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ABSTRACT 
 

Adaptive Navigation (AN) has, in the past, been successfully accomplished by using mobile 

multi-robot systems (MMS) in highly structured formations known as clusters. Such multi-robot 

adaptive navigation (MAN) allows for real-time reaction to sensor readings and navigation to a 

goal location not known a priori. This thesis successfully reproduces MAN cluster techniques 

via swarm control techniques, a less computationally expensive but less formalized control 

technique for MMS, which achieves robot control through a combination of primitive robot 

behaviors. While powerful for large numbers of robots, swarm robotics often relies on 

“emergent” swarm behaviors resulting from robot-level behaviors, rather than top-down 

specification of swarm behaviors. For adaptive navigation purposes, it was desired to be able to 

specify swarm-level behavior from a top down perspective rather than experimenting with 

emergent behaviors. To this end, a simulation environment was developed to allow rapid 

development and vetting of swarm behaviors while easily interfacing with an existing testbed for 

validation on hardware. An initial suite of robot primitive and composite behaviors was 

developed and vetted using this simulator, and the behaviors were validated using the existing 

testbed in Santa Clara University’s Robotics System Laboratory (RSL). Of particular importance 

were the adaptive navigation primitives of extrema finding and contour finding and following. 

These AN primitives were tested over a variety of experimental parameters, yielding design 

guidelines for top-down specification of swarm robotic adaptive navigation. These design 

guidelines are presented, and their usefulness is demonstrated for a Contour Finding and 

Following application using the RSL’s testbed. Finally, possible future work to expand the 

capability of swarm-based adaptive navigation techniques is discussed.  
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1. Introduction  
 

1.1 Robotics, Mobile Robotics, and Mobile Multi-Robot Systems 

(MMS) 
 

Robotics, primarily in the form of industrial manipulators similar to the articulated arm shown in 

Figure 1, have had a large impact on manufacturing due their ability to execute tasks with speed 

and repeatability [1]. Initial applications, and the majority of current applications, consist of 

some sort of actuation (such as picking and placing parts, welding, and screw driving) in which 

the end-effector of the robot has some sort of mechanical device capable of actuating parts in the 

environment, as shown in Figure 1. Recent applications may choose to replace the mechanical 

end-effector with a sensing suite, shown in Figure 2.  

In Figure 2, rather than having a mechanical gripper like the Franka arm in Figure 1, the robot 

has an attached high-definition camera. Images from this camera can be used in a vision system 

to check parts for failures or defects [3]. These types of applications are likely to become more 

common in the so-called “fourth Industrial Revolution,” a term applied to the movement from 

automated physical systems to “Smart” Cyber-Physical Systems that incorporate larger numbers 

of sensors for robustness and predictability of manufacturing processes. [4] 

 

In parallel to the development of industrial manipulators has been the development of mobile 

robotics. In some cases, mobile robots have industrial manipulators attached (Fetch Mobile 

Manipulator, Figure 3), which makes the industrial manipulator mobile via its base. In others, the 

Figure 1: Franka Industrial Manipulator 

w/gripper [2] 

 

Figure 2: Kitov System - Denso 

Robot w/ Camera [3] 
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primary role of the mobile robot is as a mobile sensor suite that can take measurements and 

gather data about its environment (NASA Mars Rover: Opportunity, Figure 4). These mobile 

robots offer a way to fulfill tasks that industrial manipulators cannot, such as material transport 

and sensing of a larger environment outside of the industrial manipulator’s workspace.  

 

 

Figure 3. Fetch Mobile Manipulator [5]       Figure 4. NASA Opportunity, a mobile sensor suite [6]  

 

Growing out of the field of mobile robotics is the field of Mobile Multi-Robot Systems 

(MMS’s). MMS offers many of the same benefits as mobile robotics, while also providing 

improvements upon applications using a single robot. MMS’s utilize multiple smaller, resource 

limited robots to achieve similar results as single mobile robots. Using an MMS instead of a 

single large mobile robot can provide a few advantages. First, the individual cost of the robots is 

reduced, as complexity is often significantly reduced for the individual robots in an MMS. 

Second, MMS systems can be easily designed to be robust to individual robot failures, so that the 

success or failure of a mission does not depend on the successful operation of one individual 

robot. Additionally, there are inherently distributed tasks that require multiple agents, or tasks 

that are too complex for single robots to complete. Finally, certain applications benefit from the 

use of multiple distributed robots or sensors rather than one individual robot. Figures 5 and 6 

show two examples of MMS, with Harvard’s Kilobot swarm of small mobile robots and SCU’s 

Decabot system, featuring more robust individual robots.   

 

         

Figure 5. Harvard’s Kilobot swarm MMS [7]              Figure 6. Robots in SCU’s Decabot MMS system 
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1.1.1 Classification of MMS Applications  
 

MMS applications, at a high level, can be categorized mainly by the two following 

classifications: Heterogeneous robots vs. Homogeneous Robots, and Collaborative vs. Parallel 

applications. MMS applications involving heterogeneous robots may involve multiple types of 

robots, each performing their own function within the application. For example, in a warehouse, 

a team of 3 robots could be tasked to gathering materials: one tasked to locating the desired 

material and broadcasting its location, and another, possibly equipped with a robotic 

manipulator, picks and places the materials onto a third “Sherpa” robot, which can then transport 

the materials to a desired location. In contrast to this, a homogeneous MMS system consists of 

robots that all have roughly the same capabilities, sensor suites, and actuators. For example, a 

group of homogeneous robots engaged in bathymetric mapping would all be using the same set 

of actuators and sensors to complete their task.  

 

The second classification is between collaborative and parallel applications. As an example, 

consider the previous bathymetric mapping application. An MMS system that acts in parallel 

could send out a team of N robots that each have their own area to map out, with the aggregate of 

their areas fully mapping the desired location. This offers an advantage over a single-robot 

system that would take much longer to map out the area, simply because there is less area for 

each individual robot to map. These robots act almost completely independently of each other 

during operation, and as such are said to act in parallel. In contrast, robots trying to find the 

maximum depth of the lake floor would constantly be sharing data and comparing with each 

other in order to move towards that maximum depth, and as such would be acting 

collaboratively. While there has been research done in multiple areas regarding MMS, this thesis 

will focus on reviewing research done in homogeneous, collaborative systems. 

 

Of particular interest in the scope of homogeneous, collaborative systems is the idea of adaptive 

navigation. Whereas conventional navigation involves guiding a vehicle along a predefined path 

or trajectory, adaptive navigation utilizes environmental data to move towards a target location 

not known a priori. While adaptive navigation for a single robot may be achieved through 

approaches such as SLAM (Simultaneous Location and Mapping), many approaches to adaptive 

navigation utilize MMS in order to exploit the collection of simultaneously collected distributed 

information in order to make navigation decisions. This will be discussed in more depth in 

section 1.2. 

 

1.1.2 Formation Control for Mobile Multi-Robot Systems   
 

One of the first issues that is addressed within MMS is how to coordinate the motion of multiple 

agents, often called formation control. Within the field of MMS there are many different 
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approaches to formation control of the group of robots, which can be broadly classified as 

explicit formation control and implicit formation control.  

 

1.1.2.1 Explicit Formation Control  

 

Explicit formation control strictly specifies where robots are to be located in relation to each 

other. Typical examples of these are the Leader-Follower model, and an “expanded” version 

called Leader-Follower chains. These frameworks are illustrated in Figures 7-10. In a simple 

Leader-Follower (LF) framework, the leader moves with some direction, and the follower moves 

at some specified distance and bearing behind the leader (Figure 7). This can be expanded to 

multiple followers, so that multiple followers follow a single leader. Figure 8 depicts a scenario 

in which there is one leader, and multiple followers at different bearings, while Figure 9 depicts 

another possible scenario, where robots are given the same bearing angle and different distances.  

These are explicit frameworks for control as they distinctly specify where follower robots should 

be located in relation to the leader robot at any point in time. 

 

Figure 7. LF formation control for 2 robots [9]        Figure 8. LF for one distance, multiple bearing angles 

 

 

Figure 9. LF for one bearing angle, multiple distances           Figure 10. 3-robot LF chain  
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Another expanded version of this is the Leader-Follower chain, where each follower is then a 

leader for the robot behind it. This is shown in Figure 10 above. Finally, virtual “leaders” can be 

specified, so that the follower robot follows a given point, where a physical robot may not 

actually exist. Though leader-follower organization and leader-follower chains allow an easy 

way to specify a formation, there are challenges to the approach. Leader-follower chains can be 

prone to oscillation given delays in communication along the chain, and at large following 

distances, any requirement to maintain position based on the orientation of the leader can result 

in unachievable velocities. 

 

Another method of explicit formation control is the Cluster-space formation [10]. In the cluster 

space, a group of N robots form a “cluster,” which is specified as a combination of geometry, 

position, and orientation variables. By using clusters, position and orientation can be explicitly 

specified at any point in time by specifying the motion of the cluster frame. The cluster frame is 

specified as a function of the robots, such as the centroid of the formation. Individual robots in 

the cluster may have their position and orientation specified in relation to the cluster frame, and 

motion of the individual robots can therefore be specified by the movement of the cluster as a 

whole via the Jacobian and inverse Jacobian relationships of the cluster. The cluster offers the 

benefit of explicit formation control and allows more sophisticated formations than simple 

leader-follower or leader-follower chains. This type of formation control is especially important 

in certain adaptive navigation scenarios, such as ridge or trench following, where relative 

location of environmental readings is important in order to determine characteristics of the scalar 

field. The two main challenges that arise when using the cluster space formulation are scalability 

(due to computational complexity) and singularity avoidance (although several approaches have 

been developed to address this).  

 

Size limitations arise as a result of cluster configurations. For the example of 3-DOF planar 

robots (translational DOF’s in x and y, rotational about z), the total number of cluster variables 

required for an N-robot cluster will be 3N. Cluster variables are split up into four categories: 

cluster position, cluster orientation, relative robot orientation, and “shape” variables. Table 1 

below, presented in [10], indicates the cluster space formulation in general and for 4 planar 

rovers: 

 

Table 1. Cluster-Space Specification variables for MMS [10] 
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The cluster position and orientation variables are functions of the individual robot degrees of 

freedom, while relative robot orientations are a function of the rotational degrees of freedom of 

the individual robots and the number of robots in the cluster. As a result, the cluster variable 

most affected by scaling the number of robots is the shape variables, which are s= p(n-2) +1. For 

example, 10 planar robots will have 17 shape variables. The specification and regulation of all 

variables leads to the cluster specification being computationally expensive, particularly when 

the number of robots in the cluster increases.  

 

Similar to singularities in industrial manipulator robots, singularities occur in clusters at certain 

cluster configurations that cause the Jacobian or its inverse to become singular. It should also be 

noted that, similar to industrial manipulators, operating in the vicinity of singularities is 

undesirable as it causes very high actuator rates. In the context of clusters, this usually means 

that a certain “cluster motion” specification would require a robot velocity that is at or above the 

robot’s physical capabilities. As such, the cluster specification is a powerful tool for multi-robot 

location specification, but has certain drawbacks, particularly in relation to easy scalability of the 

cluster. 

 

1.1.2.2 Implicit Formation Control  

 

While explicit formation control explicitly specifies the location of individual robots, either in 

relationship to each other or in global coordinates, implicit formation control allows for a 

“bottom-up” emergence of a formation as a result of individual robot behaviors or control laws. 

Implicit control includes techniques such as artificial potential fields (APF), behavior based 

robotics, and swarm control techniques. In APF, potential fields are artificially created around 

certain points so that the robot will move down the potential field in the desired manner. Figures 

11 and 12 show a single potential field and the result of super-imposed potential fields. The 

combined potential field and a potential path down it shows how this may be used for mobile 

robot navigation. Superposition of global APF with “mobile” APF affixed to each individual 

robot leads to an “implicit” formation that balances each of the individual potential fields.  

 

                   

Figure 11. Single repulsive APF [11]                Figure 12. Superposition of APF, expected robot path [12] 
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This approach could also be accomplished through behavior-based robotics. However, in 

behavior based-robotics, the resultant behavior would be a result of individual behaviors rather 

than individual potential fields. For example, the first behavior could be “go east,” a second 

could be “avoid obstacle X” and a third be “avoid other robots.” In this way, a similar implicit 

formation could be achieved through a different formulation. While it is not explicitly different 

from the first two approaches mentioned here, swarm control techniques bear mentioning as their 

own approach to implicit formation control. The main difference between swarm robotics and 

the approaches mentioned above is that swarm behaviors are geared at very large-scale MMS. As 

a result of this much larger scale, swarm behaviors often attempt to execute the simplest form of 

behaviors, rather than more complex behaviors such as APF. Different approaches to swarm 

control techniques and example applications will be discussed in the next section.   

 

1.1.3 Robotic Swarms and Research Fields within Robotic Swarms  
 

As was mentioned in section 1.1.2, swarms often employ very simple individual robot behaviors 

and control laws, and rely on the scale of the MMS (the “swarm”) to achieve complex group 

behaviors. A more detailed classification of swarm robotics is as follows, adapted from 

Senanyake et al. [13] In general, a rough set of criteria for swarm robotics is as follows:  

 

1. Swarms consist of autonomous robots, capable of sensing and actuating. As a result, 

stationary sensor networks or pure software agents are not “swarms.”  

2. Swarms are large. Swarm behaviors can be studied at a small scale, but should be made 

with an aim towards scalability and large numbers of agents.  

3. Swarms are homogeneous and redundant. While having heterogeneous robots does not 

exclude an MMS from being a swarm, the heterogeneity must be very limited so that the 

swarm is redundant and robust to individual robot failures.  

