R1⎡⎣ ⎤⎦
dt

=
β1

1+ R2⎡⎣ ⎤⎦ k2( )n −δ R1⎡⎣ ⎤⎦ − kon1 R1⎡⎣ ⎤⎦ L1F⎡⎣ ⎤⎦ + koff 1 C1⎡⎣ ⎤⎦

  

d R2⎡⎣ ⎤⎦
dt

=
β2

1+ R1⎡⎣ ⎤⎦ k1( )n −δ R2⎡⎣ ⎤⎦ − kon2 R2⎡⎣ ⎤⎦ L2 F⎡⎣ ⎤⎦ + koff 2 C2⎡⎣ ⎤⎦

  u = R1⎡⎣ ⎤⎦ k1   v = R2⎡⎣ ⎤⎦ k2  τ = tδ
   1 = L1F⎡⎣ ⎤⎦ L1T⎡⎣ ⎤⎦   C1⎡⎣ ⎤⎦ = L1T⎡⎣ ⎤⎦ − L1F⎡⎣ ⎤⎦    ′C1 = L1T⎡⎣ ⎤⎦ 1− 1( )
   2 = L2 F⎡⎣ ⎤⎦ L2T⎡⎣ ⎤⎦   C2⎡⎣ ⎤⎦ = L2T⎡⎣ ⎤⎦ − L2 F⎡⎣ ⎤⎦    ′C2 = L2T⎡⎣ ⎤⎦ 1− 2( )

   

dδ k1u
dτ

=
β1

1+ vn −δ k1u − kon1k1u1L1T + koff 1L1T 1− 1( )

   

dδ k2v
dτ

=
β2

1+ un −δ k2v − kon2k2v2L2T + koff 2L2T 1− 2( )
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These equations reduce to: 

  

 

We now redefine several parameters and add a basal production rate of u and v, α1 and α2: 

      

    

The final differential equations are therefore: 

 

 
[S1] 

 [S2] 

 [S3] 

 [S4] 

 
α1 = α2= 0.2; β1’ = β2’ = 4; n=3; kon1’= kon2’=0.5; koff1’= koff2’=0.5; k1=k2=1; [L1T] and [L2T] 

are variable. 

Note that the bifurcation analysis presented later in the Supplementary figures 

demonstrates that the various models that we study possess at least one stable state, i.e. the 

Jacobian of the system has eigenvalues with all negative real parts at the fixed points, and hence 

are asymptotically stable (see for example Theorem 4.6, p121 in “Differential Dynamic 

Systems” by Meiss). Thus all models discussed can be assumed to show convergence to 

equilibrium. 

7.1.2 The simulation box and concentrations for the stochastic simulations. 

   

du
dτ

=
β1 δ k1

1+ vn − u −
kon1 L1T⎡⎣ ⎤⎦

δ
u1 +

koff 1 L1T⎡⎣ ⎤⎦
δ k1

1− 1( )

   

dv
dτ

=
β2 δ k2

1+ un − v −
kon2 L2T⎡⎣ ⎤⎦

δ
v2 +

koff 2 L2T⎡⎣ ⎤⎦
δ k2

1− 2( )

  β1
′ = β1 δ k1   

kon1
′ =

kon1

δ   
koff 1

′ =
koff 1

δ k1

  β2
′ = β2 δ k2   

kon2
′ =

kon2

δ   
koff 2

′ =
koff 2

δ k2

   
du
dτ

=α1 +
β1
′

1+ vn − u − kon1
′ L1T⎡⎣ ⎤⎦u1 + koff 1

′ L1T⎡⎣ ⎤⎦ 1− 1( )

   
dv
dτ

=α 2 +
β2
′

1+ un − v − kon2
′ L2T⎡⎣ ⎤⎦v2 + koff 2

′ L2T⎡⎣ ⎤⎦ 1− 2( )

   

d1

dτ
= −kon1

′k1u1 + koff 1
′k1 1− 1( )

   

d2

dτ
= −kon2

′k2v2 + koff 2
′k2 1− 2( )
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We used a volume of 1 µm3 for the simulation box and the base parameters for simulation 

of the genetic toggle switch as in the deterministic simulations. This corresponded to small 

numbers of about 10-20 molecules of the two repressors in the simulation box. The small 

numbers of molecules led to frequent stochastic events and many spontaneous transitions 

between the two states. The rate expressions used for the stochastic simulations of the genetic 

toggle switch are shown in Table S2.5. 

7.1.3 Sensitivity to molecule number of the genetic toggle switch 

In order to test whether our procedure for constructing the quasi-potential landscape for the 

genetic toggle switch was robust to larger molecule numbers, we ran the simulation with the 

average number of molecules in each state about 5 times larger than that reported in the text. As 

shown in Figure S2.4, the trends are similar to those reported in the main paper. Note that the 

number of transitions seen in any block of time is much fewer and hence it takes a significantly 

longer computational time to actually collect enough data for smooth and accurate plots. 

However there is no qualitative change in the results due to a larger molecule number. 

7.1.4 Parameter Sensitivity in Deterministic Simulations and Alternative Induction 

Method 

7.1.4.1 Alternative Induction Method 

We considered a second method of induction that utilizes an inducer that directly reduces 

the level of a repressor. We derived similar a system of four differential equations listed below: 

 [S5] 

 [S6] 

   

du
dτ

=α1 +
β1
′

1+ vn − u +
γ 3I1

1+ I1

⎛

⎝⎜
⎞

⎠⎟
− kon1

′ L1T⎡⎣ ⎤⎦u1 + koff 1
′ L1T⎡⎣ ⎤⎦ 1− 1( )

   

dv
dτ

=α 2 +
β2
′

1+ un − v +
γ 4I2

1+ I2

⎛

⎝⎜
⎞

⎠⎟
− kon2

′ L2T⎡⎣ ⎤⎦v2 + koff 2
′ L2T⎡⎣ ⎤⎦ 1− 2( )
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 [S7] 

 [S8] 

 
γ3 and γ4 represent the activities of a factor (I1 or I2) that degrades R1 or R2, similar to the 

degradation of λ CI by RecA, modeled as in [1]. 

Because the qualitative results for both transition time and inducer required to transition 

did not vary with induction method, we report the results for the second method below in this 

Supplementary Information. 

7.1.4.2 Transition Time 

The relationship between amount of load and transition time was found to be linear across 

a range of parameters and both induction methods. This was true for a range of load binding on 

rates from Kon= 5 to 0.005. Of note is the identification of an optimal Kd for load binding which 

results in maximal effect on transition time. This can be seen in Figure S2.1. The effects of a 

low, medium and high Kd is demonstrated in Figure S2.2. We additionally varied β across two 

orders of magnitude; the relationship between transition time and load was found to be linear as 

shown in Table S2.1. 

7.1.4.3 Inducer Required to Transition 

The inducer decay rate, dI1, affects the exponential parameter. As decay rate increases, 

more inducer is required to transition because the inducer persists in the system for less time. 

The exponential relationship can actually be written as a function of the decay rate: 

Inducer=C*exp(k*dI*Load).  This fact shows that the exponential relationship between the 

amount of inducer required to transition states and the load applied to the system is dependent 

upon the decay rate of the inducer. This procedure was repeated for both induction methods 

resulting in similar qualitative results. The results are shown in Tables S2.2 and S2.3.  

   

d1

dτ
= −kon1

′k1u1 + koff 1
′k1 1− 1( )

   

d2

dτ
= −kon2

′k2v2 + koff 2
′k2 1− 2( )
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7.1.5 Effects of a Dynamic Load 

We explored the possibility that a load was not present in a constant amount but rather 

varied as the load was created and degraded. The equations used for a dynamic load are: 

 [S9] 

 [S10] 

 [S11] 

 [S12] 

  [S13] 

 [S14] 

 
Where kb1 is the creation rate of load 1 and kd1 is the degradation rate. Keq1, defined as 

kb1/kd1 was chosen as the de-dimensionalization constant (similar to L1T, L2T used above). As a 

result, the transition times were plotted against Keq rather than LT. The default parameter values 

used were: kd1=kd2=0.5; k1=k2=1; δ=1; kb1 and kb2 were varied from 0.5 to 50 to cover a range of 

loading conditions. In addition to the default parameters, we tested the effects of kd, k1, kon and 

koff on the relationship between load and transition time. Because the transitions between states 

are not induced until the system has reached a steady state, there was no qualitative effect on the 

deterministic results. The relationship between Keq for the load and transition time was found to 

be linear in all parameter regimes. This is shown for the default parameter conditions in Figure 

S2.3 and for the other parameter conditions in Table S2.4. 

7.1.6 Positive Feedback on the Toggle Switch 

   

du
dτ

=α1 +
β1
′

1+ vn − u − kon1
′ kb1

kd1

u1 + koff 1
′ kb1

kd1

c1( )

   

dv
dτ

=α 2 +
β2
′

1+ un − v − kon2
′ kb2

kd 2

v2 + koff 2
′ kb2

kd 2

c
2

( )

   

d1

dτ
= −kon1

′k1

kb2

kd 2

u1 + koff 1
′k1

kb1

kd1

c1( ) +
kd1

δ
−

kd1

δ
1

   

d2

dτ
= −kon2

′k2

kb2

kd 2

v2 + koff 2
′k2

kb2

kd 2

c2( ) +
kd 2

δ
−

kd 2

δ
2

   

dc1

dτ
= kon1

′k1u1 − koff 1
′k1c1

   

dc2

dτ
= kon2

′k2u2 − koff 2
′k2c2
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7.1.6.1 Derivation of Composite Promoter Term 

Let P be a constitutively active promoter which produces repressor R1 at rate β: 

 

Let R1 have positive feedback on P: 

  

 

Let R1 be a repressor of P which binds in n copies: 

 

We assume quasi-steady state: 

 

 

Therefore: 

;   

We assume a constant amount of P. From the law of conservation: 

 

Let  and   

 

 

  P
β⎯ →⎯ P + R1

  
P + R1

k1

k2

⎯ →⎯← ⎯⎯ PR1
ρ⎯ →⎯ PR1 + R1

  P + R1
k2← ⎯⎯ PR1

  
P + nR2

k3

k4

⎯ →⎯← ⎯⎯ PnR2

  

d PR1⎡⎣ ⎤⎦
dt

= k1 P⎡⎣ ⎤⎦ R1⎡⎣ ⎤⎦ − k2 PR1⎡⎣ ⎤⎦ = 0

  

d PR2⎡⎣ ⎤⎦
dt

= k3 P⎡⎣ ⎤⎦ R2⎡⎣ ⎤⎦
n
− k4 PR2⎡⎣ ⎤⎦ = 0

  
PR1⎡⎣ ⎤⎦ =

k1

k2

P⎡⎣ ⎤⎦ R1⎡⎣ ⎤⎦
  

PR2⎡⎣ ⎤⎦ =
k3

k4

P⎡⎣ ⎤⎦ R2⎡⎣ ⎤⎦
n

  P0 = P⎡⎣ ⎤⎦ + PR1⎡⎣ ⎤⎦ + PnR2⎡⎣ ⎤⎦

  k1 k2 = ′k   k3 k4 = ′′k

  P0 = P⎡⎣ ⎤⎦ + ′k P⎡⎣ ⎤⎦ R1⎡⎣ ⎤⎦ + k′′ P⎡⎣ ⎤⎦ R2⎡⎣ ⎤⎦
n

  

P⎡⎣ ⎤⎦ =
P0

1+ ′k R1⎡⎣ ⎤⎦ + ′′k R2⎡⎣ ⎤⎦
n
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We now solve for the rate of R1: 

 

 

Let ρ’=P0ρk’ and β’ = P0β 

 

This yields the positive feedback term in Eq. 10 in the text. 

7.1.6.2 Strength of Positive Feedback 

To assess the effects of a positive feedback on repressor 1, we tested various values of 

parameter ρ, the strength of positive feedback. First note that the positive feedback moiety, even 

in the presence of the load, does not abrogate bistability, unless ρ is very large, as shown in 

Figure S2.5. We then tested the probability distribution functions for the toggle with positive 

feedback without and with a load. The results of this are shown in Figure S2.6. When the 

positive feedback is 0, the probability distribution function for R1 and R2 is perfectly balanced. 

As the strength of positive feedback increases from 0 to 5, the pdf is increasingly skewed to R1. 

When ρ=5, the effects of the positive feedback are so strong that the system never switches 

stochastically into R2. As shown in the paper, this effect may be overcome by increasing the load 

on R1. 

7.1.6.3 Effect of Positive Feedback on Transition Time 

Even in the case of a positive feedback, the relationship between transition time and load 

remains linear. We explored the effect of transition time when the positive feedback was applied 

  

d R1⎡⎣ ⎤⎦
dt

= ρ PR1⎡⎣ ⎤⎦ − k1 P⎡⎣ ⎤⎦ R1⎡⎣ ⎤⎦ + k2 PR1⎡⎣ ⎤⎦ + βP = ρ ′k P⎡⎣ ⎤⎦ R1⎡⎣ ⎤⎦ + βP

  

d R1⎡⎣ ⎤⎦
dt

= P⎡⎣ ⎤⎦ ρ ′k R1⎡⎣ ⎤⎦ + β( ) =
P0ρ ′k R1⎡⎣ ⎤⎦ + P0β

1+ ′k R1⎡⎣ ⎤⎦ + ′′k R2⎡⎣ ⎤⎦
n

  

d R1⎡⎣ ⎤⎦
dt

=
′ρ R1⎡⎣ ⎤⎦ + ′β

1+ ′k R1⎡⎣ ⎤⎦ + ′′k R2⎡⎣ ⎤⎦
n
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to the R1 and R2. In all cases, the relationship was linear. This is shown in Supplementary Figure 

S2.5. 

7.2 Motivations of the Ras System Model 

7.2.1 Assumptions underlying the Ras Model:   

The model we used for the Ras-Kinase system is mainly adopted from the minimal model 

of the Ras Switch proposed by Das et. al. [1] In the following section, we briefly discuss the 

underlying assumptions of the minimal model of Ras Switch: 

1. SOS: As in [1], only SOS (Son of Sevenless) family of Ras Guanine Nucleotide Exchange 

Factors (GEFs) is included in the model. The RasGRP (Ras Guanine Nucleotide Release 

Protein) family (including RasGRP1 and RasGRP2) which are also GEFs are not included. 

SOS is ubiquitously distributed, while RasGRP family is restricted to the nervous and 

hematopoietic systems.  

2. SOScat: Not all the domains of SOS are taken into consideration in this model. Cdc25 and 

REM, together named as SOScat, are only two included, which are essential domains for 

GEF catalytic activities. The domains flanking SOScat, both N-terminal and C-terminal, 

are shown to be inhibitory to GEF activities. In vivo, when SOS is recruited to the plasma 

membrane, the resulting conformational changes release this inhibition. In this minimal 

model this inhibiting effect is not modeled. For our purpose of investigating the effects of 

adding loads to the positive feedback based bistable Ras switch, we also only consider 

SOScat in our model.  

3. SOS basal GEF activity: The original GEF activity of SOS is very low. However, its GEF 

activity is strongly influenced by the allosteric pocket in REM domain. When RasGDP 

binds to this pocket a 5-fold increase is observed in its GEF activity, while binding of 
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RasGTP to this site results in an increase of 75 times. Based on the main aim of the paper, 

we also choose to neglect the original GEF activity of SOScat. However, we also tested 

this assumption by including this basal GEF activity in the Ras model, whose behaviors 

show no qualitative differences with the model we described in the main text (data not 

shown).  

4. Intrinsic GTPase activity of Ras: intrinsic GTPase activity of Ras is relatively low. 

Proteins we have generically called RasGAPs are constitutively present that promote Ras 

deactivation from RasGTP into RasGDP. For simplicity the intrinsic GTPase activity of 

Ras is neglected and the enhanced deactivation of RasGTP by RasGAP is modeled as an 

enzymatic reaction.  

5. Truncated Raf cascade: after RasGTP binds to Raf in vivo, Raf will be phosphorylated and 

activated by the RasGTP:Raf complex. Then the activated Raf proteins activate the RAF-

MEK-ERK-CD69 pathway. However, for the purpose of our study here, Raf is simplified 

into only a binding partner of RasGTP. Thus, the downstream phosphorylation and 

activation steps are not considered.  

6. Since we are interested in the short-term behavior of the system, no synthesis or 

degradation dynamics is considered in our model, i.e. total amounts of all primary 

molecules (SOScat, Ras protein, RasGAP, Raf) are conserved. Note that experiments show 

Ras activation peaking in one or two minutes after activation [1,2]. 

7. All enzymatic reactions are modeled by sequential reactions of enzyme (E) and substrate 

(S) firstly bind together to form enzyme:substrate complex (ES) with a reaction rate 

constant of kon(i), then the complex disassociates reversibly with koff(i) or produces the 

product (P) irreversibly with kcat(i). These reactions are shown schematically as:  
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7.2.2 Reactions modeled in Ras model 

Based on the abovementioned assumptions, all reactions considered in our model are listed 

in Table S6. In particular, [R1] and [R2] describe the allosteric pocket reactions of binding and 

unbinding reactions between RasGDP/RasGTP and the allosteric pocket in SOS REM domain. 

[R3] and [R4] describe the reactions catalyzed by GEF pocket of SOScat with allosteric pocket 

occupied by RasGTP and RasGDP, indicated by SOS(RasGTP) and SOS(RasGDP) 

correspondingly. [R5] describes the RasGTP deactivation reaction into RasGDP enhanced by 

RasGAP. The last but not least, [R6] describes the binding and unbinding of RasGTP and Raf. 

An underlying assumption here is the protection model, where RasGTP is assumed to be free 

from deactivation of RasGAP after being bound to Raf. We refer the reader to a later section 

where this assumption is relaxed.  

7.3 ODE formulation 

To be more general, we use Law of Mass Action (LMA) to model all the rates of reactions 

listed in Supplementary Table S2.6. Then, the following set of ODEs is achieved for the 

changing rate of each of the involving species, which we will call the LMA model. For the 

following sections, we use the following notations for the species involved in the system:  

; ; ; ; 

; ; 

; ; ;  

;  

  E + S ↔
kon i( ),koff i( )

ES →
kcat i( )

P

  x1 ≡ SOScat⎡⎣ ⎤⎦   x2 ≡ RasGDP⎡⎣ ⎤⎦   x3 ≡ RasGTP⎡⎣ ⎤⎦   
x4 ≡ SOScat RasGDP( )⎡⎣ ⎤⎦

  
x5 ≡ SOScat RasGTP( )⎡⎣ ⎤⎦   

x6 ≡ SOScat RasGDP( ) : RasGDP⎡⎣ ⎤⎦

  
x7 ≡ SOScat RasGTP( ) : RasGDP⎡⎣ ⎤⎦   x8 ≡ RasGAP⎡⎣ ⎤⎦   x9 ≡ RasGAP : RasGTP⎡⎣ ⎤⎦

  x10 ≡ Raf⎡⎣ ⎤⎦   x11 ≡ RasGTP : Raf⎡⎣ ⎤⎦
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 [S15] 

 [S16] 

 [S17] 

 [S18] 

 [S19] 

 [S20] 

 [S21] 

 [S22] 

 [S23] 

 [S24] 

 [S25] 

The followings are conservation laws for primary molecules (SOS, Ras, GAP and Raf) 

involved in the system.  

