5 research outputs found

    Tight Tardiness Bounds for Pseudo-Harmonic Tasks Under Global-EDF-Like Schedulers

    Get PDF
    The global earliest-deadline-first (GEDF) scheduler and its variants are soft-real-time (SRT) optimal for periodic/sporadic tasks, meaning they provide bounded tardiness so long as the underlying platform is not over-utilized. Although their SRT-optimality has long been known, tight tardiness bounds for these schedulers have remained elusive. In this paper, a tardiness bound, that does not depend on the processor or task count, is derived for pseudo-harmonic periodic tasks, which are commonly used in practice, under global-EDF-like (GEL) schedulers. This class of schedulers includes both GEDF and first-in-first-out (FIFO). This bound is shown to be generally tight via an example. Furthermore, it is shown that exact tardiness bounds for GEL-scheduled pseudo-harmonic periodic tasks can be computed in pseudo-polynomial time

    Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling

    Get PDF
    La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria sino que en muchos ámbitos es la única opción. La planificación tiempo real sobre estas plataformas es mucho más compleja que sobre monoprocesadores y en general empeoran el problema de sobre-diseño, llevando a la utilización de muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos basados en planificación fluida que optimizan la utilización de los procesadores, pero hasta el momento presentan en general inconvenientes que los alejan de su aplicación práctica, no siendo el menor el elevado número de cambios de contexto y migraciones.Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en planificación fluida, que optimizan la utilización de los procesadores, cumpliendo restricciones temporales, térmicas y energéticas, con un bajo número de cambios de contexto y migraciones, y compatibles tanto con la generación fuera de línea de ejecutivos cíclicos atractivos para la industria, como de planificadores que integran técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.A este respecto, esta tesis contribuye con varias soluciones. En primer lugar, mejora una metodología de modelo que representa todas las dimensiones del problema bajo un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar, propone un método de generación de un ejecutivo cíclico, calculado en ciclos de procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores que optimiza la utilización de los núcleos de procesamiento respetando también restricciones térmicas y de energía, sobre la base de una planificación fluida. Considerar la sobrecarga derivada del número de cambios de contexto y migraciones en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis propone una solución a este dilema mediante un método iterativo de convergencia demostrada que logra minimizar la sobrecarga mencionada.En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar la utilización (donde maximizar la utilización es un gran problema en la industria) generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga implica un gran problema de los planificadores basados en planificación fluida).Finalmente, se propone un método para utilizar las referencias de la planificación fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas perturbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas (tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto de tiempo real duro.Estas aportaciones constituyen una novedad en el campo, refrendada por las publicaciones derivadas de este trabajo de tesis.<br /

    Feasibility Intervals for Homogeneous Multicores, Asynchronous Periodic Tasks, and FJP Schedulers

    No full text
    info:eu-repo/semantics/publishe

    A time-predictable parallel programing model for real-time systems

    Get PDF
    The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of the high-performance and the embedded computing domains. Critical real-time embedded systems are increasingly concerned with providing higher performance to implement advanced functionalities in a predictable way. OpenMP, the de-facto parallel programming model for shared memory architectures in the high-performance computing domain, is gaining the attention to be used in embedded platforms. The reason is that OpenMP is a mature language that allows to efficiently exploit the huge computational capabilities of parallel embedded architectures. Moreover, OpenMP allows to express parallelism on top of the current technologies used in embedded designs (e.g., C/C++ applications). At a lower level, OpenMP provides a powerful task-centric model that allows to define very sophisticated types of regular and irregular parallelism. While OpenMP provides relevant features for embedded systems, both the programming interface and the execution model are completely agnostic to the timing requirements of real-time systems. This thesis evaluates the use of OpenMP to develop future critical real-time embedded systems. The first contribution analyzes the OpenMP specification from a timing perspective. It proposes new features to be incorporated in the OpenMP standard and a set of guidelines to implement critical real-time systems with OpenMP. The second contribution develops new methods to analyze and predict the timing behavior of parallel applications, so that the notion of parallelism can be safely incorporated into critical real-time systems. Finally, the proposed techniques are evaluated with both synthetic applications and real use cases parallelized with OpenMP. With the above contributions, this thesis pushes the limits of the use of task-based parallel programming models in general, and OpenMP in particular, in critical real-time embedded domains.Los recientes avances tecnológicos y tendencias de mercado estan causando un interesante fenómeno hacia la convergencia de dos dominios: la computacion de altas prestaciones y la computacion embebida. Hay cada vez mas interés en que los sistemas embebidos criticos de tiempo real proporcionen un mayor rendimiento para implementar funcionalidades avanzadas de una manera predecible. OpenMP, el modelo de programación paralela estándar para arquitecturas de memoria compartida en el dominio de la computación de altas prestaciones, está ganando atención para ser utilizado en systemas embebidos. La razón es que OpenMP es un lenguaje asentado que permite explotar eficientemente las enormes capacidades computacionales de las arquitecturas paralelas embebidas. Además, OpenMP permite expresar paralelismo sobre las tecnologías actuales utilizadas en los diseños embebidos (por ejemplo, aplicaciones C/C++). A un nivel inferior, OpenMP proporciona un potente modelo centrado en tareas que permite expresar tipos muy sofisticados de paralelismo regular e irregular. Si bien OpenMP proporciona funciones relevantes para los sistemas embebidos, tanto la interfaz de programación como el modelo de ejecución son completamente ajenos a los requisitos temporales de los sistemas de tiempo real. Esta tesis evalúa el uso de OpenMP para desarrollar los futuros sistemas embebidos criticos de timepo real. La primera contribución analiza la especificación de OpenMP desde una perspectiva temporal. Se propone nuevas funcionalidades que podrian ser incorporadas en el estándar de OpenMP y un conjunto de pautas para implementar sistemas críticos de tiempo real con OpenMP. La segunda contribución desarrolla nuevos métodos para analizar y predecir el comportamiento temporal de las aplicaciones paralelas, de modo que la noción de paralelismo se pueda incorporar de manera segura en sistemas críticos de tiempo real. Finalmente, las técnicas propuestas se evaluan con aplicaciones sintéticas y casos de uso reales paralelizados con OpenMP. Con las mencionadas contribuciones, esta tesis amplía los límites en el uso de los modelos de programación paralela basados en tarea en general, y de OpenMP en particular, en dominios embebidos criticos de tiempo real
    corecore