4. Swarms improve performance through cooperation. In particular, the swarm robots would 

not individually be able to complete the task at hand (or would do it very inefficiently) 

outside of the context of the swarm. This is sometimes referred to as “swarm 

intelligence,” or the idea that the swarm is able to “know” things that individual robots 

themselves do not.  

5. Swarm robots do not have extensive individual capabilities. Swarm robots should have 

limited sensing and communication abilities in an attempt to implement more distributed 

coordination.  

 

Within the criteria above, there are many different foci in research involving swarms. Some of 

these research areas are applications based (such as mapping and localization, source seeking, 

and object transportation), some are focused on a particular design approach (such as bio-
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inspiration), and others are focused on swarm protocols (such as communication, control 

protocols, motion coordination, and “learning” via swarm intelligence) [14]. These areas are not 

necessarily exclusive. For example, certain groups may utilize bio-inspiration (design approach) 

for their communication protocols (swarm protocols) for swarms engaged in source seeking 

(application-based). Each of these areas is briefly discussed below, with references to studies in 

each area.  

 

1.1.3.1 Bio-Inspired Swarms  

 

Bio-inspired swarms refers to the explicit effort to re-create group behaviors seen in natural 

groups of animals with limited individual capabilities, such as ants, bees, birds, and fish. While 

other research areas within robotics use bio-inspiration for design of actuators and physical 

robots [15, 16], bio-inspired swarm research focuses on group behavior algorithms and 

communications to utilize the “swarm intelligence.” [17] Perhaps the most common research 

area within bio-inspired swarms is the attempt to recreate insect swarm behaviors, including such 

applications as foraging (mimicking ant foraging) [18] and source seeking. While insects are the 

most common inspiration, researchers have also mimicked fish as well as packs of wolves [19].  

 

1.1.3.2 Communication, Control, and Motion Coordination Protocols 

 

The issues of communication, control, and motion coordination protocols fall within the area of 

“swarm protocols,” or how the swarm behaviors will actually be achieved.  

 

Communication is a necessity given the inter-connectedness and collaboration of robotic 

swarms, and can be done explicitly or implicitly. Explicit communication involves direct 

transmittal of robot data (such as position and sensor reading data), while implicit 

communication is most commonly achieved through stigmergy. Stigmergy involves indirect 

communication through actuation on the environment. A common implementation of this in 

swarms is through virtual “pheromones” [20]. For example, it may be desired to share data about 

an individual robot’s sensor values for a certain pollutant. Explicit communication would involve 

directly sending this information to other robots (or to a centralized location that then transmits it 

to other robots). In contrast, stigmergy would involve the robots releasing a “pheromone” at a 

level proportional to their sensor value reading. In this implicit communication, data can be 

shared more easily across a wider array of robots, but there are other concerns that arise with lag 

in sharing of data, imprecise data sharing, and additional sensors needed to sense the 

“pheromone.” Despite these concerns, the use of “pheromones” can help reduce computational 

load by only sharing data with local neighbors.  
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At the control level, a decision is made about whether control will be done in a centralized or 

distributed manner. While individual commanded velocities must be distributed to each 

individual swarm robot, the process of the control is a key decision. Centralized control involves 

one controller/computer that calculates all robot velocities and then distributes them to the proper 

agents. In contrast, distributed control involves each robot making its own calculations through a 

set of control or behavior laws and acting off of those. A blend of distributed and centralized 

control is also possible for certain applications [30]. 

 

1.1.3.3 Swarm Intelligence and Swarm Learning  

 

As was stated in section 1.1.3, all swarm robotic systems utilize swarm intelligence at some 

level, as they all leverage the knowledge or abilities of simple agents to create a complex group 

behavior. However, some areas of swarm research are much more focused on this “intelligence” 

aspect of the swarm and attempt to utilize learning algorithms to maximize the “intelligence” of 

the swarm. This area is especially relevant for groups focused on implementing swarms in 

unknown or rapidly changing applications [22]. Swarm learning may take a variety of forms, 

such as decision trees [24] or neural networks [25]. It should be noted that this area of research is 

closely linked with AI, Machine Learning, and other research fields, and is not exclusive to 

swarm robotics. However, the typical architecture of a robotic swarm lends itself to research in 

this area, and oftentimes may serve as a testbed for these research areas.  

 

1.1.3.4 Applications-Based Swarm Development  

 

Whereas sections 1.1.3.1-1.1.3.2 have discussed particular research areas within swarm robotics, 

a particular approach to swarm robotics research that places the desired application at the 

forefront is discussed in this section. It should be noted that this can be executed in conjunction 

with the other research areas previously stated, but that the main goal of the research is toward a 

certain application, rather than the development of a capability. The most common applications 

found in research currently are task allocation, object transportation and manipulation, and 

source finding. Task allocation is necessary when the swarm must accomplish multiple goals 

simultaneously. In these instances, it is necessary for the swarm to determine which robots 

should complete each task [26]. Many different strategies have been proposed for how to most 

successfully allocate tasks. These include market-based [27], auction-based [28], distributed 

planning [29], and fault-tolerant techniques [30]. Object transportation and manipulation can 

encompass “grasping” a physical object [31], pushing the object without grasping [32], or 

“guarding” a target [33]. Finally, source finding has been explored by multiple researchers. Due 

to its direct connection to adaptive navigation techniques and this thesis, current research in this 

area is discussed in section 1.2.2.  
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1.2 Adaptive Navigation   
 

The focus of this section of the paper is to discuss a particular application - Adaptive Navigation 

- for which swarm control techniques can be utilized.  

 

Adaptive Navigation (AN) is the process of determining a goal location during transit rather than 

specifying a goal a priori. This stands in contrast to traditional navigation, which often involves 

goal coordinates, waypoints, or a time-dependent trajectory. Oftentimes, AN implies that the 

quality of the goal location may be known, rather than the specific coordinate(s) or location(s). A 

disaster-relief example of AN might involve the mapping of the spread of a pollutant, in order to 

determine which areas need to be evacuated. In this example, the goal of the AN would be to use 

sensor readings of pollutant concentrations in order to effectively map and determine pollutant 

spread. Subsequent sections will discuss approaches to AN, with a survey of techniques in 

general, and a section that will focus on swarm approaches to implementing AN.  

 

Frequently, adaptive navigation is used in scalar fields, that is, fields that have a discrete scalar 

value for each position in the field. Adaptive navigation is particularly useful in finding features 

of interest within scalar fields, such as maxima or minima, contours of a specified value, ridges 

and trenches, or saddle points, as indicated in Figure 13.  

 

 

Figure 13. Key Features in a Scalar Field [34] 

 

1.2.1 Approaches to AN  
 

Adaptive Navigation is heavily linked with the field of mobile robotics, including applications in 

single mobile robot systems as well as MMS. Single mobile robot adaptive navigation systems 

may utilize AN for similar reasons as MMS, but are often more limited in their abilities or 
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approaches. Single mobile robot systems may utilize differential sensing, but are limited by the 

fact that the sensors are limited in their distribution by the robot’s size. Despite this, efforts have 

been made to utilize single quadcopters with differential sensing for source-seeking applications 

[36]. Alternatively, single mobile robots may implement adaptive navigation techniques that are 

much more dependent on memory and storage of previous conditions, such as Simultaneous 

Location and Mapping (SLAM) algorithms [37]. Such algorithms, while powerful, require robust 

systems with much higher computing power and storage capacity.  

 

One of the main advantages of utilizing MMS for adaptive navigation, especially when 

implementing differential sensing techniques, is that the sensors can be spread over a much 

wider area. This wider area can be utilized to more accurately estimate relevant gradient 

information, which is the basis for most scalar field adaptive navigation techniques. Recently, the 

RSL has successfully implemented such scalar field AN techniques utilizing the cluster-space 

MMS technique discussed in section 1.1.2.1. By utilizing differential sensing across robots in the 

cluster, feature information could be estimated in order to successfully accomplish minima and 

maxima finding, contour following, ridge and trench following, and saddle-point “station 

keeping.” [34] Another advantage of utilizing MMS for AN is the fact that decisions can be 

based solely off real-time sensor readings, which makes the system more agile than a single 

robot basing decisions on both current and past states.  

 

1.2.2 Survey of Adaptive Navigation utilizing Swarm Control Techniques  
 

As was mentioned in section 1.2.1, there are many advantages to utilizing MMS for AN. In the 

area of swarm control techniques, a detailed survey of the research did not indicate that 

researchers have explicitly been working towards creating “adaptive navigation primitives” 

similar to those presented in [34]. There is, however, extensive research in utilizing robotic 

swarms for source finding and tracking. In the context of [34], this would be the problem of 

minima or maxima finding, depending on the type of the source.  

 

As mentioned in section 1.1.3.1, robotic swarms are often bio-inspired, and this trend is 

especially prevalent in source-finding applications. For example, efforts have been made to 

mimic moth behaviors in source finding applications [38]. In [38], a behavioral architecture was 

used that involved tracking and reacquiring a “plume,” which implies a well-defined scalar field 

ridge. While this architecture is similar to that used in this thesis’ behavioral architecture, the 

individual behaviors are more complicated and involve the storage of previous states. Similar 

plume-tracking behaviors have also been expanded [40] and have been proven effective for time-

variant sources as well. In addition to moth-inspired algorithms, some researchers have based 

search algorithms off schools of fish [41, 42]. This strategy involves a dual-input velocity 
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determination, wherein velocity is based off formation keeping as well as individual 

measurements of the scalar field.  

 

In addition to these bio-inspired approaches, research has been done in swarm-based source 

seeking that attempts to work past a common assumption within other research areas. These are 

summarized in Table 2. 

 

Table 2. Summary of Assumption-based Swarm Source-Finding Research   

Common Assumption  Description of Work addressing 

Assumption 

Author(s)  

Swarm robots have unlimited 

battery life in the context of 

their mission 

Employ a “layered” behavior architecture that 

includes behaviors for returning home to 

recharge. Tested on quadcopters with flight 

endurance constraints.  

Gainer, J. et 

al. [44] 

Source will be constant (or if 

time-variant, always 

measurable) 

Simulated tracking of an intermittent RF 

Source that may not always be measurable or 

detectable. Employed an estimator and path-

planning optimizer for achieving fastest 

convergence to source.  

Koohifar, F. 

et al. [45] 

Swarm Robots have 

knowledge of their global 

position 

Structured behaviors off of relative bearing 

angle to other robots in the swarm, without 

using distance or global position of individual 

robots 

Fabbiano and 

Garin [46] 

 

Swarm robots are essentially 

acting as particles, as their 

size is small relative to the 

source 

Based simulations off of larger robots with 

non-holonomic kinematic constraints to 

verify that cooperation algorithms hold for 

non-particle robots. 

Xue 

Songdong 

[47] 

 

1.2.3 Working Definition of Swarm Robotics  
 

Given the wide variety of uses and definitions of Swarm Robotics, it is necessary to present a 

working definition of “swarm robotics.” In this thesis, a swarm is:  

1. Homogeneous: All robots within the swarm should have similar actuation and sensing 

capabilities to ensure interchangeability of individual robots. The robots can have an 

“identity,” whether this is through numbering or naming of robots.  
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2. Complex Group Behavior: Swarms should achieve behaviors that individual robots are 

not capable of by themselves.  

3. Simple, Superimposable, Universal Behaviors: Robot control is achieved through simple 

behaviors that can be superimposed or “stacked.” All robots within the swarm should be 

programmed to have the same set of behaviors.  

4. Local, Real-time information: Robots should only utilize information between local 

neighbors (and not global information), and the robots should only use real-time 

information in behavioral calculation, rather than storing past information in a buffer for 

more complex calculations.  

5. Constant-Speed Robots: Robots within the swarm should be set to move at a constant 

speed, with behavioral commands resulting in a bearing command, thus controlling the 

direction rather than the magnitude of the robot’s velocity.  

 

1.3 Major Contributions  
 

As discussed in previous sections, swarm control techniques have been utilized for a variety of 

“source-seeking” applications, though no previous research was found that made the explicit 

jump from source-seeking to adaptive navigation applications. The goal of this thesis is to make 

this jump, and achieve adaptive navigation primitives with swarm control techniques similar to 

those achieved using the cluster-space formulation. The three main contributions of this thesis 

are as follows:  

 

1. Development of a Simulation Environment in Matlab/Simulink  - An easy-to-use 

simulation environment was developed in Matlab/Simulink that allows for rapid testing 

and vetting of swarm behaviors. The simulator was developed so that it can easily 

interface with the testbed previously developed by RSL [35]. 

2. Demonstration of top-down specification of swarm behaviors - As was mentioned in 

section 1.1.3, swarm robotics often involves the use of “emergent” behaviors that result 

from a combination of simple “primitive” behaviors. This paper demonstrates a 

movement towards more distinctly specifying behaviors from a top-down perspective. 

This includes specification of design guidelines for achieving certain desired swarm-level 

behaviors.  

3. Demonstration of Adaptive Navigation Primitives - This thesis successfully demonstrates 

adaptive navigation primitives such as minima and maxima finding and contour finding 

and following. These AN primitives are vetted in simulation and have been validated on 

the RSL’s testbed.  

 

The development of adaptive navigation behaviors using swarm robotic techniques provides an 

alternative method to the cluster-space technique that may be more easily applicable in cases of 
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poor communication or high probability of individual mobile robot failures. The adaptive 

navigation techniques that are developed have the potential to more rapidly complete mapping 

applications and could also be used in disaster-relief scenarios.  