  [S26] 

  
dx1

dt
= −kon1x1x2 + koff 1x4 − kon2x1x3 + koff 2x5

  
dx2

dt
= −kon1x1x2 + koff 1x4 − kon3x2x5 + koff 3x7 − kon4x2x4 + koff 4x6 + kcat5x9

  
dx3

dt
= −kon2x1x3 + koff 2x5 + kcat3x7 + kcat 4x6 − kon5x3x8 + koff 5x9 − kon6x3x10 + koff 6x11

  
dx4

dt
= kon1x1x2 − koff 1x4 − kon4x2x4 + koff 4x6 + kcat 4x6

  
dx5

dt
= kon2x1x3 − koff 2x5 − kon3x2x5 + koff 3x7 + kcat3x7

  
dx6

dt
= kon4x2x4 − koff 4x6 − kcat 4x6

  
dx7

dt
= kon3x2x5 − koff 3x7 − kcat3x7

  
dx8

dt
= −kon5x3x8 + koff 5x9 + kcat5x9

  
dx9

dt
= kon5x3x8 − koff 5x9 − kcat5x9

  
dx10

dt
= −kon6x3x10 + koff 6x11

  
dx11

dt
= kon6x3x10 − koff 6x11

  SOST = x1 + x4 + x5 + x6 + x7
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  [S27] 

  [S28] 

  [S29] 

We can recover the equations used in Ref. [1] with: 1) classic Pseudo Steady State 

Assumption (PSSA) for all the time derivatives of enzyme-substrate complexes; 2) defining 

Michealis constants as K(i)M = (koff(i) + Kcat(i))/kon(i); 3) Approximations of conservation law by 

ignoring enzyme-substrate complexes under PSSA. Then the enzymatic reaction rates can be 

simplified into classical Michealis Menten Kinetics and the overall set of ODEs simplified as:  

; ; ; ; 

; ; 

; ; ; ; 

 

  [S30] 

  [S31] 

  [S32] 

  [S33] 

 

The total molecular numbers of SOS, Ras and Raf are conserved in the PSSA system 

resulting in three additional conservation equations:  

  [S34] 

  [S35] 

  [S36] 
  

  RasT = x2 + x3 + x4 + x5 + 2x6 + 2x7 + x9 + x11

  GAPT = x8 + x9

  RafT = x10 + x11

  x1 ≡ SOScat⎡⎣ ⎤⎦   x2 ≡ RasGDP⎡⎣ ⎤⎦   x3 ≡ RasGTP⎡⎣ ⎤⎦   
x4 ≡ SOScat RasGDP( )⎡⎣ ⎤⎦

  
x5 ≡ SOScat RasGTP( )⎡⎣ ⎤⎦   

x6 ≡ SOScat RasGDP( ) : RasGDP⎡⎣ ⎤⎦

  
x7 ≡ SOScat RasGTP( ) : RasGDP⎡⎣ ⎤⎦   x8 ≡ RasGAP⎡⎣ ⎤⎦   x9 ≡ RasGAP : RasGTP⎡⎣ ⎤⎦   x10 ≡ Raf⎡⎣ ⎤⎦

  x11 ≡ RasGTP : Raf⎡⎣ ⎤⎦

  
dx1

dt
= −kon1x1x2 + koff 1x4 − kon2x1x3 + koff 2x5

  

dx3

dt
= −kon2x1x3 + koff 2x5 +

kcat3x2x5

Km3 + x2

+
kcat 4x2x4

Km4 + x2

−
kcat5GAPT x3

Km5 + x3

− kon6x3x10 + koff 6x11

  
dx5

dt
= kon2x1x3 − koff 2x5

  
dx11

dt
= kon6x3x10 − koff 6x11

  SOST = x1 + x4 + x5

  RasT = x2 + x3 + x4 + x5 + x11

  RafT = x10 + x11
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7.3.1 Simulation box and parameters 

A quasi-two dimensional simulation box, similar to the one used by Das et al. [1] was 

utilized. Our simulation box is a 2µm by 2 µm surface with a height of 1.7 nm. Every molecular 

species is assumed to be well-mixed in this box.  

Reaction rate constants were referenced from [1] and [3]. In our analysis, molecular 

concentrations were converted to molecular numbers in the simulation box for both deterministic 

and stochastic analyses. Thus, reaction rate constants need to be converted accordingly. For our 

simulation box, all the reactions are assumed to happen in the membrane area, which can be 

considered as two-dimensional. Therefore, the reaction rate constants need conversions not only 

from concentrations to molecular numbers, but also from 3D to 2D. Based on the simulation box 

used, a factor of 0.941/4 is used for the conversion from 3D rate constants with unit of (µM-1 s-1) 

to 2D rate constants with unit of (Molecules-1 s-1). All the parameters we used in our 

deterministic and stochastic studies are listed in Supplementary Table 7 with both 3D and 2D 

values.  

For all the following studies, 75 molecules of Ras, 6 molecules of RasGAP were used 

unless otherwise indicated.  

7.3.2 Results for both cases of LMA and PSSA  

Results for both the case of LMA and PSSA are shown in Figure 9 (main text) and Figure 

S7 correspondingly. For the case of LMA, the red line shows the bifurcation analysis results for 

the Ras system without Raf inside. A bistable regime is observed. While adding more Raf 

molecules into the system, both limit points are shifting to the right, bistable regime is decreasing 

and maximal excitable level of RasGTP is decreasing. When more than 21 molecules of Raf are 
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added, as shown by the curve of “Total Raf = 25”, the bistable regime totally diminishes and for 

all values of SOScat only one monostable point of the system remains.  

Supplementary Figure S2.7 shows the case of PSSA, similar pattern of the changes in 

bistable region can be observed as shown in Figure 4.9 (main text). The only difference between 

these two cases is for the case of PSSA slightly more Raf molecules are needed to achieve same 

effect.  

To directly examine the effects of adding different amount of Raf into the Ras activation 

system for both LMA and PSSA models, we also carried out bifurcation analyses with total 

number of Raf, i.e. RafT as primary parameter, which are shown in Supplementary Figure S2.8 

and S2.9 correspondingly. Both Supplementary Figure S2.8 and S2.9 start with bistable region 

when there is no Raf in the system as we can predict. With the increase of total number of Raf in 

the system, the values of “high” steady state decrease together with increase in the values of the 

unstable steady state. This results in vanishing of both steady states and only one monostable 

region after RafT reaches a certain threshold. Again, similar patterns are observed for both cases 

of LMA and PSSA, and the only difference between them is the scale.  

7.3.3 Parameter Sensitivity Analysis (PSA) 

For PSA of the Ras Minimal Model, we refer the reader to Das et. al. [1]. For our main 

purpose of investigating the load to the Ras Switch, we varied the values of  and  and 

check their influences on the bistability of the system. We first maintained the same ratio of  

to , then we changed this ratio and check individual influences.  

  kon6   
koff 6

  kon6

  
koff 6
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When keep the ratio between  and  the same and vary absolute values of  and 

, no difference in bifurcation diagram is noticed (data not shown). This means there are no 

changes in steady state values if the ratio between these two parameters is maintained.  

Then  and are varied separately. As shown in Figure S10, increase of  results 

in left shifts of both limit points, increase in bistable regime and increase in maximal RasGTP 

activation level. Qualitative features of bistability are maintained. Decrease of  results in 

right shift of both limit points, increase in unstable bistable regime and decrease in maximal 

RasGTP activation level. Qualitative features of bistability are also maintained. 

Supplementary Figure S2.11 shows the results of an increase in  value. This results in 

reverse effects as shown in Supplementary Figure S2.10. Noticeably, increase  by 10 times 

has exactly the same effects as decrease  by 10 times and vice versa. This indicates the key 

player of  and  in the Ras system is the value of their ratio and is additional assurance 

that no changes would be observed when the ratio between these two parameters is maintained.  

7.4 Discussion on protection assumption with a toy toggle switch and Ras Model 

7.4.1 Assumption of Protection Model  

For both the toggle switch and the Ras Switch, we assumed that the output molecule is 

protected when bound with the Load. For the toggle switch model, we assumed the repressor 

proteins are free from first order degradation when bound in the repressor-load complex; for the 

Ras Switch model, we assumed RasGTP is relieved from enhanced GTPase activity by RasGAP 

in its complex form with Raf. We show the effects of removing this assumption in the main text. 

Here we report additional data. 

  kon6   
koff 6   kon6

  
koff 6

  kon6   
koff 6   

koff 6

  
koff 6

  kon6

  
koff 6

  kon6

  kon6   
koff 6
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The Hill function form of the genetic toggle we have used does not allow for explicit 

binding of the repressors with the promoters they repress. We also considered the question 

whether allowing the repressor to decay when bound with the promoter (note, not the load) 

would have an effect on the system. To elucidate this point, a toy model is proposed to make the 

lumped processes in the Toggle Switch model more explicit. We present below an LMA based 

model for the toggle switch which we use to test whether allowing the decay of the repressor 

when bound to the promoter it represses can has any effect on the system.  

7.4.2 Toy Toggle Switch model 

For this model, we construct a demonstrative classical toggle switch similar to the one 

discussed in the text, but using LMA. In this model system, two equivalent repressors are 

expressed by corresponding genes. Inactive repressors monomers then become activated after a 

trimerization process. Activated repressor trimmers can then bind to corresponding promoters 

and repress the transcriptions of the other repressor monomer. Without repressor bound to 

promoters, genes can be transcribed at full rate.  

7.4.2.1 Assumptions 

1. Several assumptions were made for this model to both meet our purpose and maintain it in 

an intuitive form.  

2. Two sides of the toggle switch are identical, i.e. same reactions involved and same 

parameters for same reactions.  

3. Since we are interested in the steady state behaviors of the model system, transcriptional 

and translational processes are lumped together into one overall reaction and assumed to 

happen immediately without delay.   
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4. Promoter values are approximated as continuous concentrations rather than more 

appropriate discrete number of sites.  

5. “Leaky” transcriptions of the promoters when they are bound by corresponding repressors 

are ignored.  

6. Repressor monomers and trimers are identical in their degrading dynamics, thus same 

degrading parameters are used.   

Reactions included in this toggle switch model were then formulated and listed in 

Supplementary Table 4.8. Particularly, [P1] and [P8] describe the trimerization reactions of 

inactive repressor monomers (R(i)) into active repressor trimers (AR(i)). [P2] and [P9] describe 

the binding and unbinding reactions of active repressor trimers to corresponding promoters 

(Pro(i)) to form repressor:promoter complex (AR(i): Pro(i)). [P3] and [P10] describe the “ON 

state” of the promoters without being bound by repressor, which directly give birth to repressor 

monomers. [P4] and [P11] will be used to test the protection model, which describes the 

degradations of repressor trimers when they are bound to promoters. Degradation rate constants 

of this reaction will be set to zero for protection assumption as control and set equal to other 

degradation rate constant for our purpose. [P5], [P6], [P12] and [P13] are degradation reaction of 

both repressor monomers and trimers. [P7] and [P14] describe binding and unbinding reactions 

between repressor monomers and load molecules (L(i)) to form repressor:load complex (R(i):L(i)).  

7.4.2.2 ODE model 

Following notations are used for the toggle switch model:  

; ; ; ; ;  

; ; ; ; ;  

  x1 ≡ R1⎡⎣ ⎤⎦   x2 ≡ AR1⎡⎣ ⎤⎦   x3 ≡ Pro1⎡⎣ ⎤⎦   x4 ≡ AR1 : Pro1⎡⎣ ⎤⎦   x5 ≡ L1⎡⎣ ⎤⎦   x6 ≡ R1 : L1⎡⎣ ⎤⎦

  x7 ≡ R2⎡⎣ ⎤⎦   x8 ≡ AR2⎡⎣ ⎤⎦   x9 ≡ Pro2⎡⎣ ⎤⎦   x10 ≡ AR2 : Pro2⎡⎣ ⎤⎦   x11 ≡ L2⎡⎣ ⎤⎦   x12 ≡ R2 : L2⎡⎣ ⎤⎦
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We use Law of Mass Action to formulate all the reaction rates and achieve the following 

time dependent ODEs for each species:   

  [S37] 

  [S38] 

  [S39] 

  [S40] 

  [S41] 

  [S42] 

Since the toggle switch is symmetric, ODEs for the other side are identical except for 

indexes of variables and parameters thus not presented here. Also governing this system is the 

conservation of molecule numbers of promoters:  

  [S43] 

To generate Figure S12, following parameter values are used:  

, , , , , , 

, , .  

7.4.2.3 Results 

Supplementary Figure S2.12 shows the differences between the system with protection of 

repressor molecules from degradation when bound to promoter (note: not the load) and the one 

without. If the protection is not included, a very minor increase in the bistable region can be 

observed with right shift of upper limit point and left shift of lower limit point.  

  
dx1

dt
= −3k1x1

3 + 3k2x2 +α1x9 − k7x1 − kon1x1x5 + koff 1x6

  
dx2

dt
= k1x1

3 − k2x2 − k3x2x3 + k4x4 − k6x2

  
dx3

dt
= −k3x2x3 + k4x4 + k5x4

  
dx4

dt
= k3x2x3 − k4x4 − k5x4

  
dx5

dt
= −kon1x1x5 + koff 1x6

  
dx6

dt
= kon1x1x5 − koff 1x6

  Pro1T = x3 + x4

  k1 = k8 = 0.3   k2 = k9 = 10   k3 = k10 = 0.6   k4 = k11 = 1   k5 = k12 = 0.1   k6 = k13 = 0.1

  k7 = k14 = 0.1   kon = 0.5
  
koff = 0.2
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7.4.3 Toggle Switch without and with Positive Feedback Motif 

7.4.3.1 Modifications to original models 

If the protection assumption is released for the toggle switch model, two more reactions 

should be added into the reaction system.  

  

  
Corresponding changes to de-dimensionalized ODEs should also be made:  

  [S44] 

  [S45] 

 
When assuming steady state for the entire system, all the terms introduced by load 

molecules cannot be cancelled out as in the case of protection model. Thus, influences to steady-

state behaviors by adding load molecules to the Toggle Switch system should be expected.  

7.4.3.2 Results 

Figure 4.2A shows the steady-state effects of adding increasing number of load molecules 

to both sides of the original genetic toggle switch. Without load molecule, the system is bistable 

with two stable steady states and one unstable steady state as predicted. With the increase of 

number of load molecules, all these three steady state become closer and finally meet together at 

certain level of LT. Then two steady states vanish and only one stable steady state left. Figure 

4.2B shows the steady-state effects of adding increasing number of load molecules to R1 side 

(L1T) of the original genetic toggle switch. Without any load molecule in the system, the toggle 

switch is bistable with two stable steady states and one unstable steady state as predicted. Adding 

increasing number of load molecules results in becoming closer between the upper stable steady 

  C1→
δ

L1F

  C2→
δ

L2 F

  
dl1
dt

= −kon1
'k1ul1 + koff 1

'k1 1− l1( ) + 1− l1( )

  
dl2

dt
= −kon2

'k2vl2 + koff 2
'k2 1− l2( ) + 1− l2( )
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state and the unstable steady state. At certain threshold of L1T these two steady states meet and 

vanish, with only the lower stable steady state left.  

Supplementary Figure S2.13 shows effects of adding load molecules to the toggle switch 

with positive feedback on one side when the protection assumption is released. Interestingly, 

adding same amount of load molecules to different sides also cause different responses from the 

system. Adding load to R1 side results in increase of bistable regime and adding to R2 side 

results in decrease of bistable regime. When equal amount of loads added into both sides, the 

bistable regime is increased but to an extent smaller than adding to R1 side along. Increase in R1 

level is much faster in this case than in Figure 2 due to the positive feedback loop.  

7.4.3.3 Transition times in the absence of protection 

The relationship between transition times and load is altered when the protection of a lower 

or absent decay rate of the repressor from the load complex. As predicted from Figure 2, the 

system with a one-sided load loses bistability with a load of 3.4; with a both sided load the 

system loses bistability with a load of 11. Thus we tested the transition times of the system 

within this regime. As shown in Figure 4, when a load is applied to the same side, there is a 

positive linear relationship between rise time and load, but a negative linear relationship with 

decay time. Conversely, a load applied to the opposite side results in a negative linear 

relationship between rise time and load, but a positive linear relationship with decay time. A load 

applied to both sides result in a negative linear relationship for both rise time and decay time. 

This result is discussed in the main text. 

7.4.4 Ras Model 

For Ras model, protection model is also assumed implicitly, since RasGTP is free from 

GTPase activities after binding to Raf. In this section, we examine potential influences caused by 
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this assumption. For the Ras Switch, we modified the original set of ODE’s by including the 

RasGTP:Raf complexes as an equivalent substrate of RasGAP. 

7.4.4.1 Modifications to original model  

If RasGTP can still be deactivated into RasGDP by RasGAP in the complex form with 

Raf, one more reaction should be included into the Ras System:  

 

 

The same reaction rate constants are assumed for the new reaction as free RasGTP de-

activation. One more species is introduced into this system, i.e. . 

Based on this new reaction, several modifications should also be made for the ODEs system 

including adding more terms into x2, x8, x10 and x11 equations and add a new equation of x12.  

  [S46] 

  [S47] 

  [S48] 

  [S49] 

  [S50] 

Modifications are also needed for conservation laws:  

  [S51] 

  
RasGAP+RasGTP:Raf kon5

koff 5← →⎯⎯ RasGAP:RasGTP:Raf kcat5⎯ →⎯⎯ RasGAP+RasGDP+Raf

 RasGAP + RasGTP : Raf ↔
kon5,koff 5

RasGAP : RasGTP : Raf →
kcat5

RasGAP + RasGDP + Raf

 RasGAP + RasGTP : Raf ↔
kon5,koff 5

RasGAP : RasGTP : Raf →
kcat5

RasGAP + RasGDP + Raf

  x12 ≡ RasGAP : RasGTP : Raf⎡⎣ ⎤⎦

  
dx2

dt
= −kon1x1x2 + koff 1x4 − kon3x2x5 + koff 3x7 − kon4x2x4 + koff 4x6 + kcat5x9 + kcat5x12

  
dx8

dt
= †− kon5x3x8 + koff 5x9 + kcat5x9 − kon5x8x11 + koff 5x12 + kcat5x12

  
dx10

dt
= −kon6x3x10 + koff 6x11 + kcat5x12

  
dx11

dt
= kon6x3x10 − koff 6x11 − kon5x8x11 + koff 5x12

  
dx12

dt
= kon5x8x11 − koff 5x12 − kcat5x12

  RasT = x2 + x3 + x4 + x5 + 2x6 + 2x7 + x9 + x11 + x12
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  [S52] 

  [S53] 

7.4.4.2 Results 

Figure S2.14 shows the changes of bifurcation curve with different numbers of Raf 

molecules (5, 15, 25 and 200) added into the system in logarithmic scale respectively. A similar 

pattern of decreases in bistable region and finally elimination of the bistable region as reported in 

the Figure 9 in main text is still observed but with a more complicated dynamics. Differences 

between the case without protection model and the one in main text as with protection model will 

be discussed as follows. 

As shown in Figure 4.9 in the main text, where the protection model is included, maximal 

activation level of RasGTP is always decreasing with increase in Raf molecules added into the 

system. While in Supplementary Figure S2.14 reported here, maximal activation level of 

RasGTP first increase (as for the case of “Total Raf=5”) and then decrease (comparing the case 

of “Total Raf=25” to “Total Raf = 15”) with adding more Raf molecules.  

Elimination of bistable region happens with much more Raf molecules. Even though the 

bistable region already decreased a lot after adding 25 molecules, the left bistable region needs 

much more Raf molecules to eliminate. Even with 150 Raf molecules, a tiny bistable region still 

exists. After around 200 molecules of Ras added, the bistability is abrogated.  

Decrease in bistable region in Figure 4.9 in the main text is a result of right shifts of both 

fixed points with a faster rate of shift for the upper fixed points. While the decrease in 

Supplementary Figure S2.14 is a result of the leftward shift of both fixed points with a faster 

shift rate for the lower fixed point.  

