738 research outputs found

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; <4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    A method for the assessment of time-varying brain shift during navigated epilepsy surgery

    Get PDF
    Image guidance is widely used in neurosurgery. Tracking systems (neuronavigators) allow registering the preoperative image space to the surgical space. The localization accuracy is influenced by technical and clinical factors, such as brain shift. This paper aims at providing quantitative measure of the time-varying brain shift during open epilepsy surgery, and at measuring the pattern of brain deformation with respect to three potentially meaningful parameters: craniotomy area, craniotomy orientation and gravity vector direction in the images reference frame

    Neurosurgical Applications of Magnetic Resonance Diffusion Tensor Imaging

    Get PDF
    Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI) is a rapidly evolving technology that enables the visualization of neural fiber bundles, or white matter (WM) tracts. There are numerous neurosurgical applications for MR DTI including: (1) Tumor grading and staging; (2) Pre-surgical planning (determination of resectability, determination of surgical approach, identification of WM tracts at risk); (3) Intraoperative navigation (tumor resection that spares WM damage, epilepsy resection that spares WM damage, accurate location of deep brain stimulation structures); (4) Post-operative assessment and monitoring (identification of WM damage, identification of tumor recurrence). Limitations of MR DTI include difficulty tracking small and crossing WM tracts, lack of standardized data acquisition and post-processing techniques, and practical equipment, software, and timing considerations. Overall, MR DTI is a useful tool for planning, performing, and following neurosurgical procedures, and has the potential to significantly improve patient care. Technological improvements and increased familiarity with DTI among clinicians are next steps

    Camera-based Prospective Motion Correction in Paediatric Epilepsy Patients Enables EEG-fMRI Localization Even in High-motion States

    Get PDF
    BACKGROUND: EEG-fMRI is a useful additional test to localize the epileptogenic zone (EZ) particularly in MRI negative cases. However subject motion presents a particular challenge owing to its large effects on both MRI and EEG signal. Traditionally it is assumed that prospective motion correction (PMC) of fMRI precludes EEG artifact correction. METHODS: Children undergoing presurgical assessment at Great Ormond Street Hospital were included into the study. PMC of fMRI was done using a commercial system with a Moiré Phase Tracking marker and MR-compatible camera. For retrospective EEG correction both a standard and a motion educated EEG artefact correction (REEGMAS) were compared to each other. RESULTS: Ten children underwent simultaneous EEG-fMRI. Overall head movement was high (mean RMS velocity < 1.5 mm/s) and showed high inter- and intra-individual variability. Comparing motion measured by the PMC camera and the (uncorrected residual) motion detected by realignment of fMRI images, there was a five-fold reduction in motion from its prospective correction. Retrospective EEG correction using both standard approaches and REEGMAS allowed the visualization and identification of physiological noise and epileptiform discharges. Seven of 10 children had significant maps, which were concordant with the clinical EZ hypothesis in 6 of these 7. CONCLUSION: To our knowledge this is the first application of camera-based PMC for MRI in a pediatric clinical setting. Despite large amount of movement PMC in combination with retrospective EEG correction recovered data and obtained clinically meaningful results during high levels of subject motion. Practical limitations may currently limit the widespread use of this technology

    Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers

    Get PDF
    Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure

    Imaging physiological brain activity and epilepsy with Electrical Impedance Tomography

    Get PDF
    Electrical Impedance Tomography (EIT) allows reconstructing conductivity changes into images. EIT detects fast impedance changes occurring over milliseconds, due to ion channel opening, and slow impedance changes, appearing in seconds, due to cell swelling/increased blood flow. The purpose of this work was to examine the feasibility of using EIT for imaging a gyrencephalic brain with implanted depth electrodes during seizures. Chapter 1 summarises the principles of EIT. In Chapter 2, it is investigated whether recent technical improvements could enable EIT to image slow impedance changes upon visual stimulation non-invasively. This was unsuccessful so the remaining studies were undertaken on intracranial recordings. Chapter 3 presents a computer modelling study using data from patients, for whom the detection of simulated seizure-onset perturbations for both, fast and slow impedance changes, were improved with EIT compared to stereotactic electroencephalography (SEEG) detection or EEG inverse-source modelling. Chapter 4 describes the development of a portable EIT system that could be used on patients. The system does not require averaging and post-hoc signal processing to remove switching artefacts, which was the case previously. Chapter 5 describes the use of the optimised method in chemically-induced focal epilepsy in anaesthetised pigs implanted with depth electrodes. This shows for the first time EIT was capable of producing reproducible images of the onset and spread of seizure-related slow impedance changes in real-time. Chapter 6 presents a study on imaging ictal/interictal-related fast impedance changes. The feasibility of reconstructing ictal-related impedance changes is demonstrated for one pig and interictal-related impedance changes were recorded for the first time in humans. Chapter 7 summarises all work and future directions. Overall, this work suggests EIT in combination with SEEG has a potential to improve the diagnostic yield in epilepsy and demonstrates EIT can be performed safely and ethically creating a foundation for further clinical trials

    Robotically Steered Needles: A Survey of Neurosurgical Applications and Technical Innovations

    Get PDF
    This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications
    • …
    corecore