 

1.3.1 Research Collaboration  
 

This research began as class project for MECH 296A: Mobile Multi-robot Systems at Santa 

Clara University, where a simulation environment for swarm behaviors was initially developed 

in Matlab/Simulink, with collaboration between the author and classmates Jimmy Nguyen and 

Jason Fu. This simulator was built to observe the behavior of 10 swarm robots for swarm 

behaviors including Attract, Disperse, and Go-To Coordinates. The initial work associated with 

this thesis involved an expansion of the MECH 296A simulator and was done in collaboration 

with Santa Clara University graduate students Maximilian Reese and Shae Hart. Much of the 

initial expansion of the simulator was done by Max Reese, including extensive Matlab/Simulink 

programming to allow for a variable number of robots and easy manipulation of behavior laws 

across all robots. The conversion of the simulation environment to interface with the existing 

testbed environment was done by Shae Hart. The author: (1) developed a GUI to allow rapid 

variation and testing of simulation and experimentation parameters, (2) developed post-

processing plots and metrics to evaluate swarm performance, and (3) conducted the simulation 

and hardware experiments described in Chapter 4. Adaptive Navigation behaviors such as 

extrema finding and contour following were developed and refined in collaboration between all 3 

students.  
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2. Simulator Development  
 

One of the main foci of this research has been to develop a Swarm Adaptive Navigation 

Simulator (SANS) that easily allows for the composition, superposition, and testing of swarm-

level behaviors. Initial testing and behavior development is performed in SANS’ simulation 

mode. Once behaviors are fully vetted, they can be tested on hardware using SANS’ testbed 

mode. SANS is segmented into different tiers, which are discussed in the following section from 

the lowest level to the highest level.  

 

The simulator is structured in a way that it can be used to rapidly run and test different behaviors 

for different numbers of robots, lengths of simulations, types of behaviors, robot speeds, and 

scalar fields.  Additionally, as is discussed in section 2.6, new behaviors can be added to the 

simulator and rapidly tested and verified.  

 

A high-level view of the simulator control architecture is shown in Figure 14.  

 

 

Figure 14.  High-level schematic of the SCUSANS control architecture.  

 

At the highest level, each robot shares its current state, which can include position, orientation, 

and sensor value information. This current state is then fed as inputs to each individual robot at a 

behavior control level, where each behavior calculates a velocity vector based on the current 

swarm poses. These velocities are then aggregated and converted into a bearing angle that is 

given as a command to an omnibot with on-board velocity control. The conversion function is 
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the summation and weighting of the input velocity vectors, as well as the conversion of that 

information into a bearing command angle for the constant speed robot. The behaviors, 

conversion function, and constant-speed robots are discussed in the following sections. In the 

simulation environment, there is a necessary screening of incoming data to simulate the 

communication range of the individual robots within the swarm.  

 

2.1 Robot-Level: Omnibot  
 

The base level of SANS is the Omnibot, based off the Decabots used in the RSL’s mobile 

robotics testbed, shown in Figure 15. The Omnibots are equipped with three Omni-wheels that 

allow the robot to move instantaneously in any direction, while also allowing for rotation about 

the robot’s z axis. Each Omnibot is also equipped with an on-board sensor that can read the gray-

scale value of scalar field printouts that are laid out on the testbed. We also assume that each 

swarm robot has knowledge of its position, via either GPS, or in the case of the testbed, an 

OptitrackTM system, and that this data can be transmitted to other robots in the swarm. 

 

 

Figure 15. Omnibot used in the RSL’s Decabot Testbed System [35] 

 

For the SANS simulation mode, a model of these omnibots is used to calculate the robot-level 

position response to an input bearing command. For each robot, once the new position has been 

determined it is fed through a function that determines the robot’s “scalar value,” which is the 

value at that (x,y) location in the loaded scalar field. This simulates the Decabot’s reading of a 

grayscale value from its on-board sensors.  

 

In SANS, the holonomic omnibots are running at a constant speed. Robot control is therefore 

specified as a bearing angle, which is then converted to individual wheel velocities using the 

inverse Jacobian for the robot. The robot-level velocity control architecture is shown in Figure 

16. The commanded global bearing for robot i, Φ𝑖 , is converted into a velocity in the robot 

frame, 𝑉𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. For the omnibot in Figure 15, this velocity vector has translational components in 

the robot’s and x and y axes, and a rotational component about the robot’s z axis. Using the 
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robot’s inverse Jacobian, the robot velocity is converted into wheel velocities, 𝜔𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Each wheel 

is modeled as a first-order transfer function, and is represented by the blocks Wheel N. The 

output from each Wheel N is the dynamic response to the commanded wheel velocity. The 

combined dynamic response is multiplied by the Jacobian to convert back to robot-level 

velocities and is then transformed back to the velocity in the global frame. Integrating the global 

velocity over time yields the current pose of the robot, (xi , yi, θ𝑖).  

 

 

Figure 16.  Robot-Level Velocity Control for the Omnibot 

 

 

 

2.2 Command-Level: Behavior Commands   
 

Behavior command occurs at the level above robot speed control. At this level, the current robot 

position and sensor data from local neighbors yields a bearing angle command that is then sent as 

an input to the constant-speed robot discussed above. In this level, multiple behaviors are 

specified and can be switched on or off, depending on what behavior or combination of 

behaviors is desired. Each behavior is a function of the current “robot parameters,” which are the 

current position and sensor value readings of each robot in the swarm. Although global swarm 

data is available in the simulation environment, only local information may be used in order for 

the swarm to conform to our working definition in section 1.2.3. As such, data from robots that 

are not within communication range is filtered out in SANS. The individual behaviors are 

discussed in depth in Chapter 3.  

 

Figure 17. Behavior Level control  
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The control architecture for the behavior level is shown in Figure 17. The global swarm 

information, including robot position, orientation, and sensor value data (X, Y, S) is the input to 

each behavior. Though not shown in Figure 17, this data is filtered to ensure that only local 

information is used. Each behavior m for robot i yields a command velocity vector 𝑉𝑚𝑖
⃗⃗ ⃗⃗  ⃗ in the 

global frame. These command velocities are then converted to a bearing command in the global 

frame, 𝜙𝑖. The conversion function also allows for weighting of behaviors via a gain associated 

with each commanded velocity vector. Generally, behaviors were given equal weighting. 

However, for certain composite behaviors, such as flocking (Section 3.2.1), utilizing different 

weighting gains can yield different swarm-level behaviors.  

 

For the purposes of this swarm, all robots are assumed to be identical with the exception of 

individual robot numbers. This means that each robot has the same behaviors programmed in at 

the behavior command level, and all robots will have the same behaviors turned on or off. In 

Figure 17, the “Constant Speed Robot” block is a subsystem that consists of the functions 

depicted in Figure 16.  

 

2.3 Group Level: Swarm Architecture  
 

Above the behavior control level is the swarm architecture. At the swarm level, N identical, 

numbered robots can be specified, as shown in the block diagram below:  

 

 

Figure 18. Swarm-Level Architecture 

 

In the block diagram above, each block for robot i includes both the omnibot and the behavior 

commands discussed in the prior two sections. Thus, at the swarm level, the input is the current 
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“swarm state,” which includes information about all robot position and sensor data, and the 

output is the swarm pose at the next time step. This updated swarm pose is then fed back as the 

input for the robot behaviors of the next iteration. In the context of the simulator, it is important 

to note that while each robot receives data about every other robot, not all of this data is marked 

as “usable” by the robot. As will be discussed in the Behavior Algorithms section, we make the 

assumption that each robot has a finite “Communication Range” in which it would be able to 

communicate with other robots in the swarm. If robots fall outside of this communication range, 

although data is received, it is not used in behavior algorithms.  

 

2.4 User Level: User Interface  
 

The top level of the swarm simulator is the user interface, which allows for easy specification of 

robot behaviors, swarm size, and other factors. The GUI is shown in Figure 19 and is split into 

five main categories: behavior selection, simulation parameter selection, scalar field selection, 

mode selection, and robot selection. The robot selection is only necessary for the testbed, and not 

the simulator.  

 

  

Figure 19.  User Interface for specification of swarm behaviors and parameters 

 

The first category, labeled Select Behaviors, allows the user to specify which behaviors will be 

turned on for the swarm as whole. These relate to the switches shown in Figure 17 that detail 

switching of behaviors at the behavior command level.  

 

The second main category is simulation parameters, which has the following components:  
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- Number of Robots - user can specify up to 10 robots to be part of the swarm  

- Simulation Run Time - allows user to specify how long the simulation will run  

- Sensor Range - used in determining which robots are “in range” of each other.  

- Avoidance Range - used in the obstacle avoidance algorithm.  

- Desired Contour and Contour “Buffer” Zone - used in the Find/Follow contour behavior.  

- Robot Speed - Sets the speed of the constant speed robot at the Omnibot level.  

 

The sensor range, avoidance range, desired contour, and contour “buffer” zone are all discussed 

in more depth in Chapter 3.  

 

The third section of the GUI allows the user to specify which scalar field to use for adaptive 

navigation purposes. The user’s selection is loaded into the scalar field reading function at the 

Omnibot level that determines each robot’s “scalar value” when in simulation mode. Finally, the 

GUI allows the user to specify initial conditions in three ways. The first is by using “Default” 

conditions. Default conditions allow the user to specify the center and radius of a circle, and then 

spaces the individual robots equally along the circumference of that specified circle. Users can 

also set robot initial conditions “manually,” where the user can specify initial conditions via 

mouse click in a coordinate plane. Finally, the user can select “random” and have the robot initial 

conditions randomly dispersed throughout the scalar field domain.  

 

The final section of the GUI, Select Mode, allows users to easily transition from simulation to 

experimental validation on hardware. To use this mode, the user specifies in the Select Robots 

section which robots will be used for their experiment. Then the SANS backend handles 

importing and connecting all of the Simulink blocks necessary for communication with the 

OptiTrack system and the individual robots. During this transition, the SANS control architecture 

remains unchanged; the only two differences are the use of the OptiTrack system to determine 

robot pose instead of calculating poses from the Decabot models and the use of the Decabots’ 

onboard sensors to measure scalar values instead of using the provided scalar field function.  

 

2.5 Post-Processing and Visualization of Results  
 

In order to easily visualize the results of the simulation, there are 3 post processing outputs 

produced by the simulator. The first is a video that displays the robots’ positions over a color-

coded scalar field, as shown in Figure 20. In this video, each robot is represented as a colored 

point. The blue line running through the image represents the specified “desired contour value.”  
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Figure 20.  Freeze-frame of video of swarm behavior 

 

In addition to the video, a time history of the robot positions is superimposed on a contour map 

of the scalar field. In this view, each thick line represents a robot trajectory, while the thin lines 

represent contours of specific values. Figure 21 shows this functionality for a “Find Max” 

behavior (left) and for a “Follow Contour” behavior (right). The 3D view of the time history 

allows for easy visualization of performance of adaptive navigation behaviors.  

 

  

Figure 21. Post-processing plots of time history of robot positions  

 

Finally, for adaptive navigation behaviors (such as find min, find max, or follow contour) it can 

be beneficial to view the time history of the sensor values, as these readings are being used in the 

behavior control laws. Two examples are displayed below for “Find Max” and “Follow 

Contour.” These plots include not just the sensor values, but also information that can help show 

how effectively the swarm has achieved the desired behavior. For example, the Find Max Sensor 
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Value Time History indicates the known global max value, while the Follow Contour displays 

the desired contour value. This can be seen in Figure 22, with the left image showing a Sensor 

Value time history for a Find Max behavior, and the right image showing the time history for a 

Follow Contour behavior. 

 

 

Figure 22.  Post processing plots of time history of sensor value readings  

 

These post-processing plots help to give an indication of how well the system is achieving the 

desired swarm behavior. For example, the left plot of Figure 22 shows that the swarm 

successfully moves toward locations with higher scalar field values and settles around the known 

global maximum value. Around t=14 seconds, the swarm drifts from the global maximum but 

successfully re-locates the max by t=18 seconds.  

 

2.6 Adding Additional Behaviors  
 

The main goal of developing the simulator was to enable rapid testing of individual behaviors 

and combinations of behaviors. This was accomplished by creating an easily scalable system that 

allows for user-inputs for system variables (such as number of robots, robot speeds, and 

simulation times). Additionally, the user interface makes it easy to visualize which behaviors are 

being utilized. It should also be noted that, because the architecture is structured to allow 

individual behaviors to be stacked, new individual behaviors can be added relatively quickly. In 

order to add a new primitive or composite, it must be added in the following locations:  

- Simulink Behavior Block and Behavior Switch - The new behavior block must be added 

as a “Matlab Function” block in the Simulink file “Swarm_Robot_Base.” In order to 

make this behavior switchable, a switch must be added downstream, with a zero velocity 

vector set to the “switch off” position.  

time (s) time (s) 

S
ca

la
r1

V
a
lu

e
 

S
ca

la
r1

V
a
lu

e
 



23 

- Conversion Block - the new behavior must be added to the “SwarmSimSum” function, 

and a gain selected for the conversion function.  

- User Interface - In order to switch the behavior on or off in the user interface, the 

interface must be updated (using GUIDE) to have a checkbox associated with the 

behavior switch in “Swarm_Robot_Base.”  

- (Optional) plotRobotHistory - As discussed in 2.5, the simulator will produce a post-

processing video of the robots, displayed over the current scalar field. A separate post-

processing plot, if desired, (such as the time history of the robots, or the time histories of 

the sensor values) can be added in the plotRobotHistory sub-function of 

SwarmRobotTestSim. It should be noted that in order to do this, a new case must be 

added for the desired behavior, and the setup for this case can be done in the 

SCUSANS_GUI function.  

 

2.7 Testbed Environment  
 

After behaviors are developed and vetted in the simulation environment, they are tested and 

validated on hardware. The hardware used for these swarm robots is the Decabot indoor testbed 

system in Santa Clara University’s Robotics Systems Laboratory (RSL) presented in [35].  The 

Decabot system can utilize up to 10 of the omnibots shown in Figure 15. These robots are 

equipped with grayscale sensors that allow for the reading of the magnitude of a grayscale plot. 