  GAPT = x8 + x9 + x12

  RafT = x10 + x11 + x12
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7.5 Supplemental figures 

 

Figure S2.1. Surface plots showing response times of the simple genetic toggle switch with 
changes in load (L) and changes in the dissociation constant (Kd) of binding with load.  
The units of L and Kd are (molecules/µm3). The z-axis measures the response time indicated in 
the title. “Same Side Rise” and “Same Side Decay” refers to the rise time and decay time when 
the load is on the same side as the repressor whose concentration is increasing. “Opposite Side 
Rise” and “Opposite Side Decay” refers to the rise time and the decay time when the load is on 
the other side of the repressor whose concentration is increasing. “Both Sides Rise” or decay 
refer to the rise and decay times when a load is present on both sides (symmetrically). The plot 
shows that at every Kd, the relation between the response time and load is approximately linear. 
The response time is largest for the case of “Both Sides Rise” followed by “Opposite Side Rise”. 
The response time is also non-monotonic with respect to the Kd for a given load, and is 
maximized at intermediate values of Kd. 
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Figure S2.2. Time plot of switching of the simple toggle switch with a load on Repressor 1, 
at three different values of the dissociation constant.  
In all three cases the system is switched by providing 150 molecules/µm3 of an inducer at 1000 
minutes. The inducer stays constant at that value and is not shown in the plots. The left panel has 
a very high dissociation constant (Kd = 1000 molecules/µm3) of binding between the load and the 
repressor, due to which the load has a minimal effect on the system. The middle panel has an 
intermediate value (Kd = 1 molecules/µm3) because of which the load acts as a dynamic sink by 
releasing Repressor 1 and slowing the switching. The right panel shows the effect of a small 
dissociation constant (Kd = 10−3molecules/µm3). At such strong binding affinities, all of the load 
is always bound to Repressor 1. Thus the load has minimal effect on the switching dynamics. In 
all cases total load concentration is 100 molecules/µm3. 
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Figure S2.3. Effects of a dynamic load on dynamics of a symmetric toggle switch.  
(A). The time taken to reach 90% of maximum value for the protein undergoing a low-to-high 
transition as a function of the equilibrium constant of a dynamic load. Normalized time is a unit-
less number defined by the transition time (rise or decay) of the system at a given loading 
condition divided by the transition time (rise or decay) of an unloaded system. (B). The time 
taken for the concentration of the protein undergoing a high-to-low transition to reach 10% of its 
maximum value. 
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Figure S2.4. Stochastic time trace and the probability distribution function of repressor 
concentrations for the large volume simulations.  
(A). Comparison of time traces of the stochastic simulations of the simple toggle switch with 
basal parameters (top panel) and a larger volume (bottom panel). The average molecule number 
is about 5 times greater, and the number of transitions are significantly fewer. (B). The 
probability distribution function of the genetic toggle switch with the larger molecular number 
without (left) and with (right) a load. The effect of a load on R1 is qualitatively the same for this 
system as for the smaller system. Since transitions are slower the data are more uneven for this 
simulation.  
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Figure S2.5. Transition times in a genetic toggle switch with a positive feedback moiety.  
In all cases the strength of the positive feedback (denoted here by P instead of ρ) is 3.5 on either 
Repressor 1 (R1) or Repressor 2 (R2). Top Left: Rise time - time to transition INTO state R1 
with the positive feedback on R1. Note that the rise time is larger at nonzero loads when the load 
is on R2 or when the load is on both sides, in agreement with the simple toggle switch. Top 
Right: Rise time - time to transition INTO state R1 with the positive feedback on R2. Bottom 
Left: Decay time - time to transition OUT OF state R1 with the positive feedback on R1. Bottom 
Right: Decay time - time to transition OUT OF state R1 with the positive feedback on R2.  
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Figure S2.6. Probability distribution functions of repressor concentrations for the toggle 
with a positive feedback moiety.  
The left panel shows that when (%=%0, the switch is balanced evenly. As ( increases, the side of 
the switch with the positive feedback becomes more and more prominent, at the expense of the 
other side. When (%=%5, the system spends most of its time in one state.  

 

Figure S2.7. Bifurcation diagram of the Ras switch with different levels of Raf (load) on the 
system for the model with Pseudo Steady State Assumption (PSSA).  
The total number of SOS in the simulation box is used as the parameter being tuned, which 
varies from 0 to 1000. For Raf%=%0, Raf%=%10 and Raf%=%30, there are two bifurcations points as SOS 
is increased. In the first bifurcation a new high valued stable steady state appears along with the 
low valued stable steady state. In the second bifurcation, the low valued stable state disappears 
leaving behind only the high valued state. The dotted line marks the unstable steady state that 
also comes into existence in the bistable region. As total Raf increases, the two bifurcations 
approach each other. When Raf%=%50, the system has lost both of its bifurcations and is 
characterized by a single stable steady state at all values of Raf. 
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Figure S2.8. Bifurcation diagram of the Ras activation model based on Law of Mass Action 
(LMA). 
Here the total number of Raf molecules (RafT) is the primary parameter being varied. Without 
Raf, the Ras activation system is bistable as reported. With increasing RafT, the “high” stable 
steady state branch comes closer with the unstable steady state branch and both are eliminated 
after a threshold of RafT. A monostable region is maintained beyond the threshold.  
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Figure S2.9. Bifurcation diagram of the Ras activation PSSA model with total number of 
Raf molecules (RafT) as the primary parameter.  
Without Raf, the Ras activation system is bistable as reported. With increasing RafT, the “high” 
stable steady state branch comes closer with the unstable steady state branch and both are 
eliminated after a threshold of RafT. A monostable region is maintained beyond the threshold. 
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Figure S2.10. Parameter sensitivity of the bistability of Ras switch to changes in koff6. 
Increase of koff6results in leftward shifts of both stable fixed points, increase in the bistable 
regime and increase in maximal RasGTP activation level (Green Line) when compared to 
baseline with original value (Blue Line). Decrease of koff6 (Red Line) results in right shift of 
both limit points, increase in unstable bistable regime and decrease in maximal RasGTP 
activation level. Qualitative features of bistability are maintained. 
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Figure S2.11. Parameter sensitivity of the bistability of Ras switch to changes in kon6.  
Increase of kon6(Green Line) results in right shift of both limit points, increase in unstable 
bistable regime and decrease in maximal RasGTP activation level when compared to baseline 
original value (Blue Line). Decrease of kon6 (Red Line) results in left shifts of both limit points, 
increase in bistable regime and increase in maximal RasGTP activation level. Qualitative 
features of bistability are maintained.  
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Figure S2.12. Comparison between bifurcation diagrams of toy genetic toggle switch with 
and without protection of repressor degradation when bound with promoters.  
If the protection is not included (Blue Line), a minor increase in the bistable region can be 
observed with right shift of upper limit point and left shift of lower limit point compared to the 
case with protection assumed (Red Line). Note that this is not the same as degradation after 
being bound with the load.  
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Figure S2.13. Bifurcation diagram of the genetic toggle switch with positive feedback loop 
on one side after removal of the protection assumption.  
The left panel shows the bifurcation diagram when the load is added symmetrically to both sides. 
Without load molecule, the toggle switch is bistable as predicted. With the increase in LT, the 
unstable steady state and the “low” stable steady state come closer and meet at certain threshold. 
The value of “high” stable steady state decreases with increase in LT. Beyond the threshold, the 
toggle switch becomes monostable. The right panel shows the effect of just adding a load to R1. 
In this case the high state of R1 approaches the unstable steady state, and annihilates itself. The 
system jumps to the low stable state, which is equivalent to the “high” state of the other 
repressor.  
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Figure S2.14. Bifurcation diagram of the Ras activation model when Ras can degrade when 
bound with Raf.  
As the number of Raf molecules increase, the bistable region decreases. However unlike the case 
with no protection, the curve moves to the left. When Raf molecules increase by a large amount, 
bistability is abrogated.  
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Figure S2.15. Transition times for various k′on and k′off values plotted as a function of 
load for the basic toggle switch.  
Even if the binding-unbinding rates are slower or much faster than protein decay rates, the load-
transition time relationship stays linear. A, C, E, G, I, K, M, O, Q and S show the rise time. B, D, 
F, H, J, L, N, P, R, and T show decay time. (A,B) k′on = 4, k′off = 0.5, Kd = 0.125. (C,D) k′on = 10, 
k′off = 0.5, Kd = 0.05. (E,F) k′on = 4, k′off = 4, Kd = 1. (G,H) k′on = 10, k′off = 10, Kd = 1. (I,J) 
k′on = 4, k′off = 20, Kd = 5. (K,L) k′on = 10, k′off = 50, Kd = 5. (M,N) k′on = 4, k′off = 40, Kd = 10. 
(O,P) k′on = 10, k′off = 100, Kd = 10. (Q,R) k′on = 40, k′off = 400, Kd = 10. (S,T) k′on = 100, 
k′off = 1000, Kd = 10. 
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Figure S2.16. Probability distributions of repressor concentrations for various values of 
k′on and k′offfor the basic toggle switch.  
Even when the binding-unbinding with the load is several times faster than protein decay rates, 
the basic phenomena discussed in the paper remains unchanged. (A) k′on = 50, k′off = 500 (B) 
k′on = 500 k′off = 500 (C) k′on = 500 k′off = 5000. 
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Figure S2.17. Bistability of the toggle switch with positive feedback.  
A bifurcation diagram of the simple toggle switch with a positive feedback moiety on one side, 
with respect to the parameter ρ that measures the strength of the positive feedback. Only the 
concentration of R1 is shown for simplicity. The switch remains bistable till ρ becomes larger 
than a little over 200. 
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7.6 Supplemental tables 

Table S2.1. Slopes of linear fits to rise and decay time with various values of Koff, Kon and 
β. 
The first column reports the values of the dissociation constant (Kd = Koff/Kon) and the kinetic 
constants of the binding of Repressor 1, 2 or the value for β, which represents promoter strength. 
The other columns report the slopes of the linear fits of the various rise times and decay times. In 
all cases the fits have high R-squared values (>0.95). Intercept is 1, as the slopes are normalized 
to the un-loaded transition time. For Kd we change the parameters by two orders of magnitude in 
both directions to show that the linear relation is robust despite these changes. Note that the 
relation between rise time or decay time and the binding constant is non-monotonic. Units are as 
reported in the text. 
 

 
 

 
 
 
  

 Rise Time Decay Time 

 Same-Sided Opposite Side Both Sides Same-Sided Opposite Side Both Sides 
Koff=0.005; Kon=0.5; Kd= 0.01 4.59E-03 2.12E-03 6.72E-03 1.76E-03 1.01E-02 1.19E-02 
Koff=0.05; Kon=0.5; Kd= 0.1 2.46E-02 2.75E-02 5.19E-02 2.50E-02 4.47E-02 7.10E-02 
Koff=0.5; Kon=0.5; Kd= 1 7.80E-02 8.32E-02 1.60E-01 8.59E-02 1.13E-01 2.03E-01 
Koff=5; Kon=0.5; Kd= 10 3.46E-02 3.71E-02 7.08E-02 4.11E-02 3.57E-02 7.66E-02 
Koff=50; Kon=0.5; Kd= 100 4.68E-03 4.98E-03 9.62E-03 5.51E-03 4.25E-03 9.72E-03 
Koff=0.5; Kon=50; Kd= 0.01 2.50E-04 3.93E-04 6.44E-04 3.34E-04 4.68E-04 8.01E-04 
Koff=0.5; Kon=5; Kd= 0.1 2.83E-03 3.31E-03 6.14E-03 3.05E-03 5.36E-03 8.41E-03 
Koff=0.5; Kon=0.5; Kd= 1 7.80E-02 8.32E-02 1.60E-01 8.59E-02 1.13E-01 2.03E-01 
Koff=0.5; Kon=0.05; Kd= 10 3.45E-02 3.80E-02 7.15E-02 4.28E-02 3.47E-02 7.77E-02 
Koff=0.5; Kon=0.005; Kd= 100 5.29E-03 5.24E-03 1.07E-02 5.89E-03 4.12E-03 1.03E-02 
β1= β2 = 0.4 7.22E-02 1.48E-02 1.42E-01 2.08E-01 3.76E-02 2.46E-01 
β1= β2 = 4 3.69E-03 1.62E-01 1.50E-01 5.29E-03 8.70E-02 9.76E-02 
β1= β2 = 40 - 2.09E-01 2.02E-01 3.68E-05 9.20E-02 9.23E-02 

 



 
 

221 

Table S2.2. Exponential Fits of the amount of inducer required to transition states as a 
function of load.  
The basic genetic toggle switch switch was toggled to its other state by production of the other 
repressor protein by an inducer, given here as a bolus with a decay rate as shown. The size of the 
bolus was increased until the state changed. This was repeated at different levels of load and the 
minimum size of the bolus required was fit by an exponential function of the load. The fits are 
shown here, along with their R-squared values. “Load applied to the opposite side” means 
switching from a state without a load to a state with a load. “Load applied to the same side” 
means switching from a state with a load to a state without a load. 
 

 
 
 
 
 
  

Inducer Decay Rate 
(1/min) 

Equation R2 Value 

 Load Applied to both sides 
0.5 Inducer = 18.44*exp(0.305*Load) 0.99971 
0.1 Inducer = 2.41*exp(0.0629*Load) 0.99627 
0.05 Inducer = 2.00*exp(0.0308*Load) 0.99995 
0.01 Inducer = 1.69*exp(0.006147*Load) 0.99271 
0.005 Inducer = 2.23*exp(0.00294*Load) 0.99204 
 Load Applied to the “opposite side” 
0.5 Inducer = 16.80*exp(0.108*Load) 0.999188 
0.1 Inducer = 1.94*exp(0.0224*Load) 0.994335 
0.05 Inducer = 1.54*exp(0.0111*Load) 0.993154 
0.01 Inducer = 1.05*exp(0.00233*Load) 0.998114 
0.005 Inducer = 0.972*exp(0.00116*Load) 0.996343 
 Load Applied to the “same side” 
0.5 Inducer = 17.7*exp(0.219*Load) 0.999907 
0.1 Inducer = 2.34*exp(0.0484*Load) 0.996021 
0.05 Inducer = 1.91*exp(0.0239*Load) 0.997584 
0.01 Inducer = 1.45*exp(0.00496*Load) 0.992406 
0.005 Inducer = 1.46*exp(0.00245*Load) 0.991991 
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Table S2.3. Exponential Fits of the amount of inducer required to transition states as a 
function of load, in the case of induction by repression.  
The switch was toggled to its other state by repression of the current state by an external 
molecule, given to the system as a bolus with a decay rate as shown. The size of the bolus was 
increased until the state changed. This was repeated at different levels of load and the minimum 
size of the bolus required was fit by an exponential function of the load. The fits are shown here, 
along with their R-squared value. Thus the inducer required depends exponentially on the load in 
both the methods of induction. “Load applied to the opposite side” means switching from a state 
without a load to a state with a load. “Load applied to the same side” means switching from a 
state with a load to a state without a load. 
 

 
 
 
 
  

Inducer Decay 
Rate 

Equation R2 Value 

 Load Applied to Both Sides 
0.5 Inducer = 43.56*exp(0.506*Load) 0.999911 
0.1 Inducer = 5.61*exp(0.111*Load) 0.998743 
0.05 Inducer = 3.90*exp(0.0586*Load) 0.993461 
0.01 Inducer = 3.08*exp(0.0117*Load) 0.991054 
0.005 Inducer = 3.07*exp(0.00580*Load) 0.991298 
 Load Applied to Opposite Side 
0.5 Inducer = 45.13*exp(0.0700 *Load) 0.999526 
0.1 Inducer = 5.12*exp(0.0127*Load) 0.999407 
0.05 Inducer = 3.42*exp(0.00663*Load) 0.996845 
0.01 Inducer = 2.68*exp(0.00130*Load) 0.99715 
0.005 Inducer = 2.49*exp(0.000665*Load) 0.994754 
 Load Applied to Same Side 
0.5 Inducer = 47.01*exp(0.413*Load) 0.999474 
0.1 Inducer = 8.35*exp(0.0839*Load) 0.993501 
0.05 Inducer = 5.35*exp(0.0450*Load) 0.995209 
0.01 Inducer = 4.98*exp(0.00881*Load) 0.995697 
0.005 Inducer = 4.54*exp(0.00450*Load) 0.993970 
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Table S2.4. Slopes of linear fits to rise and decay time with a dynamic load, with varying 
values of load decay rate Kd, load binding rates Kon and Koff, and constant K1.  
The first four columns report the values of the various parameters. The other columns report the 
slopes of the linear fits of the various rise times and decay times. In most cases the fits have high 
R-squared values (>0.95). The two exceptions are >0.90 and starred. Intercept is 1, as the slopes 
are normalized to the un-loaded transition time. Note that for all cases, the relationship between 
load (expressed here as Keq = Kb/Kd) and transition time is a positive linear relationship. 
 

 
 
Table S2.5. Rate expressions used for the stochastic simulations of the genetic toggle switch.  
The rate expressions used for the stochastic simulation of the toggle switch along with the 
description of the reaction are listed. 

 
 
  

        Rise Time Decay Time 
Kd K1 Kon Koff Same Opposite Both Same Opposite Both 

0.5 1 0.5 0.5 0.498 0.345 0.502 0.423 0.179 0.460 
0.5 5 0.5 0.5 1.333 0.518 0.340 0.463 0.773 0.435 
0.5 0.5 0.5 0.5 0.264 0.224 0.343 0.308 0.089 0.337 

0.05 1 0.5 0.5 0.044 0.483 0.547 0.622 0.058 0.628 
5 1 0.5 0.5 0.357 0.332 0.437 0.393 0.187 0.427 

0.5 1 5 0.5 4.367 0.540 0.520 0.535 1.767 0.578 
0.5 1 0.05 0.5 0.062 0.059 0.100 0.093 0.014 0.105 
0.5 1 0.5 5 0.057 0.055 0.093 0.084 0.017 0.093 
0.5 1 0.5 0.05 4.538 0.582 0.506 0.578 1.835 0.625 

 

Rxn Rate Expression hi Description of rate 
1 h1*R1 α1*V Basal production promoter 1 
2 h2*R1 β1/(1+R2/V)^n1) Repressed production promoter 1 
3 -h3*R1 D*R1 Degradation 
4 h4*R1-h4[R1:L1] koff*[R1:L1] Unbinding from load 
5 -h5*R1+h5[R1:L1] kon*R1 Binding to load 
6 h6*R2 α2*V Basal production promoter 2 
7 h7*R2 β2/(1+R2/V)^n2) Repressed production promoter 2 
8 -h8*R2 D*R2 Degradation 
9 h9*R2-h9[R2:L2] koff2*[R2:L2] Unbinding from load 
10 -h10*R2+h10[R2:L2] kon2*R2 Binding to load 
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Table S2.6. List of reactions in the minimal model of Ras activation.  
The reactions in the minimal model of Ras activation, along with the labels of the corresponding 
rate constants are shown. Parameters used in the simulations are given in Table S2.7. 
 

 
 
 
 
  

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠		 S	
No.	

