192 research outputs found

    Emergent velocity agreement in robot networks

    Get PDF
    In this paper we propose and prove correct a new self-stabilizing velocity agreement (flocking) algorithm for oblivious and asynchronous robot networks. Our algorithm allows a flock of uniform robots to follow a flock head emergent during the computation whatever its direction in plane. Robots are asynchronous, oblivious and do not share a common coordinate system. Our solution includes three modules architectured as follows: creation of a common coordinate system that also allows the emergence of a flock-head, setting up the flock pattern and moving the flock. The novelty of our approach steams in identifying the necessary conditions on the flock pattern placement and the velocity of the flock-head (rotation, translation or speed) that allow the flock to both follow the exact same head and to preserve the flock pattern. Additionally, our system is self-healing and self-stabilizing. In the event of the head leave (the leading robot disappears or is damaged and cannot be recognized by the other robots) the flock agrees on another head and follows the trajectory of the new head. Also, robots are oblivious (they do not recall the result of their previous computations) and we make no assumption on their initial position. The step complexity of our solution is O(n)

    Swarm shape manipulation through connection control

    Get PDF
    The control of a large swarm of distributed agents is a well known challenge within the study of unmanned autonomous systems. However, it also presents many new opportunities. The advantages of operating a swarm through distributed means has been assessed in the literature for efficiency from both operational and economical aspects; practically as the number of agents increases, distributed control is favoured over centralised control, as it can reduce agent computational costs and increase robustness on the swarm. Distributed architectures, however, can present the drawback of requiring knowledge of the whole swarm state, therefore limiting the scalability of the swarm. In this paper a strategy is presented to address the challenges of distributed architectures, changing the way in which the swarm shape is controlled and providing a step towards verifiable swarm behaviour, achieving new configurations, while saving communication and computation resources. Instead of applying change at agent level (e.g. modify its guidance law), the sensing of the agents is addressed to a portion of agents, differentially driving their behaviour. This strategy is applied for swarms controlled by artificial potential functions which would ordinarily require global knowledge and all-to-all interactions. Limiting the agents' knowledge is proposed for the first time in this work as a methodology rather than obstacle to obtain desired swarm behaviour

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Multi-Robot Coalition Formation for Distributed Area Coverage

    Get PDF
    The problem of distributed area coverage using multiple mobile robots is an important problem in distributed multi-robot sytems. Multi-robot coverage is encountered in many real world applications, including unmanned search & rescue, aerial reconnaissance, robotic demining, inspection of engineering structures, and automatic lawn mowing. To achieve optimal coverage, robots should move in an efficient manner and reduce repeated coverage of the same region that optimizes a certain performance metric such as the amount of time or energy expended by the robots. This dissertation especially focuses on using mini-robots with limited capabilities, such as low speed of the CPU and limited storage of the memory, to fulfill the efficient area coverage task. Previous research on distributed area coverage use offline or online path planning algorithms to address this problem. Some of the existing approaches use behavior-based algorithms where each robot implements simple rules and the interaction between robots manifests in the global objective of overall coverage of the environment. Our work extends this line of research using an emergent, swarming based technique where robots use partial coverage histories from themselves as well as other robots in their vicinity to make local decisions that attempt to ensure overall efficient area coverage. We have then extended this technique in two directions. First, we have integreated the individual-robot, swarming-based technique for area coverage to teams of robots that move in formation to perform area coverage more efficiently than robots that move individually. Then we have used a team formation technique from coalition game theory, called Weighted Voting Game (WVG) to handle situations where a team moving in formation while performing area coverage has to dynamically reconfigure into sub-teams or merge with other teams, to continue the area coverage efficiently. We have validated our techniques by testing them on accurate models of e-puck robots in the Webots robot simulation platform, as well as on physical e-puck robots

    Swarm-Based Techniques for Adaptive Navigation Primitives

    Get PDF
    Adaptive Navigation (AN) has, in the past, been successfully accomplished by using mobile multi-robot systems (MMS) in highly structured formations known as clusters. Such multi-robot adaptive navigation (MAN) allows for real-time reaction to sensor readings and navigation to a goal location not known a priori. This thesis successfully reproduces MAN cluster techniques via swarm control techniques, a less computationally expensive but less formalized control technique for MMS, which achieves robot control through a combination of primitive robot behaviors. While powerful for large numbers of robots, swarm robotics often relies on “emergent” swarm behaviors resulting from robot-level behaviors, rather than top-down specification of swarm behaviors. For adaptive navigation purposes, it was desired to be able to specify swarm-level behavior from a top down perspective rather than experimenting with emergent behaviors. To this end, a simulation environment was developed to allow rapid development and vetting of swarm behaviors while easily interfacing with an existing testbed for validation on hardware. An initial suite of robot primitive and composite behaviors was developed and vetted using this simulator, and the behaviors were validated using the existing testbed in Santa Clara University’s Robotics System Laboratory (RSL). Of particular importance were the adaptive navigation primitives of extrema finding and contour finding and following. These AN primitives were tested over a variety of experimental parameters, yielding design guidelines for top-down specification of swarm robotic adaptive navigation. These design guidelines are presented, and their usefulness is demonstrated for a Contour Finding and Following application using the RSL’s testbed. Finally, possible future work to expand the capability of swarm-based adaptive navigation techniques is discussed

    Information Transfer in a Flocking Robot Swarm

    Get PDF
    corecore