Each robot sends its grayscale sensor value reading to the control computer via wireless 

connection. A sample grayscale plot with 3 omnibots is shown in Figure 23.  

 

 

Figure 23. Sample Grayscale Field with 3 Decabots 

 

Robot position and orientation is determined using an OptiTrack system. Each robot has 

uniquely spaced markers on it that are sensed by the OptiTrack system and are used to define a 
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rigid body. The position of each marker is sensed by the OptiTrack cameras, and the OptiTrack 

system then converts this raw marker position data to the position and orientation of each of the 

uniquely defined rigid bodies. The position and sensor value readings are then sent to the 

Simulink environment, where behavioral control laws are implemented. In this controlled testbed 

environment, the global swarm data is still available, so filtering of robot data to only utilize 

local neighbors’ information is still necessary. The architecture for the testbed is shown in   

Figure 24, adapted from [35]. A streaming server, DataTurbine, is used as an intermediary to 

send and receive data. Via this channel, Matlab/Simulink receives sensor data from the robots 

and position data from the OptiTrack system. The robot velocity commands are then calculated 

in Matlab and distributed to the individual robots. Despite using a centralized computer, the 

swarm control techniques are still a distributed technique due to the control architecture, 

presented in 2.2-2.3.  

 

Figure 24. Decabot Indoor Testbed Architecture [35]  
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3. Behavior Control Laws  
 

As discussed in section 2.2, robot control is achieved through behavior control, where current 

information about individual robots within the swarm is converted into a velocity command for 

the omnibots. In general, these behaviors can be split into two main categories of “Primitives” 

and “Composites.” Primitives are base-level calculations or behaviors, while composites are 

“stacks” of multiple primitives. Behaviors can stack in multiple ways, such as addition, 

multiplication (or scaling one primitive by another), or some combination of the two. The 

behavior descriptions below provide a schematic for the intended result of the behavior, a 

mathematical definition of how the behavior can be implemented, verification of the behavior in 

simulation, and validation of the behavior in the testbed. 

 

While these behaviors have been split into primitives and composites, it should be noted that 

some composite behaviors can also be labeled as “adaptive navigation primitives” to be 

consistent with [34]. For example, the Find Min/Find Max behavior is an adaptive navigation 

primitive, but is a swarm composite behavior consisting of the swarm primitives of attract and 

sensor value comparison.  

 

3.1 Supporting Calculations 
 

Swarm behaviors, whether primitives or composites, yield an output velocity vector that can be 

superimposed with other behaviors. In the process of computing these behaviors, there are two 

supporting calculations that do not yield output velocities in and of themselves. The first, out-of-

range determination, is a condition imposed in simulation to reflect hardware communication 

conditions. The second, sensor value comparison, can be utilized as a gain in later composite 

behaviors, but by itself does not result in a commanded velocity.  

 

3.1.1 Out of Range Determination  
 

The “out of range determination” is an artificial constraint imposed in simulation to mimic the 

communication range constraint of individual robots in the swarm. As was mentioned in section 

1.2.3, one of the defining characteristics of swarms is the fact that they are limited to local 

communication only. However, in simulation, all robot data is available to each other. Therefore, 

it is necessary to implement a constraint on inter-robot communication so that behaviors are only 

a function of robots that are within communication range of each other. The range determination 

is accomplished by calculating the distances, dij , from each robot i to all other robots j, by using 

the (x, y) position of each robot i (xi, yi) and robot j (xj , yj) as shown in Equation 1.  
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𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2  +  (𝑦𝑖 − 𝑦𝑗)2      Equation 1  

 

The distance from each robot i to j is then compared to the robots’ communication range, Rs. For 

all dij >Rs, the robot j is considered to be “out of range” of the robot i, and vice-versa. These out 

of range robots are then “discarded” and not used in the determination of the rest of robot i’s 

behavior controls.  

 

3.1.2 Sensor Value Comparison  
 

Sensor value comparison is another supporting calculation, as it does not explicitly affect the 

swarm behavior unless it is paired with another behavior. The sensor value of robot i is 

compared to all other robots j:  

 

𝛥𝑆𝑉𝑖𝑗 = 𝑆𝑉𝑖 − 𝑆𝑉𝑗        Equation 2  

 

For future behaviors, it is important to note that for this convention, positive values of 

𝛥𝑆𝑉𝑖𝑗  indicate that robot i  has the higher sensor value reading, while a negative value indicates 

that robot j has the higher reading.  

 

3.2 Swarm Primitive Behaviors  
 

The following behaviors are “primitive” behaviors that can be used by themselves, or stacked 

with other primitives in order to achieve more complex swarm behaviors.  

 

3.2.1 Obstacle Avoidance   
 

An obstacle avoidance algorithm is necessary in any mobile robotics application, and especially 

in mobile multi-robot systems, so that the individual robots will not collide with each other. 

Obstacle avoidance is particularly important in adaptive navigation scenarios where the terrain 

being explored may be unknown and external obstacles may be present.  

 

The obstacle avoidance algorithm constantly monitors the relative positions of the other robots, 

but does not put out an avoidance velocity component unless the avoidance range has been 

triggered. In contrast to the other behaviors in the simulator, the obstacle avoidance behavior has 

a variable velocity magnitude. In this way, the obstacle avoidance, when triggered, has the ability 
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to “override” and dominate other behaviors to insure that inter-robot and robot-object collisions 

are avoided. The magnitude of the avoidance velocity is:   

 

       𝑀𝑂𝑖𝑗 =
𝑅𝑎

4

𝑑𝑖𝑗
4  , 𝑑𝑖𝑗 < 𝑅𝑎     Equation 3 

𝑀𝑂𝑖𝑗 = 0 , 𝑑𝑖𝑗 > 𝑅𝑎 

 

where 𝑀𝑂𝑖𝑗  is the magnitude of the obstacle avoidance velocity for robot i  in the direction away 

from robot j. Ra  is the obstacle avoidance range. Chapter 4 discusses criteria for selecting an 

obstacle avoidance range, but the range must be at least ~2.5x the radius of the physical robots to 

ensure collision avoidance. The range must also be significantly smaller than the communication 

range so that robots do not repel each other out of communication range. The distance from robot 

i to robot j, dij , must also be calculated as described in Equation 1. The obstacle avoidance 

behavior is not individually validated, but is validated in combination with the other primitive 

behaviors described in sections 3.1.4-3.1.5. 

 

The magnitude of the obstacle avoidance velocity is determined using methods similar to those 

presented in [49]. This allows for strong repulsion in the vicinity of obstacles and other robots, 

while yielding negligible obstacle influence when robots are farther away from obstacles or other 

robots. The ratio of the avoidance range to the distance between robots is raised to the 4th power 

because this was found to yield effective collision avoidance without negatively affecting other 

swarm behaviors.  

 

3.2.2 Go-To Coordinates  
 

A Go-To Coordinates behavior was implemented for the swarm. In this behavior the user 

specifies the goal pose’s x and y coordinates and each robot attempts to travel to it. It should be 

noted that this is not necessarily a “swarm” behavior, as each robot can perform the behavior 

individually, without needing robot-to-robot communication. This can be seen by the fact that 

each robot’s velocity vector is a function of its own pose and the desired pose only:  

 

         𝑉𝑔𝑥𝑖 = 𝐾𝑔(𝑥𝑑𝑒𝑠 − 𝑥𝑖)     Equation 4 

𝑉𝑔𝑦𝑖 = 𝐾𝑔(𝑦𝑑𝑒𝑠 − 𝑦𝑖)       

 

where 𝑉𝑔𝑥𝑖  is the x-component and 𝑉𝑔𝑦𝑖  is the y-component of the velocity output vector for the 

go-to behavior that is fed into the conversion function at the behavior level (see section 2.2). Kg 
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is a scaling gain, nominally set to 1. Though the Go-To Coordinates behavior doesn’t utilize 

information from other robots, it is an important behavior to implement for multiple reasons. 

First, this simple behavior can be easily verified when moving from the simulator to the testbed. 

Second, it can be coupled with other primitives to achieve more complex composites. A general 

schematic for the go-to behavior is shown in Figure 25. The left image shows the robots at time 

t=0, while the right image shows the expected behavior once they have settled, with the robots 

reaching an equilibrium position that balances the go-to velocity vectors with the obstacle 

avoidance the robots feel against each other (see section 3.2.1 for details on obstacle avoidance).  

 

 

Figure 25: Schematic of go-to behavior for N=3 robots  

 

The go-to behavior is first verified in simulation and then validated using the testbed. To validate 

the effectiveness of the go-to behavior, the centroid of the swarm is calculated by taking the 

average position of the robots, and comparing this to desired goal location, as can be seen in 

Figure 26. The left figure indicates the go-to functionality in the simulation environment, and the 

figure on the right indicates that the behavior is repeated effectively in the experimental testbed. 

In the figures below, x’s indicate the initial robot positions, and 0’s indicate final robot positions. 

 

 

Figure 26: Behavior simulation (left) and validation in testbed (right) for go-to coordinates behavior. 



29 

3.2.3 Attract/Disperse  
 

The attract behavior causes robots within the swarm to move closer to other robots, while the 

disperse behavior causes them to spread out from each other. While these are useful 

functionalities on their own, it should also be noted that the attract behavior is an important part 

of the AN strategy as it allows for the swarm to stay within communication range of each other 

while performing the desired AN task. As will be shown in the results section, the attract 

function can dramatically improve the performance of AN behaviors.  

 

The first step of the attract behavior is a response based on the distance and bearing of a robot i 

relative to all other robots j:  

 

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2     Equation 5  

𝜙𝑖𝑗 = arctan (
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
)     Equation 6  

 

Where 𝑑𝑖𝑗 is the distance from robot i to robot j and 𝜙𝑖𝑗 is the bearing angle from robot i to robot 

j. The distance 𝑑𝑖𝑗 is used to determine which robots are in range, as discussed in section 3.1. 

The bearing angle is then used to determine a velocity in the direction of each in-range robot, 

with constant speed V:  

         

𝑣𝑎𝑥𝑖𝑗 = 𝑉𝑐𝑜𝑠(𝛷𝑖𝑗) ; 𝑣𝑎𝑦𝑖𝑗 = 𝑉𝑠𝑖𝑛(𝛷𝑖𝑗)      Equation 7     

 

where 𝑣𝑎𝑥𝑖𝑗  is the x-component and 𝑣𝑎𝑦𝑖𝑗  is the y-component of the attraction velocity of robot i 

with respect to j. The attract/disperse function is then a simple summation of the velocity 

components in (7) for all robots that lie within the designated sensor range 𝑅𝑠, or:  

 

For all robots j s.t. 𝑑𝑖𝑗 < 𝑅𝑠: 𝑉𝑎𝑥 = ∑ 𝑣𝑎𝑥𝑖𝑗
𝑁
𝑗=1  ; 𝑉𝑎𝑦 = ∑ 𝑣𝑎𝑦𝑖𝑗

𝑁
𝑗=1    Equation 8  

 

This behavior is illustrated in Figure 27. In this 5-robot configuration, note that all robots are 

within range of each other with the exception of the leftmost robots. Therefore the aggregate 

“attraction” for the bottom left robot is based off the information from the 3 robots to its right, 

and not the robot directly above it. 
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Figure 27. Schematic of Attract/Disperse behavior for N=5 robots  

 

The disperse behavior can be thought of as the direct opposite of the attract function. The same 

aggregate vector in Equation 7 is calculated, with the disperse behavior simply going in the 

negative sense of that vector.  

 

The attract behavior was first verified in simulation and validated in the testbed for varying 

obstacle avoidance and sensor range values. Figure 28 indicates the position history for the 

robots when using an obstacle avoidance range of 1 unit (left) and 0.5 units (right). In both cases, 

the robots, as a result of the selected behaviors, achieve a formation that minimizes the distance 

between themselves and all other robots.  

 

Figure 28. Simulation of attract with obstacle avoidance range of 1 m (left) and 0.5 m (right)  

 

After vetting the attract behavior in simulation, it could be validated using the experimental 

testbed, the time histories of which are shown in Figure 29. 
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Figure 29. Testbed Validation of Attract Behavior  

 

The testbed results show two key results. The first, as seen in the left image of Figure 29, is that 

the initial conditions can have a dramatic effect on individual robot behaviors, as is seen in the 

case of robot 3. While robot 3 still successfully completes the attract behavior, it does so by 

“orbiting” robots 4 and 5, rather than having the roughly linear behavior observed in the 

simulation. The second image on the right indicates a “clumping” that happens when the robots 

are out of communication range of each other. Because robots 1 and 2 are out of range of 3, 4, 

and 5, they separately complete the attract behavior without use of the other robots’ position 

information.  

 

The “opposite” behavior of the attract behavior is the disperse behavior, which is similarly tested 

and verified, as shown in Figure 30.  

 

 

Figure 30: Simulation (left) and testbed validation (right) of disperse behavior  
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In both cases, the robots move away from each other until they are all out of range of each other, 

at which point they “wander” in the negative 𝑥 direction. As seen in the figures, the testbed 

validation closely matches the simulated behaviors.  

 

3.3 Swarm Composite Behaviors  
 

Composite behaviors are formed by combining multiple primitives together. In most cases, this 

involves simple multiplication or addition, or a combination of the two. The main exception to 

this rule is the case of Out-of-Range Determination, which is implemented only in simulation to 

conform to the swarm definition presented in 1.2.3. Though not listed in the formulation of any 

of the composites, it should be noted that this is used for all behaviors, so that only agents that 

are “in-range” are used when calculating the behaviors. Obstacle Avoidance is also assumed to 

be “turned on” for all behaviors, and is added to the final resultant velocity of the behavior 

control laws.  