𝑆𝑂𝑆𝑐𝑎𝑡 + 𝑅𝑎𝑠𝐺𝐷𝑃	
𝑘𝑜𝑛 1,𝑘𝑜𝑓𝑓 1
9⎯⎯⎯⎯⎯⎯; 	𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝐷𝑃)	 [R1]	

𝑆𝑂𝑆𝑐𝑎𝑡 + 𝑅𝑎𝑠𝐺𝑇𝑃	
𝑘𝑜𝑛 2,𝑘𝑜𝑓𝑓 2
9⎯⎯⎯⎯⎯⎯; 	𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝑇𝑃)	 [R2]	

𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝑇𝑃) +𝑅𝑎𝑠𝐺𝐷𝑃	
𝑘𝑜𝑛 3,𝑘𝑜𝑓𝑓 3
9⎯⎯⎯⎯⎯⎯;𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝑇𝑃): 𝑅𝑎𝑠𝐺𝐷𝑃	

			𝑘𝑐𝑎𝑡 3			
E⎯⎯⎯⎯; 	𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝑇𝑃)

+ 𝑅𝑎𝑠𝐺𝑇𝑃	
[R3]	

𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝐷𝑃) +𝑅𝑎𝑠𝐺𝐷𝑃	
𝑘𝑜𝑛 4,𝑘𝑜𝑓𝑓 4
9⎯⎯⎯⎯⎯⎯;𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝐷𝑃): 𝑅𝑎𝑠𝐺𝐷𝑃	

			𝑘𝑐𝑎𝑡 4			
E⎯⎯⎯⎯; 	𝑆𝑂𝑆𝑐𝑎𝑡(𝑅𝑎𝑠𝐺𝐷𝑃)

+ 𝑅𝑎𝑠𝐺𝑇𝑃	
[R4]	

𝑅𝑎𝑠𝐺𝐴𝑃 + 𝑅𝑎𝑠𝐺𝑇𝑃	
𝑘𝑜𝑛 5,𝑘𝑜𝑓𝑓 5
9⎯⎯⎯⎯⎯⎯; 	𝑅𝑎𝑠𝐺𝐴𝑃: 𝑅𝑎𝑠𝐺𝑇𝑃	

			𝑘𝑐𝑎𝑡 5		
E⎯⎯⎯⎯; 	𝑅𝑎𝑠𝐺𝐴𝑃 + 𝑅𝑎𝑠𝐺𝐷𝑃	 [R5]	

𝑅𝑎𝑠𝐺𝑇𝑃 + 𝑅𝑎𝑓	
𝑘𝑜𝑛 6,𝑘𝑜𝑓𝑓 6
9⎯⎯⎯⎯⎯⎯; 	𝑅𝑎𝑠𝐺𝑇𝑃: 𝑅𝑎𝑓	 [R6]	

 



 
 

225 

Table S2.7. Kinetic rate parameters used for the simulations of the Ras model.  
Here the numbers in the subscript of the rate constants in the “Constant” column refer to the 
reactions shown in the corresponding row of Supplementary Table S2.6. The meaning of the rate 
constants are as follows: kon refers to the on-rate, koff is the off rate and kcat is the catalytic 
rate. The sources for the rates are as shown in the last column. 
 

 
  

Rxn Constant 3D Rate 
Values 

Units 2D Rate 
Values 

Units Reference 

1 kon1 0.12 µM-1 s-1 0.028 Molecules-1 s-

1 
[2] 

1 koff1 3.0 s-1 3.0 s-1 [2] 
2 kon2 0.11 µM-1 s-1 0.026 Molecules-1 s-

1 
[2] 

2 koff2 0.4 s-1 0.4 s-1 [2] 
3 kon3 0.05 µM-1 s-1 0.0118 Molecules-1 s-

1 
[2] 

3 koff3 0.1 s-1 0.1 s-1 [2] 
3 kcat3 0.038 s-1 0.038 s-1 [2] 
4 kon4 0.07 µM-1 s-1 0.0165 Molecules-1 s-

1 
[2] 

4 koff4 1.0 s-1 1.0 s-1 [2] 
4 kcat4 0.003 s-1 0.003 s-1 [2] 
5 kon5 1.74 µM-1 s-1 0.41 Molecules-1 s-

1 
[2] 

5 koff5 0.2 s-1 0.2 s-1 [2] 
5 kcat5 0.1 s-1 0.1 s-1 [2] 
6 kon6 29.6e6 M-1 s-1 6.96 Molecules-1 s-

1 
[3] 

6 koff6 5.22 s-1 5.22 s-1 [3] 
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Table S2.8. List of reactions in the toy model of genetic toggle switch.  
The reactions in the toy model of the genetic toggle switch, discussed in Supplementary Text 
S2.1 are listed. The description of the various chemical species in the reactions are also provided 
in the Supplementary Text S2.1. 
 

Reactions	 Index	

	Module	 	

	 P1	

 P2	

	 P3	

	 P4	

	 P5	

	 P6	

	 P7	

	Module	 	

	 P8	

	 P9	

	 P10	

	 P11	

	 P12	

	 P13	

	 P14	

 
  

  AR1

  
R1 + R1 + R1

k1

k2

⎯ →⎯← ⎯⎯ AR1

AR1 + Pro1
k3

k4

⎯ →⎯← ⎯⎯ AR1 :Pro1

  Pro1
α2⎯ →⎯ Pro1 + R2

  AR1 : Pro1
k5⎯ →⎯ Pro1

  AR1
k6⎯ →⎯ ∅

  R1
k7⎯ →⎯ ∅

  
R1 + L1

kon1

koff 1

⎯ →⎯⎯← ⎯⎯⎯ R1 : L1

  AR2

  
R2 + R2 + R2

k8

k9

⎯ →⎯← ⎯⎯ AR2

  
AR2 + Pro2

k10

k11

⎯ →⎯← ⎯⎯ AR2 : Pro2

  Pro2
α1⎯ →⎯ Pro2 + R1

  AR2 : Pro2
k12⎯ →⎯ Pro2

  AR2
k13⎯ →⎯ ∅

  R2
k14⎯ →⎯ ∅

  
R2 + L2

kon2

koff 2

⎯ →⎯⎯← ⎯⎯⎯ R2 : L2



 
 

227 

REFERENCES 
 
 
 
1. Das J, Ho M, Zikherman J, Govern C, Yang M, et al. Digital signaling and hysteresis 

characterize ras activation in lymphoid cells. Cell. 2009; 136: 337-351. 

2. Prasad A, Zikherman J, Das J, Roose JP, Weiss A, et al. Origin of the sharp boundary 
that discriminates positive and negative selection of thymocytes. Proc Natl Acad Sci. 
2009; 106: 528-533. 

3. Kiel C, Serrano L. Cell type-specific importance of ras-c-raf complex association rate 
constants for MAPK signaling. Science Signaling. 2009; 2: ra38. 

 

 

  



 
 

228 

APPENDIX II: SUPPLEMENTARY INFORMATION FOR CHAPTER 3 
 
 
 
8.1 Supplementary Methods  

8.1.1 Plasmid constructions and schematic diagrams   

All plant toggle switch plasmids were assembled following standard molecular cloning 

techniques. Primers and gBlocks were ordered from Integrated DNA technologies (IDT) and 

PCR reactions were performed with Herculase II (Agilent) or Phusion DNA polymerase (New 

England BioLabs) according to manufacturers’ protocols. In order to prevent transcription read-

through among the genetic components, consecutive transcriptional units were insulated by 

transcription blocks [1]. All the genetic components used to assemble the necessary plasmids are 

listed in Table S3.1. Plasmids were verified by DNA sequencing before using for plant 

transformation. DNA sequencing was provided by the Colorado State University Proteomics and 

Metabolomics Facility. Stable co-transformation of plants with TKK121 and TKK109 binary 

plasmids resulted in Toggle 1.0 (Fig. S3.1a & b). Toggle 2.0 contains all the toggle switch 

components in a single T-DNA (TKK489, in a pGREENII0229 vector backbone) (Fig. S3.1c). 

Stable co-transformation of plants with TKK489 and TKK663 plasmids resulted in Toggle 2.1 

(Fig. S3.1c & d). TKK121 plasmid is in a modified pCambia2300 vector backbone (PAB2300) 

where the kanamycin resistance nptII gene is replaced by the Basta resistance BAR gene. 

TKK109 and TKK663 plasmids are in the kanamycin resistant pCAMBIA2300 binary vector 

backbone. TKK489 is in the Basta resistant pGREENII0229 vector backbone. 

The schematic for the mutual repression arrangement of Toggle 1.0 is depicted in Fig. 

S3.2. The circuit is composed of two transcriptional repressors, two constitutive and repressible 

promoters, two inducible promoters and one reporter gene (Luciferase) as readout to quantify the 
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ON/OFF switch behaviors. Toggle 1.0 is based on 35S2xLexA and NOS2xGal4 promoters in a 2:1 

combination, respectively (Fig. S3.2). Similar to the original toggle switch circuit2, two possible 

stable states are expected without applying external input signals. When 35S2xLexA promoter 

transcribes the GEAR repressor, the circuit is set in the low state (low luciferase expression 

levels).  Alternatively, when the NOS2xGal4 promoter transcribes the LEAR repressor, the circuit 

is set in the high state (high luciferase expression levels). To switch between stable states, 

expression of an extra copy of the genes encoding the repressors is placed under control of 

chemical inducible systems, dexamethasone (DEX) and 4-hydroxytamoxifen (4-OHT). In 

Toggle 1.0, 4-OHT induces switching to the high state, i.e., the production of LEAR repressor, 

which results in luciferase expression (Fig. S3.2c). On the other hand, DEX induces the 

production of GEAR, which represses luciferase expression (low state) (Fig. S3.2a).  A bistable 

toggle switch maintains its high (Fig. S3.2d) or low (Fig. S3.2b) states in the absence of an 

inducer.  
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Figure S3.1. T-DNA regions of the toggle switch plasmids used for plant transformation.  
a, Schematic diagram of the T-DNA region of Basta (glufosinate ammonium) resistant TKK121 
plasmid. b, Schematic diagram of the T-DNA region of Kanamycin resistant TKK109 plasmid. 
Plants co-transformed with binary plasmid a and b resulted in Toggle 1.0. c, Toggle 2.0 
components in a single plasmid (TKK489). d, The additional DEX inducible Gal4EAR repressor 
in TKK663 plasmid.  Plants co-transformed with binary plasmids in c and d resulted in Toggle 
2.1. Promoters are indicated by blue solid arrow heads and numbered from 1 to 8 (1, 35S2xLexA; 
2, NOS2xGal4; 3, FMV; 4, pOp6; 5, 35S; 6, 10xN1; 7, 35S4xLexATATA; 8, NOS). The green and 
red solid boxes represent synthetic repressors and are labeled as A, B and C (A, Gal4EAR; B, 
LexAEAR; C, LexAOFPx). D and E are transcription factors for DEX (LhGR2) and 4-OHT 
(NEV) inducible promoters, respectively. Gray solid boxes labeled T1 to T5 are terminators. T1, 
OCS terminator; T2, NOS terminator; T3, Pea3A terminator; T4, E9 terminator; T5, CaMV35S 
terminator. Transcription blocks are denoted by solid black rectangles. F, Firefly luciferase; G, 
BAR gene; H, nptII gene; LB, left border; RB, right border. 
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Figure S3.2. Schematic representations of Toggle 1.0.  
Repressors GEAR (Gal4EAR) and LEAR (LexAEAR) mutually repress expression of each other 
by binding to the repressible promoters, NOS2xGal4 and 35S2xLexA, respectively. a-b, DEX induces 
expression of an additional copy of GEAR repressor that binds to and represses two copies of the 
promoter NOS2XGal4, enabling (a) the switch to the low state and (b) maintenance of the low state 
without the inducer. c-d, OHT induces expression of an additional copy of LEAR repressor that 
binds to and represses two copies of the promoter 35S2xLexA, enabling (c) the switch to the high 
state and (d) maintenance of the high state without the inducer. Firefly luciferase provides a 
quantitative readout of circuit function. 
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8.1.2 Image Processing  

To quantify the performance of the different toggle switch circuits in transgenic plants and 

make comparable quantifications across different time points and treatments, image-processing 

software was developed with the ability to distinguish the luminescence signals emitted from 

shoots and roots (Fig. S3.3). The software combines a series of image-processing steps into a 

workflow. To ensure accuracy of the image processing and reduce possible artifacts, each step in 

the workflow is fully supervised by the user. The software first loads a high resolution digital 

color image of the plants and identifies the regions of interest (ROIs) in shoots and roots 

separately through user-supervised color thresholding (Fig. S3.3a). During this step, ROIs 

corresponding to different plants are also separated and indexed for further image processing. An 

image registration step is then carried out between the high resolution and the bright-field images 

obtained by the luciferase camera by user defined control points (n ≥ 2) (Fig. S3.3b). This step 

provides the necessary information about the orientation, spatial shift and scaling to properly 

align the ROIs to the bright-field image. After the alignment, the ROIs are grouped by the user 

into individual plants. As shown in Fig. S3.3c-d, leaf ROIs 1, 2 and 3 were assigned to plants 

indexed as 1, 2 and 3, respectively. Similarly, root ROIs 1 and 2 were assigned to plant 1, ROI 3 

to plant 2, and ROIs 4 and 5 to plant 3. In the next step, the ROIs of shoots and roots of 

individual plants are applied to the luciferase luminescence images and several pixel-based 

measurements are carried out and recorded for further analysis (Fig. S3.3e-f). These 

measurements of leaf and root ROIs include area in pixels, total intensity levels and a list of 

intensity levels per pixel.  
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Figure S3.3. Whole plant image processing.  
a, High resolution color image collected using a regular digital camera under well controlled 
lighting conditions prior to the luciferase imaging, which was used for color thresholding and 
identifying the regions of interest (ROIs) of shoots and roots for individual plants. b, Bright-field 
image collected in situ under the luciferase camera, which was used to align the ROIs obtained 
from a). It should be noted that there are differences in resolution, orientation and lighting 
conditions between a) and b). c-d, ROIs of shoots (c) and roots (d) aligned with the bright-field 
image with ROIs indexed spatially. e-f, ROIs of shoots (e) and roots (f) applied to the 
luminescence images. 
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8.1.3 Data Analysis and Fold Change Calculation  

As we reported in a previous study [2], the distribution of luciferase luminescence per 

tissue of an individual plant was found to be well described by a lognormal distribution (i.e., a 

Gaussian distribution after a logarithmic transformation). The sample mean and standard 

deviations were therefore calculated on a logarithmic scale, for increased accuracy.  

Fold changes were calculated by dividing the mean luciferase data on the last day in the 

experiment by the mean data on the day immediately before changing an inducer. A fold change 

of one means there is no change. The mean and standard deviation of fold change were first 

calculated on a logarithmic scale, and then converted back to linear scale. A 2-sample two-sided 

t-test was used to test whether the differences between fold changes of two different treatments 

are statistically significant. The test was done on the fold change of individual plants in 

logarithmic scale. A p-value smaller than 0.05 was deemed as statistically significant.  

8.1.4 MCMC Parameter Fitting and Estimation of Bistability  

In order to quantitatively test whether the whole-plant luminescence data indicated a 

bistable or a monostable switch, we devised a novel method to fit the ODE representation 

(Equation S3.1) of the toggle switch to the whole-plant luminescence data. Similar to the ODE 

models used in Section 8.4.1, the main part of the ODE representation consists of two Hill 

functions describing the input-output characteristics of the two mutually repressible promoters 

and first-order degradation terms. Two additional terms were introduced in Equation S3.1 to 

better model the toggle switches tested in plants. First, as shown in Fig. 3.1 in the chapter 3, the 

plant toggle switch was switched between the two different states (LOW and HIGH) using two 

inducible promoters (DEX and 4-OHT). The behavior of the inducible promoters was modeled 

using a product of a binary term (𝑘123  and 𝑘456 , with a value of either 0 or 1 based on the 
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absence or presence of inducer, respectively) and a constitutive expression term (𝛼123  and 𝛼456 , 

promoter strengths of the inducible promoters) in the ODEs. Secondly, leaky expression terms 

(𝛼� and 𝛼�, basal expression levels of the promoters producing X and Y repressors, respectively) 

were also added to the Hill functions to better describe the behaviors of the repressible 

promoters, and address the increase in the complexity of the system.  

𝑑𝑋
𝑑𝑇 = 𝑘456𝛼456 + 𝛼� +

𝑏�

1 + � 𝑌𝐾�
�
P� − 𝑑�𝑋 

Eqn. S3.1 
𝑑𝑌
𝑑𝑇 = 𝑘123𝛼123 + 𝛼� +

𝑏�

1 + � 𝑋𝐾�
�
P� − 𝑑�𝑌 

To reduce the number of free parameters and the dimensionality of the problem, we 

assumed the two degradation rate constants of the repressors to be the same. To fit this model to 

the whole plant luminescence data, we defined a log likelihood function as the negative 

logarithm of the squared distances between the experimental data and numerical solutions of 

Equation S3.1. The log likelihood function is evaluated as a weighted average of all seven 

different treatments, namely Low to Low, Low Memory, Low to High, Control, High to Low, 

High Memory and High to High. We used Markov Chain Monte Carlo (MCMC) to estimate the 

maximum-likelihood parameter values of the toggle switch tested in plants. The model 

parameters were initialized as a uniformly distributed random variable inside the parameter 

space. At each iteration, a Gaussian displacement was proposed for each parameter sequentially 

and the log likelihood function evaluated for every new set of parameter values. The proposed 

parameter set was accepted according to typical Metropolis criteria, where a proposed parameter 

value was either always accepted if it increased the log likelihood, or occasionally accepted (i.e., 

accepted with a probability) if it decreased the log likelihood [3]. The MCMC run was 
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terminated if either the maximum number of iterations (10,000) was reached, or convergence 

was achieved, defined as no significant change in log likelihood for more than 500 iterations. 

The last instance was treated as a successful MCMC run, and the parameters obtained were 

stored. These parameters were then filtered using an additional quality control criterion: 

eliminate fits with Hill coefficients greater than 6 on the grounds that such high Hill coefficients 

are not expected in these constructs. The goodness of fit as measured by the value of the log 

likelihood function was bimodal in most cases, with a distinct population that clustered with the 

optimal fit and another population with lower values of the log likelihood that also clustered 

together. Parameter sets estimated by successful MCMC runs and that passed the quality control 

criterion were deemed as good parameter sets and retained for further analysis. Parameter sets 

that clustered around the optimal value obtained from the goodness of fit were deemed best 

parameter sets, and were also analyzed separately in some cases. Note that the best parameter 

sets are a subset of the good parameter sets. The fitting procedure was repeated at least 1,000 

times (and up to 10,000 times) for the three toggle switch circuits to sample the entire parameter 

space.  

The good parameter sets acquired in the MCMC were then evaluated for the bistability of a 

specific toggle design. For this evaluation, the inducible terms (𝑘456𝛼456  and 𝑘123𝛼123) in the 

ODE model presented in the Equation S3.1 were removed, since only the bistability of the 

repressible pairs is relevant, and the ODE model was simulated with the remaining parameter 

values. The ODEs were simulated numerically, starting from two different initial conditions 

(high in one state and low in the other one), and the results checked for bistability. We found that 

the numerical solutions fell in three classes: monostable, bistable or “indistinguishable from 

bistable”.  
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A parameter set was bistable if two different steady state values were achieved at the end 

of the solution, and deemed as monostable if the same steady state was achieved for both 

instances. A parameter set that is indistinguishable from bistable was defined as one that 

produced two trajectories that remained separate and relatively stable for a time longer than the 

experimental timescale of 15 days. In addition, “relatively stable” was defined numerically as a 

relative daily change (absolute difference over the average level of a day) smaller than 10% 

within the given state. The bistable and “indistinguishable from bistable” parameter sets were 

together classified as “bistable for the duration of the experiment”. 

Our data showed qualitative differences in the behavior of the circuit in the roots versus the 

shoots of the plants.  We quantitatively evaluated these differences by performing the MCMC 

fitting procedure separately for the two tissues. We repeated the fitting procedure using the data 

from the plant experiment in two different ways: (i) We fitted the mean of all the technical 

replicates for each data point for each experimental condition, for both roots and shoots; (ii) We 

fitted the root or shoot data of each technical replicate separately, by adding a random selection 

step where the algorithm arbitrarily chooses a technical replicate before fitting. This is equivalent 

to fitting each technical replicate separately and pooling the data.  

