6 research outputs found

    Power Processing for Advanced Power Distribution and Control

    Get PDF
    A power packet dispatching system is proposed to realize the function of power on demand. This system distributes electrical power in quantized form, which is called power processing. This system has extensibility and flexibility. Here, we propose to use the power packet dispatching system as the next generation power distribution system in self-established and closed system such as robots, cars, and aircrafts. This paper introduces the concept and the required researches to take the power packet dispatching system in practical phase from the total viewpoints of devices, circuits, power electronics, system control, computer network, and bio-inspired power consumption

    What Is Energy Internet? Concepts, Technologies, and Future Directions

    Get PDF

    Modeling the controlled delivery power grid

    Get PDF
    Competitive energy markets, stricter regulation, and the integration of distributed renewable energy sources are forcing companies to reengineer energy production and distribution. The Controlled Delivery Power Grid is proposed as a novel approach to transport energy from generators to consumers. In this approach, energy distribution is performed in an asynchronous and distributed fashion. Much like the Internet, energy is delivered as addressable packets, which allow a controlled delivery of energy. As a proof-of-concept of the controllable delivery grid, two experimental test beds, one with integrated energy storage and another with no energy storage, were designed and built to evaluate the efficiency of a power distribution and scheduling scheme. Both test beds use a request-grant protocol where energy is supplied in discrete quantities. The performance of the system is measured in terms of the ability to satisfy requests from consumers. The results show high satisfaction ratios for distribution capacities that are smaller than the maximum demand. The distribution of energy is modelled with graph theory and as an Integer Linear Programming problem to minimize transmission losses and determine routes for energy flows in a network with distributed sources and consumers. The obtained results are compared with a heuristic approach based on the Dijkstra\u27s shortest path algorithm, which is proposed as a feasible approach to routing the transmission of packetized energy

    Smart grid

    Get PDF
    Tese de mestrado integrado em Engenharia da Energia e do Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016The SG concept arises from the fact that there is an increase in global energy consumption. One of the factors delaying an energetic paradigm change worldwide is the electric grids. Even though there is no specific definition for the SG concept there are several characteristics that describe it. Those features represent several advantages relating to reliability and efficiency. The most important one is the two way flow of energy and information between utilities and consumers. The infrastructures in standard grids and the SG can classified the same way but the second one has several components contributing for monitoring and management improvement. The SG’s management system allows peak reduction, using several techniques underlining many advantages like controlling costs and emissions. Furthermore, it presents a new concept called demand response that allows consumers to play an important role in the electric systems. This factor brings benefits for utilities, consumers and the whole grid but it increases problems in security and that is why the SG relies in a good protection system. There are many schemes and components to create it. The MG can be considered has an electric grid in small scale which can connect to the whole grid. To implement a MG it is necessary economic and technical studies. For that, software like HOMER can be used. However, the economic study can be complex because there are factors that are difficult to evaluate beyond energy selling. On top of that, there are legislation and incentive programs that should be considered. Two case studies prove that MG can be profitable. In the first study, recurring to HOMER, and a scenario with energy selling only, it was obtained a 106% reduction on production cost and 32% in emissions. The installer would have an 8000000profitintheMGslifetime.Inthesecondcase,itwasconsideredeconomicservicesrelatedtopeakloadreduction,reliability,emissionreductionandpowerquality.TheDNOhadaprofitof8 000 000 profit in the MG’s lifetime. In the second case, it was considered economic services related to peak load reduction, reliability, emission reduction and power quality. The DNO had a profit of 41,386, the MG owner had 29,319profitandtheconsumershada29,319 profit and the consumers had a 196,125 profit. We can conclude that the MG with SG concepts can be profitable in many cases

    16th SC@RUG 2019 proceedings 2018-2019

    Get PDF
    corecore