 

3.3.1 Flocking  
 

The natural response of the swarm in go-to-coordinates mode is to attract to a certain point and 

space out around that point based on the robot obstacle avoidance range. However, for some 

applications it may be desired that the swarm group together and travel as a pack rather than 

meeting at the specified coordinates. For such an application, the robot bearing can be 

commanded as a sum of the attract and go-to behaviors, as shown in equation 9: 

 

𝑉𝑓𝑙𝑖 = 𝐾𝑎𝑉𝑎𝑖 + 𝐾𝑔𝑉𝑔𝑖      Equation 9  

 

where K represents a gain that can be scaled depending on desired weighting of behaviors. For 

example, a large Ka would result in the swarm grouping together and then moving towards the 

goal coordinates, while a smaller Ka would lead to a more gradual convergence. A simple 

schematic for flocking is shown in Figure 31, and compared to the primitive go-to coordinates.  

 

Rather than going straight to the desired coordinates as shown in Figure 25, the flocking 

behavior is designed to cause the robots to group together and then head towards the goal 

coordinates, or to do so simultaneously. The preliminary simulation verification of this is shown 

in Figure 32.  
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Figure 31. Schematic of Flocking behavior for varying weighting of attract behavior  

 

 

Figure 32. Simulation verification of Flocking behavior for varying weighting of Attract  

 

The image on the left is a “pure” go-to primitive, while the middle image has added a weak 

attract (Ka= 0.5) to the behavior composite. The paths of robots 1 and 3 are influenced by robot 

2’s location, as they are attracted back to the group rather than directly to the goal coordinates. 

This is seen even more clearly when using a strong attract (Ka=1.5) as shown in the right image.  

 

3.3.2 Source-Seeking (Find Min / Find Max) 
 

As was discussed in the background on adaptive navigation (section 1.2), it is often desired to 

find the local or global extrema (minima or maxima) within a scalar field. In SANS, this is 



34 

accomplished by implementing a source-seeking composite behavior. The source-seeking 

composite behavior is based off differential sensing, and implicitly utilizes an approximation of 

the local gradient sensed by the swarm. The goal of the source-seeking composite behavior is to 

compare robot i’s sensor value to the sensor values of all other in-range robots j, and then move 

toward the robots with higher values (for find max) or lower values (for find min). To 

accomplish this, the attract vector (equation 7) is scaled by the sensor value comparison scalar 

(equation 2), yielding the following behavioral composite:  

 

𝑣𝑓𝑚𝑖𝑗 = 𝛥𝑆𝑉𝑖𝑗 ∗ 𝑣𝑎𝑖𝑗     Equation 10  

 

where 𝑣𝑓𝑚𝑖𝑗  is the resultant source seeking velocity for the robot pair ij, 𝛥𝑆𝑉𝑖𝑗 is the sensor value 

comparison as defined in equation 2, and 𝑣𝑎𝑖𝑗 is the attract velocity for the robot pair ij as defined 

in equation 7. The source-seeking velocity is calculated from robot i to all other robots j, and 

then summed as shown in equation 8. A visual schematic for this is shown in Figure 33.  

 

 

Figure 33. Schematic of Find Min/Find Max behavior for N=3 Robots  

 

Figure 33 depicts a source-seeking behavior calculation for a single time-step of a simulation. 

Robot 1 (bottom left) senses a scalar field value of 1, Robot 2 (bottom right) a value of 2, and 

Robot 3 (top center) a value of 3. The nominal attract vectors are of equal magnitude and show 

how the robots would be drawn together without scaling, while the scaled attract vectors show 

how this is scaled by the sensor value difference. The find max aggregate velocity 𝑉𝑓𝑖𝑗  is then the 

sum of the individual scaled attract vectors. This figure highlights two key characteristics of the 
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source finding algorithm. The first is that all robots are using the same behavior. This means that 

while the robots with smaller sensed scalar field readings are drawn towards the robots with 

higher readings, the robots with higher readings are equally “pushed” away from the robots with 

lower readings. The second is that the find min behavior is the same as the find max behavior, 

with the exception being the commanded velocity 𝑉𝑓𝑚𝑖𝑗 is in the negative sense of the vector. 

This again relates to the formulation of the sensor-value comparison primitive (Equation 2).  

 

The find min and find max are both verified in simulation, as seen in Figures 34 and 35. The 

figure on the left indicates the find min behavior for 3 robots on a “single sink” scalar field- there 

is only one minimum in the scalar field. The time history of the sensor values is shown to the 

right, and indicates that the robot sensor values move down gradient towards the minimum. The 

same behavior is run for find max on a “single source” behavior, and the simulation results are 

shown in Figure 35.  

 

   

Figure 34. Simulation: Find Min position (left) and sensor value history (right) for single sink  

 

   

Figure 35. Simulation: Find Max position (left) and sensor value history (right) for single source  
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The find min behavior has been validated on the testbed with N=3 robots, shown in Figure 36. 

The left image shows the robots successfully moving down the gradient, while the right image 

shows the sensor value readings of the individual robots approaching the known global 

minimum.  

 

   

Figure 36. Testbed validation of find min behavior  

 

Figures 34-36 demonstrate the functionality of the find min and find max composite behaviors, 

both in simulation and on hardware. They also indicate the steady-state behavior of the extrema 

finding behavior, particularly in the right image of Figure 35. While robots do move up the 

gradient, they eventually reach a point where they lose gradient definition due to all being 

situated on the same contour. Approaches to improve this steady-state behavior are discussed in 

Chapter 4, which include increasing the number of robots and stacking of additional behaviors.  

 

3.3.3 Find/Follow Contour  
 

During AN, it may be desired to find and follow a contour in the scalar field. For example, 

tracing and mapping the contour of a pollutant may indicate how far a pollutant has spread, and 

can therefore indicate areas that may be safe or unsafe for human occupation. With this in mind, 

a composite behavior to find and follow a contour was developed.  

 

The contour finding and following composite behavior is a two-step process. The first step is for 

robot i to self-identify whether it is on the contour, above the contour, or below the contour. This 

is determined by comparing the robot’s sensed scalar field value to the desired contour value, 

𝑆𝑉𝑑𝑒𝑠 . Each robot first checks if it is “on the contour.” This could be done by simply checking if 

the robot’s sensed scalar field value is equal to 𝑆𝑉𝑑𝑒𝑠 . However, this would require that the 

sensor value exactly match the desired contour value. Therefore, a “buffer range,” 𝑆𝑉𝑏𝑢𝑓𝑓 , is 
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established. The robot then checks if it is on the contour by calculating its sensed scalar field 

value in reference to the buffered contour value. Namely, robot i is designated as on the contour 

if:  

 

𝑆𝑉𝑖  < 𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓  and  𝑆𝑉𝑖 > 𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓    Equation 11 

 

If the robot is not on the contour, then the robot must determine if it is above the contour or 

below the contour. If the robot’s sensed scalar field value is greater than 𝑆𝑉𝑑𝑒𝑠 , then the robot is 

above the contour, and if the robot’s sensed scalar field value is less than 𝑆𝑉𝑑𝑒𝑠 , then the robot is 

below the contour. At the end of this process, robot i has successfully established its “contour 

state” as either on contour, below contour, or above contour. Once robot i’s contour state has 

been established, the robot moves in the direction of the contour, or along the contour if it is on 

the contour. The formulation of the commanded velocity is summarized in Table 3. It should be 

noted that for Vfci  for the “On Contour” contour state in Table 3, the formulation indicates a 

rotation of vector Vfi  by 
𝜋

2
 radians. 

 

Table 3. Contour State Determination  

Robot i  Sensor Value Contour State Behavior Formulation 

 𝑆𝑉𝑖 > 𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓  Above Contour  Find Min 𝑉𝑓𝑐𝑖 = −𝑉𝑓𝑚𝑖 

 𝑆𝑉𝑖 < 𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓  Below Contour Find Max  𝑉𝑓𝑐𝑖 = 𝑉𝑓𝑚𝑖 

(𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓) < 𝑆𝑉𝑖 < (𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓) On Contour  Follow 

Contour 
𝑉𝑓𝑐𝑖 = 𝑉𝑓𝑖 ±  𝜋/2 

 

 

In the above equations, 𝑣𝑓𝑐𝑖  is output velocity for robot i, and  𝑉𝑓𝑖  is the summation source-

seeking velocity as defined in equation 8. As was discussed in section 3.2.2, the positive sense of 

𝑉𝑓𝑖  results in gradient ascent, or find max behavior, while the negative sense results in gradient 

descent, or find min behavior. In order to move along the contour, it is not desired to move up or 

down gradient, but perpendicular to the gradient. Therefore to move along the desired contour, it 

is required to move perpendicular to the gradient direction approximated by 𝑉𝑓𝑖 , which is 

accomplished by adding ±
𝜋

2
 radians to the commanded bearing angle. The choice of positive or 

negative ±
𝜋

2
  will affect the direction of encirclement of the contour, with positive relating to 
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counterclockwise travel about the contour, and negative relating to clockwise travel. A simplified 

schematic in Figure 37 depicts the contour finding/following composite behavior for 3 robots.  

 

 

Figure 37. Schematic of Find Contour Behavior  

 

In the schematic of Figure 37, there are again 3 robots with their sensor values indicated, similar 

to Figure 33. In the given scenario, robot 2’s sensor value lies within the range of the buffered 

desired contour, robot 3 is above the contour, and robot 1 is below the contour. The circled 

vector indicates the final velocity that each robot will use. Robot 3 is above the contour and 

therefore uses a find min vector, robot 1 is below the contour and uses find max, and robot 2 is 

within the contour bounds and uses the follow contour vector. As with other behaviors, the 

contour behavior was simulated and validated in the testbed, as shown in Figures 38 and 39.  

 

       

Figure 38.  Simulation position (left) and sensor value history (right) for Contour Following  
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Figure 39. Testbed Validation position (left) and sensor value history (right), Contour Following  

 

In both simulation and the testbed, the swarm successfully follows the contour, and traces a full 

circle that maps the contour value. The testbed experiment in particular begins to indicate a few 

design parameters for use of the contour following, namely:  

 

1. Contour buffers- the contour buffers must be large enough to allow for the variation in 

the sensor value signal due to noise.  

2. Avoidance Range- The avoidance range must be balanced with the distance over which 

the contour buffer occurs. For example, if an avoidance range of 5 m is set, the dictated 

contour buffer should occur over a distance of greater than 5 m, or the avoidance will 

override the contour behavior before the robots can converge on the contour. 

3. Robot Speed - The robot speeds must be set low enough that they do not overshoot the 

desired contour value before they can “continue on” along the contour that they have 

found.  

 

These preliminary design parameters are tested and expanded in Chapter 4.  
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4. Experimentation with Adaptive Navigation Behaviors 
 

Chapter 3 demonstrated the functionality of primitive and composite behaviors in simulation and 

confirmed that the simulated behaviors were reproducible when used on the Decabot indoor 

testbed system. The intent of Chapter 4 is to describe the effects of changing design parameters 

and to apply the behaviors to a more complicated scalar field. The scalar field used in this section 

is shown in Figure 40, adapted from [34]. This scalar field is desirable for experimenting with 

adaptive navigation behaviors because it has multiple extrema, as well as ridges and trenches.  

 
Figure 40. Scalar Field used for experimentation of behaviors [34] 

 

4.1 Extrema Finding  
 

Chapter 3.2.2 indicated the capability of the swarm to move up or down a gradient based on 

local, real-time scalar field readings. As was seen in Figure 34, it is possible that the swarm 

robots may be arranged such that they are on a contour, and therefore all have the same scalar 

field reading. This scenario yields swarm stagnation, and the swarm may not reach the scalar 

field extrema in this case. For this reason, Extrema Finding entails stacking the Find Min/Find 

Max behavior with the Attract behavior. This serves two purposes. First, in the case of the robots 

aligning on a contour, the attraction force would cause them to “dither” off the contour, which 

allows for differential readings. Second, the attract function serves as an implicit low degree of 

freedom formation control method to keep the swarm within communication range of each other.  
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In order to quantitatively measure the effects of changing parameters on the swarm’s overall 

extrema finding capability, performance metrics are introduced that are similar, but not identical, 

to those used to characterize 2nd-Order system dynamics.   

 

- Rise Time - the rise time for the swarm is defined as the amount of time it takes the 

average sensor value reading of the swarm to reach 90% of the extreme value. For 

example, if the initial average reading is 5, and the known maximum is 70, then the rise 

time is the time at which the average sensor value first reaches 0.9*(70-5)  + 5 = 63.5. 

The rise time gives an indication of the speed of response of the swarm.  

 

- Steady-State Error - The steady-state error is found as the difference between the known 

global extreme value and the swarm’s average steady-state sensor value. The steady-state 

error indicates how well the swarm has found the extreme value.  

 

These quantitative metrics are used in addition to qualitative analysis of the system response to 

show how extrema finding is affected by design parameters such as number of robots in the 

swarm, obstacle avoidance range, and variation of initial conditions. Because rise time and 

steady-state error may be dependent on the size of the feature and how far the swarm must travel 

to reach the feature, they are more useful when comparing small changes to a single design 

parameter while keeping the other design parameters constant. By keeping the other parameters 

constant, the rise time can indicate how efficiently the swarm is moving towards the extrema, or 

how direct its path is.  

 

While these performance metrics are limited, they help quantify the effect of changing design 

parameters to achieve top-down specification of swarm parameters. Further possible 

performance metrics are presented in Chapter 5. To the author’s knowledge, this is the first 

published presentation of quantitative metrics for swarm performance.  