We report results of each fitting procedure separately, and report the results of the selected 

technical replicates whose luminescence heatmap images are shown in the main text. Note that 

each technical replicate involves seven experimental conditions, each performed with a different 

plant, that are genetically identical in the composition of the toggle circuit. Detailed analysis of 

transgene insertion indicates normal events (Section 8.2.9)  The technical replicates are, with the 

abbreviations used in parenthesis, (i) Control, (ii) Low state memory (Low Mem), (iii) Low state 

treated with the switching-on inducer (Low-High), (iv) Low state treated with the switching-off 



 
 

238 

inducer (Low-Low), (v) High state treated with the switching-on inducer (High-High), (vi) High 

state memory (High Mem), (vii) High state treated with the switching-off inducer (High-Low). 

Thus, fitting the data of a technical replicate involves fitting a single ODE model to all the time-

course data from a genetically identical toggle circuit in seven independent plants under seven 

different conditions.  

8.2 Supplementary Data 

8.2.1 Design of Toggle 1.0 and Toggle 2.0 

Building a toggle switch in plants requires genetic parts that produce bistable behavior 

when combined in the appropriate circuit topology. For the double repressor circuit topology, we 

can describe bistable bounds for the parameters of the transfer function of the two repressor-

promoter pairs by two principles, as follows (previously identified in Gardner et al. [4], and 

described in Section 8.4.1 in more detail). A successful bistable toggle switch requires 1) a 

sigmoidal repressor response with a high Hill coefficient, and 2) High expression levels, from 

each promoter, that are balanced and mathematically made dimensionless. The latter is explicitly 

defined below in Equation S3.3 (below) 

We have previously published our methods for construction and characterization of a 

library of repressor-promoter pairs [2], briefly summarized in Section 8.4.2. Comparison of 

quantitative parameters estimated from transient expression of components in protoplasts with 

those estimated from stable expression in plants yielded parameters that were approximately 

within a factor of two of each other, with the discrepancies most likely due to effects arising 

from the random integration of the synthetic circuit in the plant genome. This level of possible 

discrepancies led us to conclude that while quantitative predictions based on these parameters 

were likely to be subject to significant error, we could still use the two bistability criteria defined 
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above to design a mutual repression-based toggle switch. The first putative combination to 

satisfy the required criteria very early on was the combination consisting of NOS2xGal4.EAR and 

35S2xLexA.EAR, which had Hill coefficients above 3 and 2, respectively (Table S3.10). However, 

the Gal4-based repressible promoter was found to have a higher maximal expression, and to 

balance the promoter strengths we combined two copies of the LexA-based promoter with one 

copy of the Gal4-based promoter (Table S3.10). This construct is described as Toggle 1.0 in the 

text. Given the time requirements for production of plants with stable integration of synthetic 

genetic circuits, we began to assemble this construct in plants while we continued testing many 

other promoter-repressor pairs. After testing about 120 such genetic circuits, the high 

sigmoidality criteria led to identification of three promoter-repressor pairs where at least one 

experimental replicate was fit by a Hill function with a Hill coefficient, n, greater than 3 

(35S4xLexATATA.OFPx, 2xGal4NOS.EAR and NOS2xGal4.EAR). Of these three, the combination 

consisting of two copies of 35S4xLexATATA.OFPx and one copy of NOS2xGal4.EAR paired the 

best in terms of balanced dimensionless maximum expression levels, since here too the Gal4-

based promoter was found to be stronger (Table S3.10). This genetic circuit was assembled and 

is labeled as Toggle 2.0 in the text.  

8.2.2 Time to reach a steady state  

In addition to bistability, efficient switching between two stable states (High or Low) by 

temporary induction is a requirement for a genetic switch. To determine the switching time of the 

toggle circuits from the high to low state and from the low to the high state, we first probed 

steady state behavior by continuous induction with either 4-OHT or DEX. All three toggle 

circuits reached and maintained steady state levels of protein production around 96 hours (4 
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days) after induction (Fig. 3.5), with slight variations. Hence, we chose 4 days after induction to 

switch between states, or to assess the memory of the state.   

8.2.3 Data Analysis of Toggle 1.0   

Luminescence heat maps of whole plants carrying Toggle 1.0 are shown in Fig. 3.6. The 

plots were reconstructed using the raw luciferase luminescence images and the ROIs acquired 

from the image processing as described in the Section 8.1.2. One plant in each treatment is 

shown as an example, whereas data are collected from a minimum of three genetically identical 

plants per treatment. From analysis of the data such as that shown in the heat maps, the Low and 

High states were well established and the switching behaviors between the two steady states 

were as expected. However, the High Memory state did not show stability, with no obvious 

differences from the High to Low treatment. Interestingly, the roots seemed to perform better 

than shoots in terms of luminescence intensity and switching behavior.  

These observations were supported by quantitative data showing the temporal 

luminescence intensity profiles (Fig. 3.7a & b) and population mean fold change (Fig. 3.7c & 

d). Fig. 3.7a & b shows the intensity profile of shoots and roots, respectively, as extracted from 

the heatmaps (Fig. 3.6). The behavior of the toggle switch showed some significant quantitative 

differences between shoots and roots. The mean fold change of Low to High was 21.3-fold for 

roots compared to 2.3-fold for shoots. For High to Low, the mean fold change of roots was 24.9-

fold, and 3.9-fold for shoots. However, both shoots and roots failed to establish a stable High 

State as predicted for a toggle switch, as the differences between the High Memory and High to 

Low are not statistically significant from the 2-sample t-test.  
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8.2.4 MCMC Parameter Estimation Results for Toggle 1.0  

Shoots: (i) Fits to the means: 239 parameter sets met the criteria for good parameter sets 

(discussed in the Section 8.1), of which 2 were bistable and an additional 3 were 

indistinguishable from bistable. Thus, about 2.1% of parameter sets showed bistability for the 

duration of the experiment. Of these 239 parameter sets, 90 were classified as best parameter sets 

and they included all 5 parameter sets that showed bistability for the duration of the experiment 

(5.56%). 

(ii) Pooled fits to each technical replicate: 167 parameter sets met the criteria for good 

parameter sets, of which 6 were bistable and 2 were indistinguishable from bistable (for a total of 

4.8%). When using this random sampling of replicates method, we only report results of all the 

good parameter sets. 

(iii) Fits to the data of Fig. 3.6: We obtained 141 good parameter sets of which 0 were 

bistable. 

Roots: (i) Fits to the means: We found 325 good parameter sets of which 0 were bistable. 

(ii) Pooled fits to each technical replicate: Of 100 good parameter sets, 3 were bistable and 

none were indistinguishable from bistable.  

(iii) Fits to the data of Fig. 3.6: We found 244 good parameter sets of which 0 were 

bistable. 

Based on these results we classified Toggle 1.0 as a monostable system.  

8.2.5 Data Analysis of Toggle 2.0   

The intensity plots shown in Fig. 3.9c & f, shows that the Low and High states of Toggle 

2.0 were well established. The High state of shoots was maintained even after the 4-OHT inducer 

was removed, as expected for a functional toggle switch (Fig. 3.9e). However, the addition of 



 
 

242 

DEX inducer to switch from the High to the Low state (Fig. 3.9g) did not produce an effective 

switch, and in fact the luminescence on the final day was not statistically significantly different 

from the High Memory (Fig. 3.9e). Interestingly, and distinct from Toggle 1.0, the shoots had 

some performance which was better in Toggle 2.0 than in Toggle 1.0, with a mean fold change 

of 37.5 (compared to a fold-change of 2.3 in Toggle 1.0), as shown in Fig. 3.10c.  On the other 

hand, the roots of Toggle 2.0 performed similarly to Toggle 1.0. It is noteworthy that the Low to 

High change in luminescence was almost two orders of magnitude, a fold-change of 80 (Fig. 

3.10d).  

8.2.6 MCMC Parameter Estimation Results for Toggle 2.0  

Shoots: (i) Fits to the means: We obtained 1,141 good parameter sets (after running the 

MCMC algorithm 10,000 times), of which 278 were bistable and 822 were indistinguishable 

from bistable (totaling 96.4%). Out of these, 1,079 were best parameter sets, of which 260 were 

bistable and 812 indistinguishable from bistable (totaling 99.4%). 

(ii) Pooled fits to each technical replicate:  Of 111 good parameter sets, 22 were bistable 

and 84 were indistinguishable from bistable, totaling 95.5%. 

(iii) Fits to data of Fig. 3.9: Almost all the good parameter sets here were also best 

(142/146). Of the 146 good sets, 21 were bistable and 121 were indistinguishable from bistable 

(in total 97%).  

Roots: (i) Fits to the means: 134 parameter sets were good (and also best); of these none 

were bistable. 

(ii) Pooled fits to each technical replicate: 134 parameter sets were good (and best), and 

none of these was bistable. 
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(iii) Fits to the data of Fig. 3.9: Almost all the parameter sets were best (129/132). Out of 

132 good parameter sets, 1 was bistable and 1 indistinguishable from bistable.  

The MCMC fits therefore suggest that the Toggle 2.0 circuit is behaving like a bistable 

toggle switch in the shoots and a monostable system in the roots. However, since the 

luminescence change from High to Low in the leaves was not statistically significant, we 

surmised that the inducible promoter driving expression of the GEAR repressor is not 

sufficiently strong (our data do not distinguish whether it is the promoter or the GEAR 

repressor). Toggle 2.1 therefore was constructed with two copies of this inducible promoter 

driving expression of the GEAR repressor as detailed in Section 8.1.1. 

8.2.7 Data Analysis of Toggle 2.1   

The circuit design with Toggle 2.0 along with a second copy of the DEX-inducible 

Gal4EAR repressor is referred to as Toggle 2.1. From the intensity plots shown in Fig. 3.12, the 

Low and High states are again clearly distinguishable in Toggle 2.1. In accordance with the 

modeling predictions, the stability of the High state was maintained, and the switching behavior 

from High to Low was improved in shoots with a fold change of 6.4 compared to 2.6 in Toggle 

2.0 (Fig. 3.13c). This difference is statistically significant (Table S3.8).  

The roots still performed similarly to Toggle 2.0 (Fig. 3.13a & b). The fold change of Low 

to High was 18.9 and the fold change of High to Low was 10.7 (Fig. 3.13d).  

8.2.8 MCMC Parameter Estimation Results for Toggle 2.1 

Shoots: (i) Fits to the means: Out of 321 good parameter sets, 113 were bistable and 206 

were indistinguishable from bistable (totaling 99.4%). Of the good fits, 70 parameter sets met the 

definition of best parameter sets, and 58 of these were bistable and 12 indistinguishable from 

bistable (totaling 100%).  
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(ii) Pooled fits to each technical replicate: Out of 148 good parameter sets, 54 were bistable 

and 85 indistinguishable from bistable (totaling 94%). 

(iii)  Fits to the data in Fig. 3.12: Out of 150 good parameter sets, 68 were bistable and 82 

indistinguishable from bistable (totaling 100%). Of these 150, we found 71 best parameter fits, 

of which 41 were bistable and 30 were indistinguishable from bistable (totaling 100%). 

Roots: (i) Fits to the means: We found 133 good parameter sets out of which 17 were 

bistable and 4 were indistinguishable from bistable (totaling 15.8%). Of these 133, 86 were best 

parameter sets and they included the 21 parameters that were bistable for the duration of the 

experiment (24%). 

(ii) Pooled fits to each technical replicate: We ran the MCMC procedure 1,700 times and 

found 354 good parameter sets. Out of these 87 were bistable and 25 indistinguishable from 

bistable (totaling 31.6%). 

(ii) Fits to the data in Fig. 3.12: 155 out of 310 good parameters were bistable and 11 were 

indistinguishable from bistable (totaling 53.6%). However, 201 of these 310 were best 

parameters, and of these, 152 were bistable and 10 were indistinguishable from bistable, or a 

total of 80.6% were bistable for the duration of the experiment.  

The data strongly suggest that shoots containing Toggle 2.1 have bistability. The behavior 

of the circuit in the roots is more ambiguous (see Chapter 3 for discussion). 

8.2.9 Transgene Insertion and Copy Number Estimation 

Thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) has been used to 

retrieve sequences flanking insertion sites and estimate the number of insertions in plant 

chromosomes [5]. Here, we followed standard TAIL-PCR protocol as reported in Singer and 

Burke [5]. In brief, three subsequent rounds of TAIL-PCR were performed using arbitrary 
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degenerate (AD) primers (Table S3.2) and nested insertion-specific primers (Table S3.3). We 

used published arbitrary degenerate primers from Arabidopsis thaliana [5]. The nested insertion-

specific primers were designed targeting the BAR gene (selection marker) in the pGREENII0229 

binary vector. Both shoot and root genomic DNAs extracted from Toggle 2.0 homozygous lines 

were used as a template. Only secondary and tertiary TAIL-PCR products were analyzed on gel. 

The result showed a single band shifting between secondary and tertiary products in shoot as 

well as root DNA, suggesting a single copy of the transgene (Fig. S3.4a). Subsequently, the gel-

purified tertiary TAIL-PCR products were cloned in the pJET vector and sequenced. The results 

show that all the sequenced products contained the inserted T-DNA and its flanking genomic 

sequences of the Arabidopsis genome (Fig. S3.4b). The transgene inserted in Chromosome 5, in 

the intergenic region between AT5G39980 and AT5G39990.  Generation of clean DNA 

sequence products from TAIL PCR off the insert’s left border is consistent with one intact T-

DNA in these plants.   
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Figure S3.4. Determining chromosomal location and copy number estimation of the 
transgene.  
a, Secondary and tertiary TAIL-PCR products of Toggle 2.0 resolved in a 1% agarose gel stained 
with ethidium bromide. PCR was performed using genomic DNA isolated from both shoot 
(Lanes 1, 2, 5 & 6) and root (Lanes 3, 4, 7 & 8) tissues. Samples 1-4 are secondary and samples 
5-8 are tertiary TAIL-PCR products. The expected slight decrease in size of tertiary TAIL-PCR 
products is due to the use of nested primers. M, marker (GeneRuler 1-kb plus ladder, Thermo 
Scientific). b, DNA sequence of Toggle 2.0 tertiary TAIL-PCR product cloned in the pJET 
vector. T-DNA insertion was found in Chromosome 5 in the intergenic between AT5G39980 and 
AT5G39990. Gray shaded region is from Arabidopsis chromosome 5, the unshaded sequence is 
part of the T-DNA border and T-NOS, and nucleotides in blue are the LB1 primer. 
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8.3 Supplementary Tables  

8.3.1 Parts used and their respective sequences 

Table S3.1. Sequence information of all the parts used to construct the toggle circuits. 
 
Name 
  

Type  DNA sequence 

35S Promoter CATGGAGTCAAAGATTCAAATAGAGGACCTAACAGAACTCG
CCGTAAAGACTGGCGAACAGTTCATACAGAGTCTCTTACGA
CTCAATGACAAGAAGAAAATCTTCGTCAACATGGTGGAGCA
CGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCT
CAGAAGACCAAAGGGCAATTGAGACTTTTCAACAAAGGGTA
ATATCCGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGT
CACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTA
CAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAG
ATGCCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCC
ACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGT
CTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTA
AGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTC
CTCTATATAAGGAAGTTCATTTCATTTGGAGAGAACACGGG
GGACTCTCC 

FMV Promoter GGCCGCAGGATTTAGCAGCATTCCAGATTGGGTTCAATCAA
CAAGGTACGAGCCATATCACTTTATTCAAATTGGTATCGCCA
AAACCAAGAAGGAACTCCCATCCTCAAAGGTTTGTAAGGAA
GAATTCTCAGTCCAAAGCCTCAACAAGGTCAGGGTACAGAG
TCTCCAAACCATTAGCCAAAAGCTACAGGAGATCAATGAAG
AATCTTCAATCAAAGTAAACTACTGTTCCAGCACATGCATC
ATGGTCAGTAAGTTTCAGAAAAAGACATCCACCGAAGACTT
AAAGTTAGTGGGCATCTTTGAAAGTAATCTTGTCAACATCG
AGCAGCTGGCTTGTGGGGACCAGACAAAAAAGGAATGGTG
CAGAATTGTTAGGCGCACCTACCAAAAGCATCTTTGCCTTTA
TTGCAAAGATAAAGCAGATTCCTCTAGTACAAGTGGGGAAC
AAAATAACGTGGAAAAGAGCTGTCCTGACAGCCCACTCACT
AATGCGTATGACGAACGCAGTGACGACCACAAAAGAATTCC
CTCTATATAAGAAGGCATTCATTCCCATTTGAAGGATCATCA
GATACTCAACC 

35S2xLexA   Synthetic 
promoter 

TGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCG
GATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAG
TAGAAAAGGAAGGTGGCACCTACAAATGCCATCATTGCGAT
AAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGG
TCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAA
AAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA
TGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCA
CTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATT
TCATTTGGAGAGGAACGCGTACTGTACATATAACCACTGGT
TTTATATACAGCAGT 
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35S4xLexATATA Synthetic 
promoter 

TGAGACTTTTCAACAAAGGGTAATATCGGGAAACCTCCTCG
GATTCCATTGCCCAGCTATCTGTCACTTCATCAAAAGGACAG
TAGAAAAGGAAGGTGGCACCTACAAATGCCATCATTGCGAT
AAAGGAAAGGCTATCGTTCAAGATGCCTCTGCCGACAGTGG
TCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAA
AAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGA
TGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCA
CTATCCTTCGCAAGACCCTTCCTCACTGTACATATAACCACT
GGTTTTATATACAGCAGTACTGTACATATAACCACTGGTTTT
ATATACAGCAGTTATATAAGGAAGTTCATTTCATTTGGAGA
GGA 

NOS2xGal4   Synthetic 
promoter 

AGGCGGGAAACGACAATCTGATCATGAGCGGAGAATTAAG
GGAGTCACGTTATGACCCCCGCCGATGACGCGGGACAAGCC
GTTTTACGTTTGGAACTGACAGAACCGCAACGATTGAAGGA
GCCACTCAGCCGCGGGTTTCTGGAGTTTAATGAGCTAAGCA
CATACGTCAGAAACCATTATTGCGCGTTCAAAAGTCGCCTA
AGGTCACTATCAGCTAGCAAATATTTCTTGTCAAAAATGCTC
CACTGACGTTCCATAAATTCCCCTCGGTATCCAATTAGAGTC
TCATATTCACTCTCAATCCAAATAATCTGCACCGACGCGTCG
GAAGACTCTCCTCCGAGCGGAAGACTCTCCTCCG 

Gal4EAR Synthetic 
Repressor 

ATGAAGTTGTTAAGTTCTATTGAACAGGCTTGTGATATTTGT
AGATTGAAGAAGCTCAAGTGTAGTAAAGAGAAACCTAAGT
GCGCTAAGTGTCTTAAAAATAACTGGGAGTGCAGATATTCT
CCTAAGACTAAGAGATCACCTCTTACTAGGGCTCATCTCAC
AGAGGTGGAGTCTAGGCTTGAGAGATTGGAGCAGTTGTTCC
TTTTGATTTTTCCAAGAGAAGATCTTGATATGATTCTTAAGA
TGGATTCTCTTCAAGATATTAAGGCTCTTCTTACTGGTTTATT
CGTTCAAGATAATGTGAATAAGGATGCAGTGACTGATAGAC
TTGCATCAGTTGAAACTGATATGCCTCTTACATTAAGACAAC
ACAGGATTTCTGCTACTTCAAGTTCTGAAGAAAGTTCTAATA
AGGGTCAAAGGCAATTAACCGTTTCTCTTGATTTGGACCTCG
AGCTTCGTTTGGGATTCGCTTGA 

