5,548 research outputs found

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Full text link
    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2

    Self-stabilising Byzantine Clock Synchronisation is Almost as Easy as Consensus

    Get PDF
    We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of the nn nodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e., the initial state of the system may be arbitrary, and there can be up to f<n/3f<n/3 ongoing Byzantine faults, i.e., nodes that deviate from the protocol in an arbitrary manner. Furthermore, we assume that the local clocks of the nodes may progress at different speeds (clock drift) and communication has bounded delay. In this model, we study the pulse synchronisation problem, where the task is to guarantee that eventually all correct nodes generate well-separated local pulse events (i.e., unlabelled logical clock ticks) in a synchronised manner. Compared to prior work, we achieve exponential improvements in stabilisation time and the number of communicated bits, and give the first sublinear-time algorithm for the problem: - In the deterministic setting, the state-of-the-art solutions stabilise in time Θ(f)\Theta(f) and have each node broadcast Θ(flogf)\Theta(f \log f) bits per time unit. We exponentially reduce the number of bits broadcasted per time unit to Θ(logf)\Theta(\log f) while retaining the same stabilisation time. - In the randomised setting, the state-of-the-art solutions stabilise in time Θ(f)\Theta(f) and have each node broadcast O(1)O(1) bits per time unit. We exponentially reduce the stabilisation time to logO(1)f\log^{O(1)} f while each node broadcasts logO(1)f\log^{O(1)} f bits per time unit. These results are obtained by means of a recursive approach reducing the above task of self-stabilising pulse synchronisation in the bounded-delay model to non-self-stabilising binary consensus in the synchronous model. In general, our approach introduces at most logarithmic overheads in terms of stabilisation time and broadcasted bits over the underlying consensus routine.Comment: 54 pages. To appear in JACM, preliminary version of this work has appeared in DISC 201

    Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links

    Full text link
    Exquisite quantum control has now been achieved in small ion traps, in nitrogen-vacancy centres and in superconducting qubit clusters. We can regard such a system as a universal cell with diverse technological uses from communication to large-scale computing, provided that the cell is able to network with others and overcome any noise in the interlinks. Here we show that loss-tolerant entanglement purification makes quantum computing feasible with the noisy and lossy links that are realistic today: With a modestly complex cell design, and using a surface code protocol with a network noise threshold of 13.3%, we find that interlinks which attempt entanglement at a rate of 2MHz but suffer 98% photon loss can result in kilohertz computer clock speeds (i.e. rate of high fidelity stabilizer measurements). Improved links would dramatically increase the clock speed. Our simulations employed local gates of a fidelity already achieved in ion trap devices.Comment: corrected typos, additional references, additional figur

    Fault-tolerant vertical link design for effective 3D stacking

    Full text link
    [EN] Recently, 3D stacking has been proposed to alleviate the memory bandwidth limitation arising in chip multiprocessors (CMPs). As the number of integrated cores in the chip increases the access to external memory becomes the bottleneck, thus demanding larger memory amounts inside the chip. The most accepted solution to implement vertical links between stacked dies is by using Through Silicon Vias (TSVs). However, TSVs are exposed to misalignment and random defects compromising the yield of the manufactured 3D chip. A common solution to this problem is by over-provisioning, thus impacting on area and cost. In this paper, we propose a fault-tolerant vertical link design. With its adoption, fault-tolerant vertical links can be implemented in a 3D chip design at low cost without the need of adding redundant TSVs (no over-provision). Preliminary results are very promising as the fault-tolerant vertical link design increases switch area only by 6.69% while the achieved interconnect yield tends to 100%.This work was supported by the Spanish MEC and MICINN, as well as European Comission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04. It was also partly supported by the project NaNoC (project label 248972) which is funded by the European Commission within the Research Programme FP7.Hernández Luz, C.; Roca Pérez, A.; Flich Cardo, J.; Silla Jiménez, F.; Duato Marín, JF. (2011). Fault-tolerant vertical link design for effective 3D stacking. IEEE Computer Architecture Letters. 10(2):41-44. https://doi.org/10.1109/L-CA.2011.17S414410
    corecore