 

4.1.1 Effect of Number of Robots on Extrema Finding  
 

The extrema finding behavior outlined in 4.1 was tested for both maxima and minima finding on 

the scalar field presented in Figure 40. As discussed in Chapter 1, one of the main defining 

characteristics of swarm robotics is that the swarm utilizes a large number of robots, and that the 

overall swarm behavior is improved with an increased number of individual swarm robots. For 

extrema finding, performance is improved for an increasing number of swarm robots because the 

increased number of robots yields a better estimation of the local gradient. This is demonstrated 

in simulation by scaling the number of robots from 3 to 10 and observing the behavior of the 

swarm. All other parameters were held constant, as shown in Table 4. The initial conditions of 
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(R,x,y) indicate the swarm robots are initially placed such that they are evenly spaced along the 

circumference of a circle with radius R centered at (x, y).  

 

Table 4. Simulation Parameters for Scaling Number of Robots for Extrema Finding  

# of 

Robots  

Simulation 

Time(s) 

Sensor 

Range(m)  

Avoidance 

Range(m) 

Robot Speed 

(m/s) 

Initial 

Conditions 

N 20  150 10 45 (5,5,5) 

 

Qualitatively, it can be shown that the swarm extrema finding performance improves as the 

number of robots increases. For example, Figures 41 and 42 show the swarm response for 

Maxima Finding with 3 robots and 10 robots, respectively. During the given simulation interval, 

the larger swarm in Figure 41 locates the maximum faster and more effectively, which can be 

seen in the position history, as well as the fact that all robots in the swarm have a higher sensor 

value reading than at the end of the simulation for 3 robots.  

 

 
Figure 41. Max Finding for N=3 Robots  

 
Figure 42. Max Finding for N=10 Robots  

 

The same phenomenon can also be seen for Minima finding, shown in Figures 43 and 44.  
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Figure 43. Min Finding for N=3 Robots  

 

 
Figure 44. Min Finding for N=10 Robots  

 

The experimental results for increasing number of robots for maximum finding and minimum 

finding are shown in Table 5 and 6. Time histories for position and sensor values are shown in 

the indicated figures, with numbers starting with an A indicating figures in Appendix A.  

 

Table 5. Quantitative Results for Max finding with increasing number of robots  

Figure  Number of Robots  Rise Time (s) Steady-State Error 

41 3 19.5  6.42 

A1  4 14.17 3.54 

A2 5 18.59 6.31 

A3 6 14.27 5.42 

A4 7 13.57 6.22 

42 10 13.21 3.95 
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Table 6. Quantitative Results for Min finding with increasing number of robots 

Figure  Number of Robots  Rise Time (s) Steady-State Error 

43 3 14.87 0.89 

A5 4 19.8 2.02 

A6 5 12.96 0.67 

A7 6 N/A N/A 

A8 7 12.26 0.51 

44 10 12.16 3.1 

 

As can been seen in Figure A7, the find min for N=6 robots and the parameters given in Table 4 

does not converge to the global minimum during the simulation time. This can be attributed to 

the obstacle avoidance causing the robot’s convergence to slow down. The rest of the data in 

Tables 5 and 6 indicates that the speed of response of the swarm increases as the number of 

robots increases, but that the steady state error does not necessarily decrease as the number of 

robots in the swarm increases. As was mentioned above, the speed of response is improved with 

more robots due to the better definition of the local gradient estimation. This better definition 

means that each individual robot’s commanded bearing is closer to the location of the extrema 

than it is with less robots. The lack of improvement of steady-state response can be accounted for 

by the fact that the robots are limited in their ability to locate themselves directly on the location 

of the extrema due to their avoidance of other robots. This can be seen in Figure 44 for N=10 

robots. The final position of the swarm is roughly centered on a local minimum, but the obstacle 

avoidance prevents individual robots from positioning themselves directly on the extremum.  

 

4.1.2 Effect of Obstacle Avoidance Range on Extrema Finding  
 

In addition to varying the number of robots in the swarm, the obstacle avoidance range of the 

robots can also be varied as a form of implicit formation control. The lower limit of the obstacle 

avoidance range is a function of the individual robot sizes and dynamics and must be sufficiently 

high to avoid robot collisions. The upper limit of the obstacle avoidance must be lower than the 

communication range of the robots to ensure that they do not repel to a point where they cannot 

communicate with each other. Simulations were run to show the effect of the obstacle avoidance 

range on the swarm steady-state error, using the parameters defined in Table 7.  

 

Table 7. Simulation Parameters for varying Obstacle Avoidance Range for Extrema Finding  

# of Robots  Sim Time(s) Sensor Range (m) Avoid Range(m) Robot Speed(m/s)  I.C. 

5 30 150 variable 45 (5,5,5) 
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The obstacle avoidance range was varied from 20m to 2m, with the results summarized in Tables 

8 and 9. Figures 45 and 46 show the time histories for the two extremes of this range for 

maximum finding, and Figures 47 and 48 indicate the swarm response for minimum finding. 

Qualitatively, comparing Figures 45 and 46 shows that increased obstacle avoidance range does 

not allow the robots to group as tightly around the maxima, and as a result the individual robot 

sensor value readings are farther away from the known maximum. Figure 46 also indicates one 

of the shortcomings of using low degree of freedom formation control. A swarm formation with 

one robot on the extremum and the other four surrounding it would more effectively locate the 

extremum. The use of a low degree of freedom formation controller does not allow for this type 

of formation specification, and can yield final formations similar to that seen in Figure 46.  

 

 
Figure 45. Max Finding for Obstacle Avoidance Range = 2m  

 

 
Figure 46. Max Finding for Obstacle Avoidance Range =20m  

 

Similarly, comparing the swarm behavior for minima finding shows the same result of greater 

steady-state error for higher obstacle avoidance. Despite these changes in system performance, 
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the swarm is able to locate the extrema for the variety of obstacle avoidance ranges presented in 

Tables 8 and 9.   

 

 
Figure 47. Min Finding for Obstacle Avoidance Range = 2m  

 

 
Figure 48. Min Finding for Obstacle Avoidance Range =20m  

 

 

Table 8. Quantitative Results for Max finding with increasing obstacle avoidance range  

Figure  Obstacle Avoidance Range (m) Rise Time (s) Steady-State Error 

45 2 15.85  0.42 

A9 5 13.75 1.15 

A10 10 18.59 6.31 

A11 15 19.26 2.21 

46 20 21.27 4.72 
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Table 9. Quantitative Results for Min finding with increasing obstacle avoidance range  

Figure  Obstacle Avoidance Range (m) Rise Time (s) Steady-State Error 

47 2 9.732 0.38 

A12  5 13.34 0.52 

A13 10 15.21 1.18 

A14 15 13.95 1.31 

48 20 15.35 1.99 

 

As was expected, the steady-state error of the system increased as the obstacle avoidance range 

increased. In addition, the swarm response was slowed, as seen by the rise time increasing as the 

obstacle range increased, because the obstacle avoidance acts as another “constraint” on the 

swarm robot motions that prevents them from moving directly toward the extrema location. As a 

result, lowering the obstacle avoidance range can help the swarm more precisely locate the 

extrema location, but a range that is too low may cause lack of gradient definition and collisions.  

 

4.1.3 Repeatability of Extrema Finding for Varying Initial Conditions  
 

Because AN involves moving to an unknown goal location, it was necessary to validate that the 

swarm could locate extrema from a variety of initial locations in the field. In addition, placing 

robots in varying locations with respect to each other (in opposition to the default spacing along 

the circumference of a circle) demonstrated that the swarm was capable of locating extrema for 

different starting locations and relative orientations in the scalar field. To achieve non-circular 

placing in the scalar field, initial conditions were selected via the manual selection rather than by 

using the default initial conditions. Figures 49 and 50 below show the position history for two 

such initial conditions.  

 

Figure 49. Max Finding for non-circular initial conditions in bottom left quadrant  
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Figure 50. Max Finding for non-circular initial conditions in bottom right quadrant 

 

Figure 49 shows that the swarm will converge to a local maximum, but this is not necessarily the 

global maximum value. Despite this, the swarm history in Figure 49 shows the successful 

climbing of the gradient to the local maxima for a different initial condition than was used in 

sections 4.1.1-4.1.2. In addition, comparing the swarm behaviors in Figures 49 and 50 reveals 

that they exhibit the same swarm-level behavior. Both swarms start up the steepest path of the 

gradient until they reach a ridge. The swarms then oscillate about the ridge while progressing up 

the gradient to their respective maxima. This behavior is expected from the design of the 

extrema-finding behaviors, which causes the individual robots to move in the direction of the 

gradient. Including the trials shown in Figures 49 and 50, a total of 10 trials were run for varying 

initial conditions, summarized in Table 10. The “random” initial condition selection places the 

robots randomly in the field, as shown in Figure 51. For the purposes of these tests, the 

communication range was set to the total field width (600m) so that robots are initially within 

communication range of each other.  

 

 

Figure 51. Max Finding for Random Initial Conditions 
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Table 10. Simulation Parameters for varying initial Conditions, Maxima Finding  

Figure # of 

Robots  

Simulation 

Time (s) 

Sensor 

Range(m) 

Avoidance 

Range(m) 

Robot 

Speed(m/s)  

Initial 

Conditions 

A13 5 60 600 10 45 (5,5,5) 

49 5 60 600 10 45 Manual 

50 5 60 600 10 45 Manual 

A27 5 60 600 10 45 (100,5,5) 

A28 5 60 600 10 45 (100,350,350) 

51 5 60 600 10 45 Random 

A29  5 60 600 10 45 Random 

A30 5 60 600 10 45 Random 

A31 5 60 600 10 45 Random 

A32 5 60 600 10 45 Random 

 

For all conditions in Table 10, the swarm successfully located a maximum, as is visible in the 

position and sensor value histories presented in each accompanying figure. Of particular interest 

is the swarm’s success for random initial conditions, such as in Figure 51. The successful 

location of the maximum from random initial conditions indicates that the extrema finding 

behavior is not dependent on specific initial conditions. Additionally, using the attract behavior 

in conjunction with extrema finding helps the swarm locate the maximum despite an initial 

distribution that is large relative to the dominant spatial wavelength of the scalar field. Chapter 5 

will discuss additional work that could be done to further guarantee the functionality of the 

swarm to varying initial conditions.  

 

4.2 Contour Finding and Following  
 

Contour finding and following is an important adaptive navigation behavior for applications 

where it is desired to map how far a pollutant has spread, or to maintain a constant desired value. 

Whereas the two main design criteria for swarm performance in extrema finding are the number 

of robots and the obstacle avoidance range, contour finding has additional design criteria in the 

form of desired contour and contour buffer range. The effect of varying each of these is shown in 

the subsequent sections, and the contour finding behavior is shown to be robust to varying initial 
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conditions and desired contours. As in 4.1, a set of performance evaluation metrics are 

introduced, namely:  

 

 Time to Contour - The time to contour is the time it takes for all robots to reach the 

desired contour value, plus or minus the contour buffer. This gives an indication of the 

speed of response of the swarm, with lower times indicating faster responses. As with the 

Rise Time presented in 4.1, this can help indicate how directly the swarm moves to the 

contour for swarms starting from the same initial conditions.  

 Percent of time in Contour Buffer- The percentage of time, after initially finding the 

contour, that the robots are within the contour buffer range. This is a measure of the 

ability of the swarm to closely follow the contour, with higher percentages indicating 

more precise following of the contour. The percent of time in the contour buffer is 

determined by first taking the amount of time that each robot is within the buffer after 

initially reaching the contour, and then taking the average of each of these percentages 

for all robots in the swarm.  

 Distance travelled along contour- Expressed as a percent of the contour length, the 

distance travelled along the contour gives an indication of how quickly the swarm is 

progressing along the contour. A larger distance indicates that the swarm has progressed 

farther along the contour, which could indicate more efficient mapping of the contour in a 

real-world scenario.  
 

4.2.1 Effect of Number of Robots on Contour Finding and Following  
 

As discussed in section 3.2.3, the contour finding and following behavior utilizes the gradient 

estimation that is used in extrema finding, and then goes up, down, or perpendicular to the 

gradient depending on the robot’s current sensor value reading. As a result, it is expected that a 

greater number of robots will result in better swarm performance, because the gradient 

estimation is improved with more robots. This was tested in simulation, using the following 

simulation parameters:  

 

Table 11. Simulation Parameters for Contour Following with varying number of robots  

# of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C. 

N 60 150 5 -15 1 (5.5.5) 

 

The result of increasing the number of robots can be seen qualitatively by comparing the position 

and sensor value history for N=3 robots in Figure 52 to the position and sensor value history for 

N=10 robots in Figure 53. In general, the time to reach the contour is decreased by using more 

robots, and the distance along the contour is increased. The percent of time on the contour is 

roughly constant. The quantitative results of the simulations are summarized in Table 12 below, 

using the performance metrics outlined in 4.2.  
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Figure 52. Contour Following and Attract for N=3 robots  

 

 
Figure 53. Contour Following and Attract for N=10 robots  

 

Table 12. Quantitative Results for Contour Following with increasing number of robots  

Figure Number of 

Robots 

Time to Contour (s) % of time on 

Contour 

Distance along 

Contour 

52 3 6.51 73.5 1.47 

A15 4 7.012 71.3 1.56 

A16 5 5.71 76.1 1.54 

A17 6 5.65 74.6 1.67 

A18 7 5.41 68.2 1.57 

53 10 4.62 72.4 1.72 
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As was expected, the time to reach the contour is decreased when using a greater number of 

robots, and the distance travelled along the contour is also increased for a larger number of 

robots. This is due to the better gradient estimation from a larger number of robots. The 

percentage of time within the contour buffer is largely unchanged for increasing numbers of 

robots. This metric does not improve for larger numbers of robots because the obstacle 

avoidance “pushes” the individual robots out of the contour buffer range, similar to the 

phenomenon seen in extrema finding. This again indicates that further refined metrics may be 

necessary, and will be discussed in Chapter 5.  