LexAEAR Synthetic 
Repressor 

ATGAAAGCTCTTACTGCTAGACAACAAGAAGTTTTTGATTTG
ATTAGGGATCATATTTCTCAGACAGGTATGCCTCCTACTAGA
GCTGAGATCGCTCAGAGACTCGGTTTCAGATCTCCTAACGCT
GCTGAAGAGCATCTTAAGGCTCTTGCTAGAAAGGGAGTTAT
TGAGATTGTGAGTGGAGCATCAAGAGGTATTAGGTTGCTTC
AAGAGGAAGAAGAGGGACTTCCTCTTGTTGGTAGAGTTGCA
GCTGGTGAGCCTCTTGATTTGGACCTCGAGCTTCGTTTGGGA
TTCGCTTGA 

LexAOFPX Synthetic 
Repressor 

ATGAAAGCTCTTACTGCTAGACAACAAGAAGTTTTTGATTTG
ATTAGGGATCATATTTCTCAGACAGGTATGCCTCCTACTAGA
GCTGAGATCGCTCAGAGACTCGGTTTCAGATCTCCTAACGCT
GCTGAAGAGCATCTTAAGGCTCTTGCTAGAAAGGGAGTTAT
TGAGATTGTGAGTGGAGCATCAAGAGGTATTAGGTTGCTTC
AAGAGGAAGAAGAGGGACTTCCTCTTGTTGGTAGAGTTGCA
GCTGGTGAGCCTAGCTTGGCGGTGGTGAAGAAGTCGGTGGA
TCCAAACAAAGATTTCAGGGAATCAATGGTGGAGATGATAG
CAGAGAACAAGATAAGAGCATCAAATGACCTAGAAGAGCT
TCTTGCTTGCTACCTTTCGTTAAATCCAAAGGAATATCACGA
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TCTTATTATCAAAGTGTTCGAACAAATCTGGCTTGAACTGAT
AAACCCA 

NOST Terminator CGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCT
GTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAAT
TACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTT
ATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATA
CATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACT
AGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATC
GGGCGGG 

OCST Terminator GGAGCTGCTTTAATGAGATATGCGAGACGCCTATGATCGCA
TGATATTTGCTTTCAATTCTGTTGTGCACGTTGTAAAAAACC
TGAGCATGTGTAGCTCAGATCCTTACCGCCGGTTTCGGTTCA
TTCTAATGAATATATCACCCGTTACTATCGTATTTTTATGAA
TAATATTCTCCGTTCAATTTACTGATTGTACCCTACTACTTAT
ATGTACAATATTAAAATGAAAACAATATATTGTGCTGAATA
GGTTTATAGCGACATCTATGATAGAGCGCCACAATAACAAA
CAATTGCGTTTTATTATTACAAATCCAATTTTAAAAAAAGCG
GCAGAACCGGTCAAACCTAAAAGACTGATTACATAAATCTT
ATTCAAATTTCAAAAGGCCCCAGGGGCTAGTATCTACGACA
CACCGAGCGGCGAACTAATAACGTTCACTGAAGGGAACTCC
GGTTCCCCGCCGGCGCGCATGGGTGAGATTCCTTGAAGTTG
AGTATTGGCCGTCCGCTCTACCGAAAGTTACGGGCACCATT
CAACCCGGTCCAGCACGGCGGCCGGGTAACCGACTTGCTGC
CCCGAGAATTATGCAGCATTTTTTTGGTGTATGT 

Pea3AT Terminator GCTTCGGGCCTCCCAGCTTTCGTCCGTATCATCGGTTTCGAC
AACGTTCGTCAAGTTCAATGCATCAGTTTCATTGCCCACACA
CCAGAATCCTACTAAGTTTGAGTATTATGGCATTGGAAAAG
CTGTTTTCTTCTATCATTTGTTCTGCTTGTAATTTACTGTGTT
CTTTCAGTTTTTGTTTTCGGACATCAAAATGCAAATGGATGG
ATAAGAGTTAATAAATGATATGGTCCTTTTGTTCATTCTCAA
ATTATTATTATCTGTTGTTTTTACTTTAATGGGTTGAATTTAA
GTAAGAAAGGAACTAACAGTGTGATATTAAGGTGCAATGTT
AGACATATAAAACAGTCTTTCACCTCTCTTTGGTTATGTCTT
GAATTGGTTTGTTTCTTCACTTATCTGTGTAATCAAGTTTACT
ATGAGTCTATGATCAAGTAATTATGCAATCAAGTTAAGTAC
AGTATAGGCTTT 

E9T Terminator ATTATGGCATTGGGAAAACTGTTTTTCTTGTACCATTTGTTG
TGCTTGTAATTTACTGTGTTTTTTATTCGGTTTTCGCTATCGA
ACTGTGAAATGGAAATGGATGGAGAAGAGTTAATGAATGAT
ATGGTCCTTTTGTTCATTCTCAAATTAATATTATTTGTTTTTT
CTCTTATTTGTTGTGTGTTGAATTTGAAATTATAAGAGATAT
GCAAACATTTTGTTTTGAGTAAAAATGTGTCAAATCGTGGCC
TCTAATGACCGAAGTTAATATGAGGAGTAAAACATCCCAAA
C 
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TB Transcription 
block 

AATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTT
TGTGTGAATCGATAGTACTAACATACGCTCTCCATCAAAAC
AAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCA
GTGCAAGTGCAGGTGCCAGAACATTTCTCT 

F-LUC Gene ATGGAAGACGCCAAAAACATAAAGAAAGGCCCGGCGCCAT
TCTATCCTCTAGAGGATGGAACCGCTGGAGAGCAACTGCAT
AAGGCTATGAAGAGATACGCCCTGGTTCCTGGAACAATTGC
TTTTACAGATGCACATATCGAGGTGAACATCACGTACGCGG
AATACTTCGAAATGTCCGTTCGGTTGGCAGAAGCTATGAAA
CGATATGGGCTGAATACAAATCACAGAATCGTCGTATGCAG
TGAAAACTCTCTTCAATTCTTTATGCCGGTGTTGGGCGCGTT
ATTTATCGGAGTTGCAGTTGCGCCCGCGAACGACATTTATA
ATGAACGTGAATTGCTCAACAGTATGAACATTTCGCAGCCT
ACCGTAGTGTTTGTTTCCAAAAAGGGGTTGCAAAAAATTTT
GAACGTGCAAAAAAAATTACCAATAATCCAGAAAATTATTA
TCATGGATTCTAAAACGGATTACCAGGGATTTCAGTCGATG
TACACGTTCGTCACATCTCATCTACCTCCCGGTTTTAATGAA
TACGATTTTGTACCAGAGTCCTTTGATCGTGACAAAACAATT
GCACTGATAATGAATTCCTCTGGATCTACTGGGTTACCTAAG
GGTGTGGCCCTTCCGCATAGAACTGCCTGCGTCAGATTCTCG
CATGCCAGAGATCCTATTTTTGGCAATCAAATCATTCCGGAT
ACTGCGATTTTAAGTGTTGTTCCATTCCATCACGGTTTTGGA
ATGTTTACTACACTCGGATATTTGATATGTGGATTTCGAGTC
GTCTTAATGTATAGATTTGAAGAAGAGCTGTTTTTACGATCC
CTTCAGGATTACAAAATTCAAAGTGCGTTGCTAGTACCAAC
CCTATTTTCATTCTTCGCCAAAAGCACTCTGATTGACAAATA
CGATTTATCTAATTTACACGAAATTGCTTCTGGGGGCGCACC
TCTTTCGAAAGAAGTCGGGGAAGCGGTTGCAAAACGCTTCC
ATCTTCCAGGGATACGACAAGGATATGGGCTCACTGAGACT
ACATCAGCTATTCTGATTACACCCGAGGGGGATGATAAACC
GGGCGCGGTCGGTAAAGTTGTTCCATTTTTTGAAGCGAAGG
TTGTGGATCTGGATACCGGGAAAACGCTGGGCGTTAATCAG
AGAGGCGAATTATGTGTCAGAGGACCTATGATTATGTCCGG
TTATGTAAACAATCCGGAAGCGACCAACGCCTTGATTGACA
AGGATGGATGGCTACATTCTGGAGACATAGCTTACTGGGAC
GAAGACGAACACTTCTTCATAGTTGACCGCTTGAAGTCTTTA
ATTAAATACAAAGGATATCAGGTGGCCCCCGCTGAATTGGA
ATCGATATTGTTACAACACCCCAACATCTTCGACGCGGGCG
TGGCAGGTCTTCCCGACGATGACGCCGGTGAACTTCCCGCC
GCCGTTGTTGTTTTGGAGCACGGAAAGACGATGACGGAAAA
AGAGATCGTGGATTACGTCGCCAGTCAAGTAACAACCGCGA
AAAAGTTGCGCGGAGGAGTTGTGTTTGTGGACGAAGTACCG
AAAGGTCTTACCGGAAAACTCGACGCAAGAAAAATCAGAG
AGATCCTCATAAAGGCCAAGAAGGGCGGAAAGTCCAAATT
GTAA 

10xN1 4-OHT 
Inducible 
Promoter 

GGGGTAGAAAAAGGGGTAGAAAACCAAGGGGTAGAAAAAG
GGGTAGAAAACCAAGGGGTAGAAAAAGGGGTAGAAAACCA
AGGGGTAGAAAAAGGGGTAGAAAACCAAGGGGTAGAAAAA
GGGGTAGAAGCAAGACCCTTCCTCTATATAAGGAAGTTCAT
TTCATTTGGAGAGG 
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pOp6 DEX 
Inducible 
promoter 

AATTGTGAGCGCTCACAATTCTTTCTCTTCCCTTTCTTCTTTC
TAGTCTTTCAATTGTGAGCGCTCACAATTCTTTCTCTTCCCTT
TCTTCTTTCTAGTCTTTCAATTGTGAGCGCTCACAATTCTTTC
TCTTCCCTTTCTTCTTTCTTTCAATTGTGAGCGCTCACAATTC
TTTCTCTTCCCTTTCTTCTTTCTAGTCTTTCAATTGTGAGCGC
TCACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGTCTTTCAATT
GTGAGCGCTCACAATTCTTTCTCTTCCCTTTCTTCTTTCTAGT
GGATCGATCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTC
ATTTCATTTGGAGAGGA 

NEV Transcripti
on Factor 

ATGGCCCAGGCGGCCCTCGAGCCCGGGGAGAAGCCCTATGC
TTGTCCGGAATGTGGTAAGTCCTTCAGCCAGAGCAGCAACC
TGGTGCGCCACCAGCGTACCCACACGGGTGAAAAACCGTAT
AAATGCCCAGAGTGCGGCAAATCTTTTAGCCAGAGCAGCTC
CCTGGTGCGCCATCAACGCACTCATACTGGCGAGAAGCCAT
ACAAATGTCCAGAATGTGGCAAGTCTTTCAGTCGCTCCGAT
AAACTGGTGCGCCACCAACGTACTCACACCGGTAAAAAAAC
TAGTGGCCAGGCCGGCCGCCGAAATGAAATGGGTGCTTCAG
GAGACATGAGGGCTGCCAACCTTTGGCCAAGCCCTCTTGTG
ATTAAGCACACTAAGAAGAATAGCCCTGCCTTGTCCTTGAC
AGCTGACCAGATGGTCAGTGCCTTGTTGGATGCTGAACCGC
CCATGATCTATTCTGAATATGATCCTTCTAGACCCTTCAGTG
AAGCCTCAATGATGGGCTTATTGACCAACCTAGCAGATAGG
GAGCTGGTTCATATGATCAACTGGGCAAAGAGAGTGCCAGG
CTTTGGGGACTTGAATCTCCATGATCAGGTCCACCTTCTCGA
GTGTGCCTGGCTGGAGATTCTGATGATTGGTCTCGTCTGGCG
CTCCATGGAACACCCGGGGAAGCTCCTGTTTGCTCCTAACTT
GCTCCTGGACAGGAATCAAGGTAAATGTGTGGAAGGCATGG
TGGAGATCTTTGACATGTTGCTTGCTACGTCAAGTCGGTTCC
GCATGATGAACCTGCAGGGTGAAGAGTTTGTGTGCCTCAAA
TCCATCATTTTGCTTAATTCCGGAGTGTACACGTTTCTGTCC
AGCACCTTGAAGTCTCTGGAAGAGAAGGACCACATCCACCG
TGTCCTGGACAAGATCACAGACACTTTGATCCACCTGATGG
CCAAAGCTGGCCTGACTCTGCAGCAGCAGCATCGCCGCCTA
GCTCAGCTCCTTCTCATTCTTTCCCATATCCGGCACATGAGT
AACAAAGGCATGGAGCATCTCTACAACATGAAATGCAAGA
ACGTTGTGCCCCTCTATGACCTGCTCCTGGAGATGTTGGATG
CCCACCGCCTTCATGCCCCAGCCAGTCGCATGGGAGTGCCC
CCAGAGGAGCCCAGCCAGACCCAGCTGGCCACCACCAGCTC
CACTTCAGCACATTCCTTACAAACCTACTACATACCCCCGGA
AGCAGAGGGCTTCCCCAACACGATCGGGCGCGCCGACGCGC
TGGACGATTTCGATCTCGACATGCTGGGTTCTGATGCCCTCG
ATGACTTTGACCTGGATATGTTGGGAAGCGACGCATTGGAT
GACTTTGATCTGGACATGCTCGGCTCCGATGCTCTGGACGAT
TTCGATCTCGATATGTTAATTAACTACCCGTACGACGTTCCG
GACTACGCTTCTTGA 
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LhGR Transcripti
on Factor 

ATGGCTAGTGAAGCTCGAAAAACAAAGAAAAAAATCAAAG
GGATTCAGCAAGCCACTGCAGGAGTCTCACAAGACACTTCG
GAAAATCCTAACAAAACAATAGTTCCTGCAGCATTACCACA
GCTCACCCCTACCTTGGTGTCACTGCTGGAGGTGATTGAACC
CGAGGTGTTGTATGCAGGATATGATAGCTCTGTTCCAGATTC
AGCATGGAGAATTATGACCACACTCAACATGTTAGGTGGGC
GTCAAGTGATTGCAGCAGTGAAATGGGCAAAGGCGATACCA
GGCTTCAGAAACTTACACCTGGATGACCAAATGACCCTGCT
ACAGTACTCATGGATGTTTCTCATGGCATTTGCCCTGGGTTG
GAGATCATACAGACAATCAAGTGGAAACCTGCTCTGCTTTG
CTCCTGATCTGATTATTAATGAGCAGAGAATGTCTCTACCCT
GCATGTATGACCAATGTAAACACATGCTGTTTGTCTCCTCTG
AATTACAAAGATTGCAGGTATCCTATGAAGAGTATCTCTGT
ATGAAAACCTTACTGCTTCTCTCCTCAGTTCCTAAGGAAGGT
CTGAAGAGCCAAGAGTTATTTGATGAGATTCGAATGACTTA
TATCAAAGAGCTAGGAAAAGCCATCGTCAAAAGGGAAGGG
AACTCCAGTCAGAACTGGCAACGGTTTTACCAACTGACAAA
GCTTCTGGACTCCATGCATGAGGTGGTTGAGAATCTCCTTAC
CTACTGCTTCCAGACATTTTTGGATAAGACCATGAGTATTGA
ATTCCCAGAGATGTTAGCTGAAATCATCACTAATCAGATAC
CAAAATATTCAAATGGAAATATCAAAAAGCTTCTGTTTCAT
CAAAAATCTACTAGCAAACCGGTAACGTTATACGACGTCGC
TGAATACGCCGGCGTTTCTCATCAAACCGTTTCTAGAGTGGT
TAACCAGGCTTCACATGTTAGCGCTAAAACCCGGGAAAAAG
TTGAAGCTGCCATGGCTGAGCTCAACTACATCCCGAACCGT
GTTGCGCAGCAGCTGGCTGGTAAACAAAGCTTGCTGATCGG
TGTCGCGACCTCGAGCTTGGCCCTGCACGCGCCGTCGCAAA
TTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCC
AGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGC
CTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCA
GTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCC
ATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTT
CTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTC
TCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGT
CGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCAT
TAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATA
AATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGG
GAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCAT
GCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGG
TTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATT
ACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGT
GGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGC
CGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAA
ACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGC
GGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAA
GAAAAACCACTAGTGGATCGGAATTCGCTAACTTCAACCAG
TCCGGAAACATCGCTGATTCTTCCTTGAGCTTCACTTTCACT
AACTCTTCTAACGGACCTAACCTTATCACCACTCAGACCAAC
TCTCAGGCTCTTAGCCAGCCAATCGCTAGCTCTAACGTGCAC
GACAACTTCATGAACAACGAGATCACTGCTAGCAAGATCGA
TGATGGTAACAATTCTAAGCCTCTTAGCCCAGGATGGACTG
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ATCAGACTGCTTACAACGCATTCGGTATCACTACCGGTATGT
TCAACACCACTACCATGGACGATGTGTACAACTACCTCTTCG
ACGATGAGGATACTCCACCTAACCCTAAGAAGGAGTGA 
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8.3.2 Primers used for TAIL PCR 

Table S3.2. AD Primers used for TAIL PCR.  W = A or T, S = G or C, N = A or T or G or C. 
 
Primer 
Name Primer Sequence (5’-3’) Length Degeneracy 
AD1 NGTCGASWGANAWGAA 16 128 

AD2 TGWGNAGSANCASAGA 16 128 

AD3 AGWGNAGWANCAWAGG 16 128 

AD4 STTGNTASTNCTNTGC 16 256 

AD5 NTCGASTWTSGWGTT 15 64 

AD6 WGTGNAGWANCANAGA 16 256 
 
 
Table S3.3. T-DNA left border Primer sequences for pGREENII0229 vector.  
 
Primer 
Name Primer Sequence (5’-3’) Length 
LB1 TGGCATGACGTGGGTTTCTGGCAGCTGGACTTC 33 

LB2 ACAGGGCTTCAAGAGCGTGGTCGCTGTCATC 31 

LB3 TACATCGAGACAAGCACGGTCAACTTCCGTA 31 
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8.3.3 Two-sample t-tests on fold changes  

Table S3.4. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 1.0 shoots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between High Mem and High-Low is not statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 

Low Mem - 0.0062 0.5565 0.0300 0.0004 0.0048 0.0007 

Low-High - - 0.0020 0.0004 0.0001 0.0002 0.0001 

Low-Low - - - 0.0210 0.0001 0.0018 0.0004 

Control - - - - 0.0010 0.0695 0.0022 

High Mem - - - - - 0.0062 0.7411 

High-High - - - - - - 0.0109 

High-Low - - - - - - - 
 
 
Table S3.5. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 1.0 roots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between High Mem and High-Low is not statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 
Low Mem - 0.0000 0.1598 0.0237 0.0000 0.0012 0.0000 
Low-High - - 0.0000 0.0000 0.0000 0.0000 0.0000 
Low-Low - - - 0.0615 0.0000 0.0008 0.0000 
Control - - - - 0.0000 0.0017 0.0000 
High Mem - - - - - 0.0001 0.2379 
High-High - - - - - - 0.0000 
High-Low - - - - - - - 
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Table S3.6. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 2.0 shoots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between High Mem and High-Low is not statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 

Low Mem - 0.0000 0.0278 0.0470 0.0204 0.7834 0.0070 

Low-High - - 0.0000 0.0000 0.0002 0.0001 0.0000 

Low-Low - - - 0.0037 0.0096 0.1386 0.0014 
Control - - - - 0.0590 0.2208 0.0676 

High Mem - - - - - 0.0330 0.2349 

High-High - - - - - - 0.0337 

High-Low - - - - - - - 
 
 
Table S3.7. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 2.0 roots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between the High Mem and High-Low is not statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 

Low Mem - 0.0000 0.0643 0.3049 0.0000 0.9208 0.0000 

Low-High - - 0.0000 0.0000 0.0000 0.0000 0.0000 

Low-Low - - - 0.0068 0.0000 0.4391 0.0000 
Control - - - - 0.0000 0.6534 0.0000 

High Mem - - - - - 0.0001 0.1070 

High-High - - - - - - 0.0001 

High-Low - - - - - - - 
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Table S3.8. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 2.1 shoots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between the High Memory and High-Low is statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 

Low Mem - 0.0000 0.8914 0.0777 0.0003 0.8806 0.0023 

Low-High - - 0.0003 0.0000 0.0000 0.0001 0.0001 

Low-Low - - - 0.5699 0.0109 0.8462 0.0053 
Control - - - - 0.0011 0.2137 0.0034 

High Mem - - - - - 0.0015 0.0356 

High-High - - - - - - 0.0028 

High-Low - - - - - - - 
 
 
Table S3.9. The p-values of 2-sample two-sided t-test between fold changes of different 
treatments of Toggle 2.1 roots (See Section 3.2 Online Methods for plant numbers). Red color 
labels p-values larger than 0.05, thus not statistically significant differences. Mem is short for 
Memory. The difference in fold change between the High Mem and High-Low is not statistically 
significant.  
 
 Low Mem Low-High Low-Low Control High Mem High-High High-Low 

Low Mem - 0.0002 0.3041 0.3898 0.0002 0.0031 0.0002 

Low-High - - 0.0003 0.0001 0.0000 0.0000 0.0000 

Low-Low - - - 0.5220 0.0005 0.0235 0.0004 
Control - - - - 0.0001 0.0018 0.0002 

High Mem - - - - - 0.0010 0.1251 

High-High - - - - - - 0.0007 

High-Low - - - - - - - 
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8.3.4 Estimated parameter values from protoplast assay 

Table S3.10. Parameter values used for choice of Toggle 1.0 and Toggle 2.0 components. These 
parameter values were estimated from the protoplast assays using Equation S3.4. Fold change 
indicates the ratio of the maximal expression level with no inducer to the lowest expression level 
achieved at the maximal inducer level. B, H and n are parameters characterizing the response 
functions of promoter-repressor pairs (defined in Equation S3.4). The parameter b is the 
dimensionless maximum expression level as defined in Equation S3.3, and 2b is the 
dimensionless maximum expression level of two copies of the LexA-based promoter to balance 
the stronger Gal4-based promoter. The choice of these combinations was based on the data from 
the best performing replicate, which are shown here.  
 

 Construct Name Fold 
Change 

B 
(108) 

H 
(108) b 2b n 

Toggle 1.0 NOS2xGal4.EAR 2.53 3.61 0.95 1.40 N.A. 3.03 
35S2xLexA.EAR 5.99 0.66 2.57 0.69 1.38 2.56 

Toggle 2.0 NOS2xGal4.EAR 2.53 3.61 0.95 3.57 N.A. 3.03 
35S4xLexATATA.OFPx 4.31 0.48 1.01 0.51 1.02 3.31 

 
 
Table S3.11. Parameter values estimated from the protoplast assays using Equation S3.5 with 
estimated Hill coefficient less than 6. Fold change indicates the ratio of the maximal expression 
level with no inducer to the lowest expression level achieved at the maximal inducer level. A, B, 
H and n are parameters characterizing the response functions of promoter-repressor pairs 
(Equation S3.5). 
 

Constructs Replicate 
 Index  

Fold 
Change 

A 
(108) 

B 
(108) 

H 
(108) 

n 

NOS2xGal4.EAR 3 2.53 1.704 3.264 1.279 2.615 
NOS2xGal4.EAR 4 2.04 0.7942 1.172 0.7805 1.783 
35S2xLexA.EAR 2 4.68 0.3856 1.914 1.203 3.406 
35S2xLexA.EAR 3 5.99 0.107 0.5607 1.543 3.678 

35S4xLexATATA.OFPX 1 4.31 0.0733 0.3932 0.833 4.852 
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8.4 Supplementary Notes  

8.4.1 Designing principles of a bi-stable toggle switch 

In order to model and simulate the plant toggle switch circuit, composed of two mutually 

repressing promoter-repressor pairs, we used a dimensionless system of ordinary differential 

equations (ODEs) as described in Gardner et al. [4]. The initial dimensional ODE equations can 

be written as follows. The rate of production of the repressor protein (X or Y) is determined by 

the concentration of its opposing repressor (Y or X) through a repressing Hill function, and its 

rate of degradation. Degradation is modeled as a first order process, yielding the following 

equations.  

dX
dT =

b�

1 + � YK�
�
R� − d�X 

Eqn. S3.2 
dY
dT =

b�

1 + � XK�
�
R� − d�Y 

Here, X and Y are the concentrations of the two repressors that are mutually repressing 

each other in the toggle switch design; b� and b� are the maximum expression levels of the 

promoters producing X and Y respectively. K� and K� are the concentrations of X and Y that 

repress the promoter expression to its half-maximal level and n� and n� are Hill coefficients. The 

parameters d� and d� are the first-order degradation rate constants of X and Y, respectively.  

We de-dimensionalized these two ODEs into the form shown in Equation S3.3 to reduce 

the dimensionality of parameter space. 

dx
dt =

b��
1 + (y)R� − x Eqn. S3.3 
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dy
dt =

b��
1 + (x)R� − d�y 

 

Where: 

x= �
��

 and y= �
��

 are dimensionless concentrations of the two repressors X and Y;  

b��= ��
����

 and b��= ��
����

 are the dimensionless maximum expression levels of the promoters 

producing X and Y respectively;  

n� and n� are still the Hill coefficient of the promoters producing X and Y, respectively;  

d�=
��
��

 is the ratio between the degradation rate constant of X and Y, respectively. Time is 

de-dimensionalized by tdx. 

We also assumed the degradation rate constants to be the same, thus d� = 1. Therefore, the 

Equation S3.3 is equivalent to the dimensionless ODE model used by Gardner et al. [4]. For 

simplicity, we relabel b�� as b� and b�� as b� in the remainder of the Supplementary Information. 

The resulting system of equations can be used to simulate and gain insights on the behaviors of 

toggle switch circuits. XPPaut (a tool to solve differential equations, 

http://www.math.pitt.edu/~bard/xpp/xpp.html) was used to generate the 2D phase diagrams of b� 

and b� at pre-determined values of Hill coefficients (Fig. S3.5). 

From these 2D phase diagrams we can identify two principles for successful design of a 

toggle switch, which are the same as previously identified by Gardner et al. [4] These are: 1) a 

sigmoidal repressor response with a high Hill coefficient, and 2) large and balanced values of the 

dimensionless maximum expression levels, as defined above in Equation S3.3. 
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These two principles can be understood by referring to Fig. S3.5. As can be seen in the 

figure, if the value of the Hill coefficients, which measure the sigmoidal response, is larger, the 

bi-stable region is also larger. Secondly, larger and balanced values of the promoter strength, bx 

and by, are more likely to lie near the center of the bistable region, whereas smaller or 

unbalanced values are more likely, other things remaining constant, to lie outside, or near the 

edge of, the bistable region. Therefore, large and balanced bx and by is another key principle for 

bi-stability. 

 

Figure S3.5. The phase diagram of the Toggle switch evaluated at different Hill coefficients.  
The axes bx and by are dimensionless maximal expression levels of the repressible promoters. 
The bi-stable region is the region between the colored lines, for each choice of the Hill 
coefficient (n). The Hill coefficients (n) for both sides of the toggle were kept equal. Note that 
with larger n values, the bi-stable region gets larger.  
 
 
8.4.2 Parameter Estimation from Protoplast Assays  

In a previously published work, we have developed a method to quantitatively characterize 

repressible promoters using high throughput protoplast assays [2]. We developed a statistical 

model to remove intrinsic experimental variability, and quantitative promoter values were 

characterized for over 120 promoter-repressor pairs in Arabidopsis and over 100 pairs in 
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sorghum. For the purpose of this study, the promoter-repressor pairs in Arabidopsis are of 

interest. The performance of the repressible promoter was quantified by fitting the data to a Hill 

function as shown in Equation S3.4.  

𝐿� =
𝐵�

1 + �𝐹�𝐻�
�
P� Eqn. S3.4 

Here 𝐿� is the output of the repressible promoter, measured in units of molecular 

concentration, and 𝐹� is the molecular concentration of the repressor protein. The subscript i 

indicates the ith promoter-repressor in the library. Molecular concentration of 𝐿� were calculated 

from luciferase luminescence values, converted into concentrations by using a calibrated 

standard curve between concentration and luminescence [4]. As typical for repressing Hill 

functions [6] the parameter 𝐵� represents the maximum promoter strength, the parameter 𝐻� is 

the repressor concentration at half-maximal expression and the parameter ni (Hill coefficient) 

represents the sigmoidality of the response curve.  

The raw data generated by protoplast assays were processed and normalized following the 

procedures described in Schaumberg et al. [4]. The normalized data were thereafter fitted to 

Equation S3.4 using a nonlinear least-squares package in Matlab (Mathworks).  

8.4.3 Comparison of parameters estimated from protoplast assays and whole plant 

luminescence data  

As detailed in Section 8.1.4, a simple ODE system (Equation S3.1) was developed to 

describe the experimental results of the stably transformed toggle switch constructs and 

quantitative parameter values can be estimated by maximizing a log-likelihood using a MCMC 

scheme. These parameter values were then fed into the Equation S3.4 without the inducible 

terms to evaluate their bistability (Sections 8.1.4, 8.2.4, 8.2.6 and 8.2.8). Such parameterized 
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models can also be used to test out different strategies to modify the design of Toggle 2.0 

(Section 8.2.7). In addition, it is also possible to compare these parameter values to the ones 

previously estimated from the protoplast assays characterizing the repressor-promoter 

combinations. Such comparisons will help us to evaluate the accuracy of the transient expression 

in the protoplast assays as an approximation to the stable transformations.  

To make the parameter values estimated from the two sources comparable, the method 

described in Section 8.4.2 needs some modifications. First, one term characterizing leaky 

expression was added into Equation S3.4.  

𝐿� = 𝐴� +
𝐵�

1 + �𝐹�𝐻�
�
P� Eqn. S3.5 

where 𝐴� represents the relative leaky expression of the ith promoter and all the other 

variables are defined as in Section 8.4.2. Each of these parameters quantitatively characterizes 

how the promoter repressor pair behaves.  

The raw data generated by protoplast assays were processed and normalized following the 

same procedures described in Schaumberg et al., [4]. The normalized data were then fitted to 

Equation S3.5 using a nonlinear least-squares package in Matlab (Mathworks). Specifically, a 

Robust option of Least Absolute Residuals (LAR) and the Trust-Region algorithm were used. 

Parameter values were constrained to positive values for fitting. A good fit was defined to have 

an estimated value of Hill coefficient no larger than 6, which is assumed to be biologically 

relevant in this study. Out of the replicates of the NOS2xGal4.EAR, 35S2xLexA.EAR and 

35S4xLexATATA.OFPx, the estimated parameter values of good fits are listed in Table S3.11.  

To directly compare the parameter values estimated from the protoplast assays with the 

whole plant luminescence data, we used de-dimensionalized parameter values by normalizing A 
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and B by their corresponding H of the same promoter-repressor combination. For a brief proof 

that these are equivalent and comparable, please refer to Section 8.4.4. As shown in Fig. S3.6, 

the parameter values estimated from the protoplast assays generally overlap with the distribution 

of dimensionless parameter values estimated from the whole plant luminescence data. While this 

result supports the use of protoplasts for quantitative characterization of plant plants for synthetic 

biology, the possible quantitative differences between the protoplast estimates and those in a 

plant can be quite high, as seen in the figure. Therefore, quantitative predictions, for example of 

bistability properties, based on protoplast data are still subject to significant error. Allowing for 

these margins of error and using protoplast data for qualitative and semi-quantitative predictions 

however, allowed us to overcome these limitations and construct the first genetic toggle switch 

in a plant.     
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Figure S3.6. Comparisons between dimensionless parameter values estimated from 
protoplast assays and whole plant luminescence data.  
The x-axis is the natural logarithm of the dimensionless variables A/H or B/H, as defined in Eqn. 
S3.5. Section 8.4.4 explains the rationale behind using these parameters for comparison of the 
results of the protoplast with whole plant data. The y-axis represents the values of Hill 
coefficients. The empty blue circles are parameter value combinations estimated from the whole 
plant luminescence data and the filled red triangles the parameter values from protoplast assays. 
a-b, NOS2xGal4.EAR; c-d, 35S2xLexA.EAR; e-f, 35S4xLexATATA.OFPx.   
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8.4.4 Proof of the comparability of de-dimensionalized parameter values estimated from 

protoplast assays and whole plant luminescence data 

In Schaumberg et al. [4], we developed a quantitative model of the parameters estimated 

from the protoplast assays in terms of the response function at the single-plasmid level, and 

mathematical expressions connecting the single-plasmid level and the experimental observables. 

Using variables as defined in Equation S3.4, the fitting results can be represented as:  

𝐵� = 𝐶$〈𝑁�¢〉¢𝛼�𝛽� 

𝐻� = 𝐶¤𝐶¥〈𝑁�¢〉¢𝛼�𝐾� 

The meaning of each parameter is described briefly here for the reader’s convenience. 

Please refer to Schaumberg et al. [4] for more details.  

β§ represents the maximal expression of the R-luciferase (Rluc) protein with no repressor 

in a single plasmid (i.e. promoter strength);  

K§ is the repressor concentration required for half-maximal expression of Rluc in a single 

plasmid (i.e. repressibility);  

α§ represents the batch variability factor;   

N§ª  represents the total number of plasmids in the j-th well of the i-th plasmid;  

Therefore, α§N§ª describes the plasmid copy number in viable protoplasts in the j-th well of 

the i-th plasmid.  

C¤ is the concentration - luminescence proportionality factor of F-Luciferase (Fluc);  

C$ is the concentration - luminescence proportionality factor of RLuc;  

C�  is a proportionality factor between the concentrations of repressor and FLuc (both of 

which are controlled by the same promoter).  
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A similar representation can be derived for the leaky expression level A due to its 

similarity to 𝐵�.  

𝐴� = 𝐶$〈𝑁�¢〉¢𝛼�𝑎� 

Note that 𝑎� is the leaky expression level in single-plasmid level, while 𝛼� (alpha) is the 

batch variability factor. The mathematical representations of these parameters indicate an 

intuitive method to de-dimensionalize these parameters by simply dividing 𝐴� and 𝐵� by 𝐻�.  

𝐴�
𝐻�
=

𝐶$𝑎�
𝐶¤𝐶¥𝐾�

 

𝐵�
𝐻�
=

𝐶$𝛽�
𝐶¤𝐶¥𝐾�

 

As described in Schaumberg et al.7, 𝐶¤ and 𝐶$ can be estimated from the experimental 

standard curve relating the luminescence levels and the molecular numbers of the two types of 

luciferase. 𝐶¤ and 𝐶$ were first estimated from standard curves measured experimentally. Then, 

their values were used to convert the experimental data from luminescence level to molecular 

numbers, after which the nonlinear least square fitting was carried out. Therefore,  𝐴�, 𝐵� and 𝐻� 

are already in the unit of molecular numbers and the 𝐶¤ and 𝐶$ in the dimensionless 

representation can be discarded. We can reasonably assume 𝐶¥ = 1, meaning a 1:1 ratio between 

the molecular numbers of FLuc and repressor, because they are driven by the same promoter. 

Therefore, we have:  

𝐴�
𝐻�
=
𝑎�
𝐾�

 

𝐵�
𝐻�
=
𝛽�
𝐾�
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Following a similar logic, we can also develop a quantitative model of the parameters 

estimated from the whole plant luminescence data. Firstly, the mean luminescence emitted from 

a single pixel can be represented as:  

〈𝐹�〉 = 𝐶¤𝐶¥〈𝑁�〉𝑅� 

where the meaning of each variable is similar to the protoplast assay but modified 

accordingly.  

𝐹� represents the luminescence emitted from a single pixel and the square brackets indicate 

population mean across all pixels included to quantify the luminescence.  

𝑅� represents the total number of repressors in a single cell;  

N§  represents the total number of plant cells in one pixel;  

C¤ is the concentration - luminescence proportionality factor of FLuc;  

C�  is a proportionality factor between the repressor concentration and FLuc concentration 

(both of which are controlled by the same promoter), which we assume equals 1, as explained 

above.  

Because FLuc was the only reporter of the toggle switch assembled and tested in the whole 

plant, and population mean luminescence per pixel was used for the nonlinear least-square 

fitting, the ODE system formulated in Equation S3.1 can be rescaled and the fitted parameters 

can be represented by:  

𝐴� = 𝐶¤𝐶¥〈𝑁�〉𝑎� 

𝐵� = 𝐶¤𝐶¥〈𝑁�〉𝛽� 

𝐻� = 𝐶¤𝐶¥〈𝑁�〉𝐾� 

We can now de-dimensionalize the parameters in the same way.  
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𝐴�
𝐻�
=
𝑎�
𝐾�

 

𝐵�
𝐻�
=
𝛽�
𝐾�

 

Therefore, the de-dimensionalized parameter values estimated from the protoplast assay 

and the whole plant luminescence data are directly comparable. 

8.4.5 Testing the MCMC Algorithm Using Simulated Experimental Data  

We tested the reliability of the MCMC algorithm using a simulated dataset. We first picked 

a parameter set of the ODE model representing a bistable toggle switch, then simulated different 

treatments as applied in the experiments and sampled several discrete time points with a constant 

time step from the numerical solutions as in the experimental setup. In particular, only one side 

of the toggle switch was sampled and used for the MCMC, as only one side of the toggle switch 

is labeled with the luciferase gene reporter in the experiments.  

The simulated data are shown as red dots in Fig. S3.7a. With the MCMC algorithm run as 

described in the Section 8.1, the true parameter values were recovered reliably (Fig. S3.7b). Out 

of 100 runs, 92 runs were found to meet the preset threshold for log likelihood and all of them 

predict the bistability property of the toggle switch using the method described above.  
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Figure S3.7. Reliability of the MCMC algorithm tested by simulated experimental data.  
a, Simulated data and MCMC fits. Numerical solutions of High memory and High to low as 
shown in red dots. MCMC fits are shown in blue dashed lines. b, Simulated data and MCMC fits 
in 2D phase diagram. True parameter value is shown by the red dot and the MCMC fits are the 
blue circles (n = 92).  
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APPENDIX III: SUPPLEMENTARY INFORMATION FOR CHAPTER 4 
 
 
 
9.1 Supplementary figures  

 

Figure S4.1: (A) Experimental flow chart of this study. (a) One isolated 10T1/2 cell imaged in 
bright-field (DICC channel). Green solid line indicates the cell boundary traced manually. (b) 
The same cell stained with MitoTracker Green FM and imaged under 488 nm. Red dashed line 
indicates the imaging window used to take time-lapse images. (c) A time-lapse image is taken for 
100 s at a temporal resolution of 10 frames per second. (d) Image processing of the time-lapse 
images. (e) Punctate mitochondria spanning 100 seconds and without interaction with other 
mitochondria is selected. (f) The 2D centroids weighted by intensities of mitochondria are 
tracked to extract their trajectories. The insets at the four corners are examples of resulting 
mitochondrial trajectories. (g) Mean square displacement measured for each mitochondrion 
tracked. (B) Image processing protocol used for the time-lapse images of mitochondria. The 



 
 

273 

first row shows the first frame and the second row the last frame of the time-lapse series. (a,b) 
Raw images. (c,d) Histogram matching to adjust intensity. (e,f) 2D deconvolution. (g,h) 
Bandpass filtering in the frequency domain. (i,j) Grayscale thresholding. (k,l) Punctate 
mitochondria selected. Green colored mitochondria in panel (k) indicate the ones passed the 
morphological filtering of solidity less than 1.1 and aspect ratio less than 2. 
 