 

4.2.2 Effect of Obstacle Avoidance Range on Contour Finding and Following  
 

To observe the effect of the obstacle avoidance range on contour finding and following, the 

obstacle avoidance range was varied while other simulation parameters were kept constant. The 

simulation parameters used are shown in Table 13 below:  

 

Table 13. Simulation Parameters for Contour Following with varying obstacle avoidance  

# of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C. 

5 45 150 variable -15 1 (5.5.5) 

 

The position and sensor value history for an obstacle avoidance range of 2 units are shown in 

Figure 54, and the history for an obstacle avoidance range of 20 units is shown in Figure 55. 

Figure 55 clearly illustrates that the larger obstacle avoidance range can cause decreased 

performance in the swarm, but that the swarm is still able to roughly follow the contour. The 

quantitative results are summarized in Table 14.  

 

 
Figure 54. Contour Following for Obstacle Avoidance range of 2 m  
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Figure 55. Contour Following for Obstacle Avoidance range of 20 m  

 

Table 14. Quantitative Results for Contour Following with increasing Avoidance Range 

Figure Avoidance Range Time to Contour(s) % of time on Contour Distance along Contour 

54 2 8.82 75.2 1.31 

A19 5 5.71 76.1 1.08 

A20 10 4.81 69.4 0.92 

A21 15 5.01 64.7 0.71 

55 20 5.22 59.7 0.95 

 

Increasing the obstacle avoidance range causes the swarm to follow the contour less precisely, 

but also increases the speed of response, as it allows the swarm to initially find the contour more 

quickly. The larger obstacle avoidance range causes the swarm to spread out more, which in 

turns yields gradient information over a larger area and can improve the quality of the swarm’s 

gradient estimation. However, if obstacle avoidance range is larger than the distance over which 

the contour buffer occurs, as can happen in particularly steep gradients, the robots continually 

repel each other outside of the contour buffer range as seen in Figure 55. This indicates that it 

may be advantageous to have a varying obstacle avoidance size depending on whether the swarm 

is finding or following a contour. This will be further discussed in Chapter 5.  

 

4.2.3 Effect of Contour Buffer Size on Contour Finding and Following  
 

The contour buffer, as defined in 3.2.3, is the sensor value range for which the individual robots 

will be considered “on the contour.” As such, a smaller contour buffer can be used for more 

precise following of the contour, while a larger contour buffer can be used if a rougher 

estimation is acceptable. Table 15 details the simulation parameters used to test the effect of the 

contour buffer range on the swarm performance.  
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Table 15. Simulation Parameters for Contour Following with varying contour buffer 

# of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C. 

5 45 150 2 40 variable (5.5.5) 

 

Figures 56 and 57 show the position and sensor value history for a contour buffer of 0.5 and 5, 

respectively. The time histories indicate that the lower contour buffer causes the swarm to more 

precisely follow the contour, but that the swarm does not progress as far along the contour. This 

is expected, as the smaller contour buffer causes the robots to re-enter contour finding rather than 

contour following, as their sensor value reading is outside the contour buffer.   

 

  
Figure 56. Contour Following for Contour Buffer of 0.5 

 

 
Figure 57. Contour Following for Contour Buffer of 5 

 

The results in Table 16 indicate that decreasing the contour buffer range causes the robots to 

more closely follow the contour, while larger contour buffers allow for faster mapping and 

movement along the contour. A larger contour buffer also causes the percentage of time on the 

contour to be higher because there is more sensor value range that is considered “on contour.”  
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Figure 57 also shows a situation in which a lower contour buffer may be desirable. On contours 

that span ridges or trenches, there will be tighter “turns” that the robots must make to stay on the 

contour. The larger contour buffer used to produce Figure 57 causes the robots to “cut the 

corner” of this contour as it passes over the ridge. A higher contour buffer also causes the swarm 

to progress farther along the contour because there is more range for which robots are considered 

“on the contour” and moving along the contour rather than re-locating it using find max or find 

min. 

 

Table 16. Quantitative Results for Contour Following with increasing Contour Buffer 

Figure Contour Buffer Time to Contour(s) % of time on Contour Distance along Contour 

56 0.5 7.82 84.2 0.52 

A22 1 7.71 81.3 0.59 

A23 2 7.62 79.7 0.68 

A24 3.5 7.39 83.6 0.82 

57 5 7.23 92.1 0.86 

 

 

4.2.4 Effect of Robot Speed on Contour Finding and Following  
 

As discussed in Chapter 2, robot control is achieved via specifying a bearing angle while 

maintaining a constant robot speed. Because each individual robot has its own dynamics, the 

robot does not immediately move in the direction of the commanded bearing angle, but has to 

dynamically respond to the command. This results in individual robot dynamics within the 

swarm. As is often the case with dynamic systems, simply going slower generally reduces 

overshoot to commands. In the context of contour finding and following, this overshoot is linked 

to the percentage of time that the swarm is within the contour buffer, and affects how well the 

robots can follow the contour. Simulations were run to show the effect of varying robot speed, 

with the simulation parameters used shown in Table 17.  

 

Table 17. Simulation Parameters for Contour Following with varying robot speed 

# of 

Robots 
Sim 

Time(s) 
Sensor 

Range(m) 
Avoid 

Range(m) 
Des. 

Contour 
Cont. 

Buffer 
I.C. Robot 

Speed(m/s) 

5 45 150 2 20 1 (5.5.5) variable 

 



56 

Figures 58 and 59 show the response of the swarm when using a robot speed of 15 and 70, 

respectively. The position history shows that the higher robot speed allows the swarm to progress 

along more of the contour during the simulation, which is expected because the robots are 

moving faster. However, the tradeoff for this increased distance along the contour is more 

individual overshoots, and less percentage of time within the contour buffer.  

 

 
Figure 58. Contour Following for Robot Speed of 15  

 

 

 
Figure 59. Contour Following for Robot Speed of 70 

 

 

Table 18 summarizes the quantitative results for contour following with increasing robot speed, 

from robot speeds of 15 m/s to 70 m/s. The results in Table 18 confirm the expected results, 

namely that the time required to reach the contour is lowered with increased speed, and that the 

swarm is able to progress more quickly along the contour. The results in Table 18 indicate that 

these relationships are not proportional, which suggests a limited benefit to increasing the robot 

speed. Therefore the benefits of increasing robot speed need to be evaluated on a case-by-case 
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basis. Generally, the increased progression along the contour is not significant enough to warrant 

using drastically higher robot speeds, especially considering that these higher speeds may require 

more robust and expensive motors on the physical swarm robots. Additionally, the swarm 

follows the contour less precisely at increased robot speeds, which is expected due to the 

individual robot dynamics.  

 
Table 18. Quantitative Results for Contour Following with increasing Robot Speed 

Figure Robot Speed(m/s) Time to Contour(s) % of time on Contour Distance along Contour 

58 15 6.61 93.4 0.23 

A25 30 4.6 84.2 0.48 

A26 45 3.9 83.5 0.74 

59 70 3.82 73.7 0.81 

 

 

 

4.2.5 Repeatability of Contour Finding and Following for Varying Desired 

Contours  
 

To validate the contour finding and following behavior, it is necessary to test the behavior for a 

variety of contours. To accomplish this, simulations were run for a variety of desired contours, 

using the simulation parameters in Table 19.  

 

 

Table 19. Simulation Parameters for Contour Following with varying desired contour 

# of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C. 

5 45 150 2 Variable  1 (5.5.5) 

 

 

The contour finding and following behavior was validated for a variety of contours ranging from 

-15 to 55, and successfully found and tracked the contours in all cases. The contour following for 

desired values of -15 and -5, shown in Figures 60 and 61, respectively, indicate that the swarm is 

able to travel down gradient and locate a contour and follow it. Figure 62 shows the swarm 

successfully following a desired contour of 55, indicating that the swarm can travel up the 

gradient to locate and follow the contour.  
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Figure 60. Contour Following for Desired Contour of -15 

 

 
Figure 61. Contour Following for Desired Contour of -5 

 

 
Figure 62. Contour Following for Desired Contour of 55 

 

Figure 63 below shows the swarm following a contour of 40. It should be noted that the contour 

level of 40 is non-unique in this scalar field, as another contour of 40 exists in the local maxima 



59 

in the upper left of the field. This indicates that while the swarm can successfully locate and 

follow a contour of desired value, it does not necessarily locate all contours of that desired value. 

This is similar to the issue of global or local extrema discussed in section 4.1.3.  

 

 
Figure 63. Contour Following for Desired Contour of 40 

 

Finally, Figure 64 shows the swarm following a contour at a desired value of 20. The contour 

value of 20 is interesting because it takes the swarm to the saddle point at the top of the trench. 

For the given set of simulation parameters, the swarm continues over the saddle point and 

follows the contour on the other side of the saddle point. The sensor value history does not 

indicate large errors in sensor values that would indicate losing the contour, which means that the 

simulation parameters may need to be adjusted for this particular contour, as there is a very sharp 

turn in the contour. In particular, the contour buffer may need to be reduced for successful 

following of this specific contour. This will be revisited in section 4.3, which discusses design 

decisions for certain characteristics of the desired swarm behavior.  

 

 
Figure 64. Contour Following for Desired Contour of 20 
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4.3 General Design Guidelines and Application to Testbed 
 

One of the main goals of this research was to move toward “top-down” specification of swarm 

behaviors. Using the information presented in 4.1 and 4.2, the effect of different design 

parameters can be seen for adaptive navigation using swarm techniques. The effect of each 

design parameter is summarized in Table 20 below.  

 

Table 20. Effect of parameters on Swarm Adaptive Navigation Performance  

Parameter Effect on Extrema Finding Effect on Contour Finding and Following 

Increasing 

Number of Robots  

Yields a better gradient estimation, causing faster response but possibly higher 

steady-state error 

Decreasing 

Obstacle 

Avoidance 

Lowers steady-state error but 

may decrease speed of 

response 

Allows robots to more precisely follow the 

contour 

Varying Initial 

Conditions 

May affect whether robots 

locate local or global maxima 

May affect which contour is tracked if there are 

multiple contours of the desired value in the 

field.  

Decreasing 

Contour Buffer  

 

N/A 

Allows robots to more precisely follow the 

contour, but slows the speed of procession 

around the contour.  

Decreasing Robot 

Speed  

Slows speed of response but 

reduces system “overshoot.” 

Slows speed of response but allows swarm to 

track contour more precisely, and spend less time 

re-locating the contour.  

 

Using the design guidelines outlined in Table 20, the indoor Decabot testbed system was used to 

validate the swarm behaviors on a basic paraboloid scalar field with a single minimum. 

Additionally, the scalar field presented in Figure 40 was printed in grayscale to facilitate testing 

the finding of local maxima, global maximum, the global minimum, and to follow a contour that 

requires the swarm to reverse the sense of commanded bearings as it passes through a trench. 

 

The first test run using the more complicated scalar field was to find a local maxima. The swarm 

was started in the upper left quadrant of the field as shown in Figure 65. The swarm successfully 

navigated to the local maximum location, but, as expected, did not find the global maximum as 

indicated in the sensor value history of Figure 65. The results achieved in the testbed 

environment closely match those for local maximum finding shown in simulation in Figure 49. 

Using the design guidelines above, robot speed and obstacle avoidance range were set at low 

values for extrema finding applications. The experimental parameters are outlined in Table 21.  
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Table 21. Experimental Parameters for Extrema Finding using Decabot Indoor Testbed System.  

Number of Robots Run Time(s)  Avoidance Range Robot Speed  Initial Conditions  

3 25 0.4 m 0.2 m/s User-placed 

 

 
Figure 65. Local Maxima Finding using Decabot Indoor Testbed System  

 

The swarm was subsequently positioned in the right half of the field to allow it to reach the 

global maximum. The swarm successfully travelled up-gradient to reach the location of the 

global maximum, as shown in Figure 66.  

 
Figure 66. Global Maximum Finding using Decabot Indoor Testbed System  

 

The sensor value readings in Figure 66 show readings that are above the “known global max” 

value. This is due to sensor noise as well as inconsistencies when calibrating the simulation 

scalar field values, which range from -25 to 70, to the Decabot’s sensor range, which is ~5.5-8.3. 

In particular, the grayscale sensors on the Decabots vary slightly from robot to robot, causing 

imprecise calibration. The system response shown in the position history of the swarm indicates 

that the robots successfully move up gradient to the location of the global maximum.  
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Figure 67 depicts the swarm in a minimum-finding behavior, starting from a position near the 

global maximum. The robots move down gradient until they reach a trench, and then continue to 

move down gradient to follow the trench down to the minimum. Figure 68 shows the swarm 

starting from a different location and moving down gradient to the minimum.  

 
Figure 67. Robot Global Minimum Finding using Decabot Indoor Testbed System  

 

 
Figure 68. Part 2 of Global Minimum Finding using Decabot Indoor Testbed System.  

 

In addition to extrema finding, contour finding and following was run on the indoor testbed 

system. Because the scalar field used exhibits fairly steep gradients, a low obstacle avoidance, 

robot speed, and contour buffer were used. The contour buffer had to still be sufficiently large to 

allow for noise in the sensor value signal, and as such was selected to be at 0.2. The full 

experimental parameters used are outlined in Table 22 below. The experimental results from this 

run are shown in Figure 69.  

 

Table 22. Experimental Parameters for Contour Finding and Following using Decabot Testbed System.  