 

 

Figure S4.2. Distribution of hydrodynamic radii of mitochondria passing the 
morphological filtering is better described by a log-normal distribution than a Gaussian 
distribution. (A, C)  
Histogram fitting of raw data and logarithmic transformed data of hydrodynamic radii 
respectively (n = 317). (B, D) Quantile-quantity plot of raw data and logarithmic transformed 
data of hydrodynamic radii respectively.  
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Figure S4.3. Morphological filtering reduces the variance in creep compliance.  
Individual and population mean with standard deviations of creep compliance (A) without or (B) 
with morphological filtering respectively. Gray curves are individual mitochondria and red filled 
circles indicate population mean. Red dashed lines are standard deviations. Black dashed line is a 
visual guide of slope one.  
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Figure S4.4. Measurements based on mitochondrial fluctuations (continued).  
(A) The geometric coefficient of variance (GCV) of MSD and creep compliance (CrC) with and 
without morphological filtering. (B) Individual and population mean with standard deviations of 
MSDs (n=211). Gray curves are individual mitochondria and red filled circles indicate 
population mean. Red dashed lines are standard deviations. Vertical green dashed lines indicate 
the range of timescales where the two power-law scaling factors of different timescales were 
evaluated. Short timescale was evaluated between 0.5 and 1.5 s, while long timescale was 
between 6 and 8 s. Black dashed line is a visual guide of slope = 1. (C) Comparisons of the 
histograms of power-law scaling factor showing the different lag time dependence at short and 
long timescales evaluated. (D) Index of directional persistence, Pd, of control cells. Green dashed 
line indicates Pd = 0, which is characteristic of pure diffusion.  
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Figure S4.5. Mitochondrial fluctuations are ATP dependent (Continued).  
(A) p-values of Wilcoxon rank sum test between ATP depleted cells and control cells on creep 
compliance. Black dashed line is a visual guide of p value equals to 0.05. The portion of the 
curve below 0.05 indicates that the change in mean is statistically significant, while being above 
that threshold is an indication of insignificant changes. (B) Fold change of creep compliances of 
ATP depleted cells compared to control cells. Black dashed line indicates a visual guide of fold 
change equals to one. (C, D) Comparisons between the control (black) and ATP depleted (red) 
cells in terms of the distributions of power-law scaling factor over short (0.5-1.5 s) and long (6-8 
s) timescales respectively. Vertical dashed lines indicate the mean power-law scaling factor of 
the corresponding treatment as color-coded. The ATP depleted cells show a low mean power-law 
scaling factor of 0.12 compared to the control cells with a mean of 0.47 at the short timescale. 
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Although the slopes become closer at the long timescale, the mean power-law scaling factor of 
0.55 of ATP depleted cells is still smaller than the control cells at 0.85. Black solid lines indicate 
control cells and red dashed lines are for ATP depleted cells. E) Indexes of directional 
persistence, Pd, of control and ATP depleted cells. Green dashed line indicates Pd = 0, which is 
characteristic of pure diffusion.  
 
 

 

Figure S4.6. Distributions of directional change of control cells and ATP depleted cells as a 
function of lag times.  
(A-K) Distributions of directional change of control cells and ATP depleted cells at different lag 
times. Green dashed line indicates a uniform distribution which is characteristic of pure 
diffusion.  
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Figure S4.7. Microtubule network plays a significant role in mitochondrial fluctuations 
(continued).  
(A) p-values of Wilcoxon rank sum test between chemical treated cells with taxol or nocodazole 
to control cells. Black dashed line is a visual guide of p-value equals to 0.05. (B) Fold change of 
the mean creep compliances of nocodazole or taxol treated cells compared to control cells. Black 
dashed line indicates a visual guide of fold change equals to one. (C) Directional persistence of 
control and nocodazole and taxol treated cells. Green dashed line indicates Pd = 0, which is 
characteristic of pure diffusion.  
 

 

 

Figure S4.8. Actin network is required for active mitochondrial fluctuations. (continued).  
(A) p values of Wilcoxon rank sum test between cells treated by jasplakinolide or cytochalasin D 
with control cells. Black dashed line is a visual guide of p-value equals to 0.05. (B) Fold change 
of the mean creep compliance of jasplakinolide or cytochalasin D treated cells compared to 
control cells. Black dashed line indicates a visual guide of fold change equals to one. (C) 
Directional persistence of control, jasplakinolide and cytochalasin D treated cells. Green dashed 
line indicates Pd = 0, which is characteristic of pure diffusion.  
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Figure S4.9. Mitochondrial fluctuations were not primarily driven by myosin II.  
(A) Population mean creep compliances with standard deviations of control cells (n=38) and 
cells treated by 5*M (n=133), 10*M (n=67) and 20*M (n=85) blebbistatin. Markers of different 
shapes and colors indicate population means and dashed lines are standard deviations. Short 
black dashed line is a visual guide of slope one. (B) p-values of Wilcoxon rank sum test between 
each blebbistatin treated cells with different concentration to control cells. Black dashed line is a 
visual guide of p-value equals to 0.05. The portion of the curve below 0.05 indicates that the 
change in mean is statistically significant, while being above that threshold is an indication of 
insignificant change. (C) Fold changes of creep compliances of cells treated by blebbistatin of 
different concentrations compared to control cells. Dashed line indicates a visual guide of fold 
change equals to one. (D) Directional persistence of control cells and cells treated with 
blebbistatin of different concentrations. Green dashed line indicates Pd = 0, which is 
characteristic of pure diffusion. (E-H) Distribution of directional change at different lag times of 
control and cells treated with blebbistatin of different concentrations respectively. Green dashed 
horizontal line indicates a uniform distribution which is characteristic of pure diffusion. 

Figure S4.10. Storage modulus and loss modulus determined from ATP depleted cells using 
GSER.  
Red curve shows the storage modulus and blue curve the loss modulus. Circles are population 
means and dashed lines are standard deviations. 
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9.2 Supplementary tables   

Table S4.1. Chemical treatments 

Target  Treatment/pharmacological 
agent name Concentration  Reference  

Actin  Jasplakinolide  1 µM  [1] 
Cytochalasin D  4 µM [2,3] 

Myosin II  Blebbistatin  5, 10, 20 µM [4–6]  

Microtubule  Nocodazole 10 µM [7] 
Taxol 10 µM [8–10]  

All ATP 
dependent 
processes  

ATP Depletion  2 mM NaN3 + 2 mM Deoxy-
glucose  [11,12] 

 
 
Table S4.2. Comparisons of our results to previous studies.   
PMR is short for passive microrheology and AMR is for active microrheology.  

Reference Power-law 
exponent Technique Cell line  

Mechanical 
property 
measured 

this work 0.12 PMR using ATP depletion 10T1/2-CH3  intracellular 
[13] 0.16 AMR using optical tweezer A7  intracellular 
[14] 0.2 AMR using optical tweezer mEF  intracellular 

[15] 0.17 optical magnetic twisting 
cytometry (OMTC)  HASM  cortical 

[16] 0.24 uniaxial stretching 
rheometer C2-7  whole cell 

[17] 0.2 Atomic Force Microscopy 
(AFM) 

A549, BEAS-
2B cortical 
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9.3 Supplementary notes  

9.3.1 Supplemental Note 4.1  

Our image processing protocol includes the following processing steps (Fig. S1 B). 1) 

Histogram matching to adjust intensity (Fig. S4.1 B. c-d): Intensity histograms of all following 

frames in the time-lapse images are matched to that of the first frame to correct for the decrease 

in intensity due to photobleaching. 2) 2D deconvolution (Fig. S4.1 B. e-f): 2D deconvolution is 

carried out to sharpen the image using blind deconvolution for 25 iterations. This step reduces 

the blurriness of out-of-focus mitochondria. 3) Bandpass filtering in the frequency domain (Fig. 

S4.1 B. g-h): Each frame in the time-lapse series is first converted to a frequency-domain 

representation through Discrete Fourier Transform (DFT), then multiplied with a Gaussian 

bandpass filter of 2 to 200 pixels in the frequency domain to highlight the mitochondria with 

sizes within this range and then converted back to spatial domain via an inverse DFT. 4) 

Grayscale thresholding (Fig. S4.1 B. i-j): Otsu’s method is applied to automatically approximate 

the binary threshold of each frame. 5) Mitochondria spanning the entire imaging period of 100 

seconds and with no interaction with other mitochondria, were selected for further analysis (Fig. 

S4.1 B. k-l). A built-in Matlab function, bwconncomp(), was used to construct the three-

dimensional connected objects from the binary time-lapse images generated in Step 4). No 

interaction with other mitochondria can thus be defined as no branch in the temporal axis of the 

three-dimensional connected objects.  

9.3.2 Supplemental Note 4.2  

The loss modulus G’’(ω) measures the propensity to flow under random or applied forces, 

while the storage modulus G’(ω) measures its stretchiness, i.e. the ability to resist forces and 

store energy caused by deformation [18]. For systems at thermodynamic equilibrium, the 



 
 

283 

fluctuation dissipation theorem (FDT) is valid, and G’(ω) and G’’(ω) can be determined based on 

the generalized Stokes-Einstein relationship (GSER), which is briefly recapitulated here:  

𝐺�(𝑠) = $GH6
DEFc〈∆¬N(c)〉

         [S1] 

𝐺�(𝑠) is the shear modulus, s the Laplace frequency and 〈∆𝑟$(𝑠)〉 the unilateral Laplace 

transform of 〈∆𝑟$(𝑡)〉. However, truncation errors introduced by taking a numerical Laplace 

transform of 〈∆𝑟$(𝑡)〉 can be significant [19]. To avoid this, following Ref. [19], an algebraic 

approximation can be carried out to replace s〈∆r$(s)〉 with the dominant component of its 

power-law expansion:  

𝐺�(𝑠) = $GH6
DEF〈∆¬N(­)〉®(¤¯°)

        [S2] 

where 𝑡 = ¤
c
 is the lag time, 𝛼 = ±gP〈∆¬N(­)〉

±gP	­
 is the logarithmic slope of 〈∆𝑟$(𝑡)〉, and 𝛤 is 

the Gamma function. 𝑠 can be substituted by 𝑖𝜔 to obtain the complex shear modulus 𝐺∗(𝜔) =

𝐺³(𝜔) + 𝑖𝐺³³(𝜔). Applying Euler’s formula, G’(ω) and G’’(ω) can be calculated as:  

𝐺³(𝜔) = |𝐺∗(𝜔)|cos	(E
$
𝛼)        [S3] 

𝐺³³(𝜔) = |𝐺∗(𝜔)|sin	(E
$
𝛼)        [S4] 

where the α is the logarithmic slope of 〈∆r$(t)〉 as in Eq. [S2].  

9.3.3  Supplemental Note 4.3 

To quantify the mitochondrial fluctuations from the tracking trajectories, mean square 

displacement (MSD) is widely used as the time-averaged and ensemble-averaged squared 

displacement between all possible time points for a given lag time as defined in Eq. 1. Similar to 

earlier works, there is also a high level of variance in our MSD results of individual 

mitochondrion (Fig. 4,1 A) [20]. We also found that the distributions of the MSDs at a single 

time lags can be better described by log-normal distributions than Gaussian distributions (Fig. 
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S4.11) [13,20]. In addition, algebraic means and standard deviations result in overestimations 

and poor behaviors in logarithmic scale for our cells (Fig. S4.12). Therefore, the mean of the 

logarithmic transformed data (𝜇̅gP) is exponentiated to yield the mean values reported in this 

study. Similarly, the standard deviation of the logarithmic transformed data (𝑠gP) is 

exponentiated to generate the “multiplicative” log-normal standard deviations reported.  

9.3.4  Supplemental Note 4.4  

Fig. S4.13 shows the day-to-day variances of measurements carried out on control cells in 

three different days. We think these variances are mainly due to experimental batch-effects in 

preparing the cell samples while all the other factors are the same, such as subtle difference in 

doing the cell culture by different personnel and subtle differences in cell states. Such a batch 

effect was reported to be around 20% by other groups [21]. As can be observed in Fig. S4.13, the 

variance in our results appears to be on the similar level. To reduce this day-to-day variance due 

to the batch effect, we only compare among the measurements made on same days, although 

doing this actually increases the workload.  
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Figure S4.11. Distributions of MSD at single lag times are better described by log-normal 
distributions than Gaussian.  
(A-C) Gaussian distribution fitting and (D-F) quantile-quantity plot of raw MSD at 0.1, 1 and 10 
s respectively (n = 317). (G-I) Gaussian distribution fitting and (J-L) quantile-quantity plot of 
logarithmic transformed MSD at 0.1, 1 and 10 s respectively (n = 317).  
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Figure S4.12. Comparisons between geometric statistics and algebraic statistics.  
Individual and population statistics of (A) MSDs and (B) creep compliance respectively (n = 
317). Gray curves mark individual mitochondria. Filled circles indicate population means and 
dashed lines indicate standard deviations. Black dashed line is a visual guide of slope one. 
Algebraic statistics result in overestimation of population mean and standard deviations 
compared to geometric statistics. (C) Geometric coefficient of variance (GCV) of geometric 
statistics and algebraic statistics. The GCV results quantify the overestimation by algebraic 
standard deviations.   
 
 

 

Figure S4.13. The day-to-day variances of measurements on control cells in three different 
days.  
(A) Population means with standard deviations of creep compliances. Markers with different 
shapes and colors indicate population means and dashed lines in the same color are standard 
deviations. Black dashed line is a visual guide of slope one. (B) Fold changes of creep 
compliances of Day 2 and Day 3 compared to Day 1. Dashed line indicates a visual guide of fold 
change equals to one.  
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Figure S4.14. Viscoelastic microenvironment probed by mitochondria is highly 
heterogeneous.  
(A) Cell-wise mean creep compliances compared to the population mean. The red filled circles 
indicate the population mean creep compliance. The solid lines indicate the cell-wise mean creep 
compliances, which are color-coded by the sample size of mitochondria tracked inside that cell 
in accordance to the colormap shown on the right. The cell-wise mean creep compliances 
converge towards the population mean as a function of the sample size of mitochondria inside 
one cell. The larger the sample size (labelled by warmer colors), the closer of the cell-wise mean 
to the population mean. (B) The heterogeneity in the creep compliance is dominated by 
intracellular sources, as measured by the geometric coefficient of variance (GCV). The 
population GCV is indicated by the black dashed line, the inter-cell GCV by the red dashed line 
and the intra-cell GCV of cells with large sample size (n >= 10) by the solid lines color-coded by 
the sample size as in (A). (C) The viscoelasticity measured in the ATP depleted cells shows no 
obvious spatial correlation probably due to the high heterogeneity probed by mitochondria. The 
|G*| measurement of individual mitochondrion were fitted to a power-law model, so that the 
dimension of the data to be analyzed were reduced to the amplitude and the power-law scaling 
factor, which were binned based on the inter-mitochondria distance and the Pearson correlation 
coefficient calculated.  
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APPENDIX IV: SUPPLEMENTARY INFORMATION FOR CHAPTER 5 
 
 
 
10.1 Supplementary figures  
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Figure S5.1. Glass beads load 100 nm fluorescent particles into cytoplasm of (A) MCF7 and 
(B) MDA-MB-231 cells under control condition.  
1) Bright-field (DIC channel) image of MCF7 and MDA-MB-231 cells. 2-6) Fluorescent (561 
nm) images at different z-planes (from bottom to top with 1 µm apart) of MCF7 and MDA-MB-
231 cells bead-loaded with 100nm fluorescent particles.   
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Figure S5.2. Fluctuations of fluorescent particles are ATP-dependent (continued).  
(A) p-values of Wilcoxon rank sum test between MSDs of ATP depleted cells and control cells. 
Black dashed line is a visual guide of p value equals to 0.05. The portion of the curve below 0.05 
indicates that the change in mean is statistically significant, while being above that threshold is 
an indication of insignificant changes. (B) Fold change of MSDs of ATP depleted cells 
compared to control cells. Black dashed line indicates a visual guide of fold change equals to 
one. (C, D) Comparisons between the control (black) and ATP depleted (red) cells in terms of 
the distributions of power-law scaling factor over short (0.5-1.5 s) and long (6-8 s) timescales 
respectively. Vertical dashed lines indicate the mean power-law scaling factor of the 
corresponding treatment as color-coded. E) Indexes of directional persistence, Pd, of control and 
ATP depleted cells. Green dashed line indicates Pd = 0, which is characteristic of pure diffusion.  
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Figure S5.3. Myosin II plays a role in driving fluorescent particle fluctuations (continued). 
(A) p-values of Wilcoxon rank sum test between blebbistatin treated cells with different 
concentrations and control cells. Black dashed line is a visual guide of p value equals to 0.05. 
The portion of the curve below 0.05 indicates that the change in mean is statistically significant, 
while being above that threshold is an indication of insignificant changes. (B) Fold change of 
MSDs of blebbistatin treated cells with different concentrations compared to control cells. Black 
dashed line indicates a visual guide of fold change equals to one. (C, D) Comparisons between 
the control and blebbistatin treated cells with different concentrations in terms of the 
distributions of power-law scaling factor over short (0.5-1.5 s) and long (6-8 s) timescales 
respectively. Vertical dashed lines indicate the mean power-law scaling factor of the 
corresponding treatment as color-coded. E) Indexes of directional persistence, Pd, of control cells 
and blebbistatin treated cells with different concentrations. Green dashed line indicates Pd = 0, 
which is characteristic of pure diffusion.  
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Figure S5.4. Actin network plays a major role in hindering fluctuations of fluorescent 
particle. (continued).  
(A) p-values of Wilcoxon rank sum test between cells treated by jasplakinolide or cytochalasin D 
and control cells. Black dashed line is a visual guide of p value equals to 0.05. The portion of the 
curve below 0.05 indicates that the change in mean is statistically significant, while being above 
that threshold is an indication of insignificant changes. (B) Fold change of MSDs of cells treated 
by jasplakinolide or cytochalasin D compared to control cells. Black dashed line indicates a 
visual guide of fold change equals to one. (C, D) Comparisons between the control and cells 
treated by jasplakinolide or cytochalasin D in terms of the distributions of power-law scaling 
factor over short (0.5-1.5 s) and long (6-8 s) timescales respectively. Vertical dashed lines 
indicate the mean power-law scaling factor of the corresponding treatment as color-coded. E) 
Indexes of directional persistence, Pd, of control cells and cells treated by jasplakinolide or 
cytochalasin D. Green dashed line indicates Pd = 0, which is characteristic of pure diffusion.  
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Figure S5.5. Microtubule network plays a minor role in determining fluctuations of 
fluorescent particle. (continued).  
(A) p-values of Wilcoxon rank sum test between cells treated by nocodazole or taxol and control 
cells. Black dashed line is a visual guide of p value equals to 0.05. The portion of the curve 
below 0.05 indicates that the change in mean is statistically significant, while being above that 
threshold is an indication of insignificant changes. (B) Fold change of MSDs of cells treated by 
nocodazole or taxol compared to control cells. Black dashed line indicates a visual guide of fold 
change equals to one. (C, D) Comparisons between the control cells and cells treated by 
nocodazole or taxol in terms of the distributions of power-law scaling factor over short (0.5-1.5 
s) and long (6-8 s) timescales respectively. Vertical dashed lines indicate the mean power-law 
scaling factor of the corresponding treatment as color-coded. E) Indexes of directional 
persistence, Pd, of control cells and cells treated by nocodazole or taxol. Green dashed line 
indicates Pd = 0, which is characteristic of pure diffusion.  
 