Number of 

Robots 

Run 

Time(s) 

Avoidance 

Range(m) 

Desired 

Contour 

Contour 

Buffer 

Robot 

Speed 

3 120 0.4 6.5 0.2 0.2 
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Figure 69. First run of Contour Following using Testbed  

 

Figure 69 indicates the swarm’s ability to successfully follow a contour despite the contour’s 

sharp “corner” located around (2.2, 2.2). However, observing the sensor value readings shows 

that the swarm does not follow the contour very precisely, and also does not progress very far 

along the contour given the length of the experimental run. As a result, the obstacle avoidance 

range and robot speed were decreased to allow more precise tracking of the contour, as shown in 

Table 23 below. The results of the experiment using the parameters in Table 23 are shown in 

Figure 70.  

 

Table 23. Revised Experimental Parameters for Contour Finding and Following, Decabot System.  

Number of 

Robots 
Run Time 

(s) 
Avoidance Range 

(m) 
Desired 

Contour 
Contour 

Buffer 
Robot 

Speed 

3 90 0.3 6.5 0.2 0.15 

 

 
Figure 70. Contour Following with Revised Parameters  
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While it should be noted that the initial conditions for Figure 70 and Figure 69 are not identical, 

it is clear that even with a reduced robot speed the swarm is able to progress further along the 

contour than in Figure 69, due the fact that the swarm more closely follows the contour and 

therefore spends less time in the contour finding modes. This is supported by the fact the sensor 

values are consistently closer to the contour buffer, and the fact that the swarm does not “cut the 

corner” of the contour as Robot 2 does in Figure 69.  

 

4.4 Comparison to Cluster-Based techniques 
 

As mentioned in Chapter 1, one of the main goals of this research was to re-produce the adaptive 

navigation behaviors presented in [34] while utilizing a swarm-based architecture rather than a 

cluster-based control architecture. This section will compare the results of the swarm-based 

adaptive navigation primitives to the results of the cluster-based adaptive navigation primitives, 

discuss issues that are common across both techniques, and finally discuss the advantages and 

disadvantages of the respective techniques.  

 

4.4.1 Comparison of Functionality  
 

[34] presents adaptive navigation primitives for extrema finding, contour finding and following, 

and ridge and trench following. This research has successfully recreated the extrema finding 

behaviors presented in [34]. Figure 71 indicates the cluster performance for ascending to a local 

maximum (path B), a global maximum (path A), and the global minimum (path C).  The right 

image in Figure 71 shows the same behaviors repeated using a swarm architecture and starting 

from similar initial conditions. The swarm-based portion of Figure 71 was produced using a 3-

robot swarm, as extrema finding in [34] is accomplished using a 3-robot cluster.  

 
Figure 71. Cluster-based (left) and swarm based (right) extrema finding 



65 

 

For the same scalar field, the swarm architecture successfully navigates to the expected extrema, 

and follows roughly the same paths demonstrated by paths A, B, and C. One major difference 

between the two system responses is the “smoothness” of the system response. This can be seen 

in the swarm-based global maximum finding, as the swarm oscillates back and forth across the 

ridge as it gradually works its way up to the global maximum, rather than going directly up as in 

the cluster-based technique. One major reason for this is that the swarm-based architecture uses 

an “implicit” gradient estimation that is a combination of local slopes to other robots, while the 

cluster-based architecture employs an explicit feature estimation that utilizes that known relative 

positions of other robots within the cluster and their sensor value readings. Another reason for 

these oscillations is the formation control technique. The low degree of freedom formation 

controller used in the swarm causes inter-robot oscillations, whereas the cluster formation 

controller maintains fixed relative positions between robots. 

 

In addition to extrema finding, the contour following results from [34] were successfully 

reproduced. Figure 72 shows the cluster-based and swarm-based contour following for multiple 

contours, with movement both up and down gradient to find the contours and counter-clockwise 

and clockwise travel of the contours. In the cluster-based adaptive navigation, path A is up-

gradient and counter clockwise, path B is down gradient and counter-clockwise, and path C is up 

gradient and clockwise.  

 
Figure 72. Cluster-based Contour Following (Left) and Swarm-based Contour Following (Right) 

 

In the swarm-based contour following of Figure 72, the top right path moves down gradient and 

begins clockwise contour following, the middle path moves up gradient and begins clockwise 

contour following, and the bottom path starts on the correct contour and remains on it by 

traveling counterclockwise. In similar fashion to the extrema finding, the swarm-based contour 

following exhibits the same capabilities as the cluster-based primitive but with less smooth 

tracking, as the swarm will tend to oscillate about the desired contour while progressing along it.  
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The final capabilities of ridge and trench following have not yet been successfully implemented, 

and are discussed further in Chapter 5.  

4.4.2 Comparison of Design Considerations  
 

The two main design considerations that are discussed in [34] are the size of the cluster and the 

speed of the individual robots. The size of the cluster refers to the spacing of the robots within in 

the cluster, and not the specific number of robots within the cluster. As such, these design 

considerations can be compared to the swarm-based design considerations of obstacle avoidance 

and individual robot speed. [34] draws similar conclusions to those reached in 4.3, and notes that 

the size of the cluster must be sufficiently large to yield an accurate estimation, but that a cluster 

that is too large may fail to sense rapid changes in the scalar field. Additionally, [34] notes that 

robot speed is an important design consideration, especially when the feature to be mapped 

requires rapid changes in robot bearing, such as the contours in 4.4.1.  

 

4.4.3 Disadvantages & Advantages of Swarm-Based Adaptive Navigation  
 

The comparison of functionalities in section 4.4.1 highlights some of the main disadvantages of 

swarm-based adaptive navigation, namely oscillations and reduced resolution of results. The 

oscillations in extrema finding and contour finding and following do not dramatically influence 

the system performance, as the swarm-based techniques were able to replicate the results of the 

cluster-based techniques. However, the swarm oscillations may cause the swarm-based technique 

to take longer to locate the extrema or map the contour. In real-world applications such as 

disaster relief, where time is a crucial factor, this may make the swarm-based adaptive navigation 

techniques less desirable. Another disadvantage of the swarm-based technique is that it offers 

only implicit formation control and not explicit formation control. This is a disadvantage for 

more complicated scalar field features, such as ridges, trenches, and fronts, which require precise 

control of the location of robots in relation to each other to assure that the ridge, trench, or front 

is maintained.  

 

Despite these shortcomings, the swarm-based control architecture has some desirable advantages 

for adaptive navigation, most importantly:  

 

 Decentralized Architecture: In contrast to the centralized architectures, where a 

centralized controller distributes control bearings to each robot within the MMS, each 

individual robot in the swarm calculates its own command bearing based off local 

communications. This offers advantages in situations where global communication may 

be limited or unavailable.  
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 Robustness to Individual Robot Failures: 4.1 and 4.2 showed the increasing capability of 

the swarm with increasing number of robots in the swarm, but also indicated that the 

swarm can successfully complete adaptive navigation primitives for lower numbers of 

robots. This indicates robustness to individual robot failures within the swarm without 

altering control laws. In contrast, the cluster-based architecture utilizing 4 robots would 

require a different cluster definition for 3 robots if an individual robot fails.  

 Easily Scalable: As was shown in 4.1 and 4.2, the swarm behaviors can be scaled easily 

without dramatically increasing required calculations or requiring new formation control 

definitions. The cluster-based technique is not as easily scaled, as adding robots to the 

cluster results in rapidly increasing numbers of cluster shape variables, and therefore of 

control laws and calculations. This relates back to the fact that the cluster is a full degree-

of-freedom controller, while the implicit formation control for the swarm is a much lower 

degree of freedom controller. 

 Adaptable Size: 4.4.2 discussed the fact the cluster and swarm size is a large 

consideration in adaptive navigation techniques. In the cluster formation, the “size” of the 

cluster may actually be dependent on a variety of cluster variables, but the implicit 

formation control of the swarm is dependent on obstacle avoidance range and attract gain 

only. This simplified structure, while not offering the refined formation control of the 

cluster technique, offers easy variation of the size of the swarm for different fields. This 

will be further discussed in Chapter 5.  

 

These advantages make the swarm-based adaptive navigation techniques desirable for 

applications that may require decentralized control due to communication limitations. The 

swarm-based techniques also reduce the impact of increasing numbers of individual agents on 

the required number of calculations, as each agent calculates its own commanded bearing, rather 

than relying on a centralized controller. For example, a larger swarm might consist of 50 robots, 

but each individual robot would only communicate with its nearest neighbors. Therefore the 

computational load for each robot would be equivalent of that of a much smaller swarm. While 

cluster control offers more refined control through a full degree-of-freedom controller, the 

swarm-based adaptive navigation techniques presented in Chapters 3 and 4 offer adaptive 

navigation capabilities with a low degree of freedom controller at a reduced computational cost. 

Therefore these techniques may be useful when computation cost is a large concern, or full 

degree of freedom control is not required.  
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5. Conclusions and Future Work  
 

This paper has presented a new approach to adaptive navigation primitives that reduces 

calculation load without dramatically sacrificing system performance. A simulation environment 

was developed that easily interfaces with the existing indoor testbed, allowing for rapid vetting 

and validation of swarm primitive and composite behaviors. These swarm composite behaviors 

were combined to yield Adaptive Navigation primitives such as extrema finding and contour 

finding and following. In simulation and in experimentation, the effect of different design 

parameters were shown, which yielded design guidelines to facilitate top-down specification of 

swarm behaviors. Finally, the swarm-based adaptive navigation behaviors were compared to 

existing cluster-based adaptive navigation techniques to show comparable system performance, 

and to compare advantages and disadvantages of each technique. Future work in this area 

includes the following:  

 

1. Development of Additional Adaptive Navigation Primitives: As mentioned in Chapter 4, 

it is desired to develop more adaptive navigation primitives to allow for ridge and trench 

following, saddle point station keeping, and front detection and following.  

2. Adaptive Sizing for Increased Performance: Currently, certain parameters such as 

avoidance range and contour buffer range are set as constants by the designer. Future 

development could yield adaptive sizing of the swarm that determines appropriate 

avoidance ranges and contour buffer ranges based off local gradient estimation and scalar 

field measurements.  

3. Numerical Validation: Chapter 4 began to investigate the impact of different design 

parameters on swarm performance, but a more thorough validation could be performed 

using Monte Carlo simulations. Such validation could yield more precise information 

about system convergence to desired behavior for variations in design parameters.  

4. Adaptive Navigation Composites: The extrema finding and contour following behaviors 

are presented as adaptive navigation primitives, with the understanding that these could 

be combined with other behaviors for adaptive navigation composite behaviors. 

Examples include maintaining a certain wireless connection (contour following) while 

travelling across campus (Go-To), or mapping all maxima in a region (utilization of 

extrema finding). 

5. Increased Fidelity of Simulation: Running the vetted behaviors on the testbed revealed a 

few possible additions to the simulation that would increase the fidelity of the simulation. 

Possible additions include a white noise addition to the sensor signals, lag (or a “transport 

delay” in Simulink terminology), and randomized robot failures within simulation. 

6. Expanded Performance Metrics: Expanding performance metrics to compare the swarm 

behavior to known gradient information may help further evaluate the swarm’s behavior. 

For example, [34] presents a cluster-based metric that evaluates the cluster’s bearing in 

comparison to the gradient bearing for contour following. Additional metrics could also 

include expected computational load and how these compare to cluster-based techniques. 
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Appendix A 
 

Table A1. Simulation Parameters for Produced Figures in Chapter 1 

Figure 

#  

Behaviors  N Tsim  

SVrnge 

Avoid SVdes SVbuff I.C. Speed Field 

32 FMin 3 50 150 1 -- -- Rand 6 Sink 

33 FMax 3 50 150 1 -- -- Rand 6 Source 

36  FContour 3 40 150 1 5.5 0.2 Rand 5 Testbed 

 

 

The figures referenced in Chapter 4 are included below:  

 

Figure A1. Max Finding, N=4 Robots  
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Figure A2. Max Finding, N=5 Robots  

 

 

Figure A3. Max Finding, N=6 Robots  

 

Figure A4. Max Finding, N=7 Robots  
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Figure A5. Min Finding, N=4 Robots  

 

Figure A6.  Min Finding, N=5 Robots  

 

Figure A7.  Min Finding, N=6 Robots  
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Figure A8.  Min Finding, N=7 Robots  

 

Figure A9. Max Finding, Obst. Avoid = 5m  

 

 

Figure A10. Max Finding, Obst. Avoid = 10m  
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Figure A11. Max Finding, Obst. Avoid = 15m  

 

Figure A12. Min Finding, Obst. Avoid = 5m  

 

Figure A13. Min Finding, Obst. Avoid = 10m  
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Figure A14. Min Finding, Obst. Avoid = 15m  

 

 

Figure A15. Contour Following, N=4 Robots 

 

Figure A16. Contour Following, N=5 Robots 
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Figure A17. Contour Following, N=6 Robots 

 

 

Figure A18. Contour Following, N=7 Robots 

 

Figure A19. Contour Following, Obst. Avoid = 5m  
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Figure A20. Contour Following, Obst. Avoid = 10 m  

 

 

Figure A21. Contour Following, Obst. Avoid = 15m  

 

Figure A22. Contour Following, Buffer=1  
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Figure A23. Contour Following, Buffer = 2 

 

Figure A24. Contour Following, Buffer = 3.5  

 

Figure A25. Contour Following, Speed = 30 
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Figure A26. Contour Following, Speed = 45  

 

Figure A27. Position History for Extrema Finding for Initial Conditions (100, 5, 5) 

 

Figure A28. Position History for Extrema Finding for Initial Conditions (100, 350, 350) 
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Figure A29. Position History for Extrema Finding for Random I.C.’s, Trial 2 

 

Figure A30. Position History for Extrema Finding for Random I.C.’s, Trial 3 

 

Figure A31. Position History for Extrema Finding for Random I.C.’s, Trial 4 
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Figure A32. Position History for Extrema Finding for Random I.C.’s, Trial 5 
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