
Santa Clara University
Scholar Commons

Mechanical Engineering Master's Theses Engineering Master's Theses

5-28-2019

Swarm-Based Techniques for Adaptive Navigation
Primitives
Nathan Metzger

Follow this and additional works at: https://scholarcommons.scu.edu/mech_mstr

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Engineering Master's Theses at Scholar Commons. It has been accepted for inclusion in
Mechanical Engineering Master's Theses by an authorized administrator of Scholar Commons. For more information, please contact
rscroggin@scu.edu.

Recommended Citation
Metzger, Nathan, "Swarm-Based Techniques for Adaptive Navigation Primitives" (2019). Mechanical Engineering Master's Theses. 37.
https://scholarcommons.scu.edu/mech_mstr/37

https://scholarcommons.scu.edu?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/eng_master_theses?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.scu.edu/mech_mstr/37?utm_source=scholarcommons.scu.edu%2Fmech_mstr%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rscroggin@scu.edu

Engineering

thDate: May 28"\ 2019

ENTITLED

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

/!
.^A/P^'

Thesis Advisor

Dr. Christopher Kitts

Thesis Reader

Dr. Robert Marks

) ll"^-^^/ ff-"\.^

Chairman of Department

Dr. Drazen Fabris

Swarm-Based Techniques for Adaptive Navigation

Primitives

By

Nathan Metzger

Graduate Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Mechanical Engineering

in the School of Engineering at

Santa Clara University, 2019

Santa Clara, CA

iii

Swarm-Based Techniques for Adaptive Navigation Primitives

Nathan Metzger

Department of Mechanical Engineering

Santa Clara University

Santa Clara, CA

2019

ABSTRACT

Adaptive Navigation (AN) has, in the past, been successfully accomplished by using mobile

multi-robot systems (MMS) in highly structured formations known as clusters. Such multi-robot

adaptive navigation (MAN) allows for real-time reaction to sensor readings and navigation to a

goal location not known a priori. This thesis successfully reproduces MAN cluster techniques

via swarm control techniques, a less computationally expensive but less formalized control

technique for MMS, which achieves robot control through a combination of primitive robot

behaviors. While powerful for large numbers of robots, swarm robotics often relies on

“emergent” swarm behaviors resulting from robot-level behaviors, rather than top-down

specification of swarm behaviors. For adaptive navigation purposes, it was desired to be able to

specify swarm-level behavior from a top down perspective rather than experimenting with

emergent behaviors. To this end, a simulation environment was developed to allow rapid

development and vetting of swarm behaviors while easily interfacing with an existing testbed for

validation on hardware. An initial suite of robot primitive and composite behaviors was

developed and vetted using this simulator, and the behaviors were validated using the existing

testbed in Santa Clara University’s Robotics System Laboratory (RSL). Of particular importance

were the adaptive navigation primitives of extrema finding and contour finding and following.

These AN primitives were tested over a variety of experimental parameters, yielding design

guidelines for top-down specification of swarm robotic adaptive navigation. These design

guidelines are presented, and their usefulness is demonstrated for a Contour Finding and

Following application using the RSL’s testbed. Finally, possible future work to expand the

capability of swarm-based adaptive navigation techniques is discussed.

iv

Acknowledgements

First and foremost, I would like to thank my advisor Dr. Christopher Kitts for his constant

guidance, support, and inspiration throughout this process. His undergraduate Controls course (as

well as later graduate courses) initially sparked my interest in robotics. The fact that this research

grew from a class project in one of those graduate courses speaks to his ability to blend new

research into the classroom as well as his ability to encourage students to pursue new avenues

within that research.

Additionally, I would like to thank my collaborators in this research, Max Reese and Shae Hart,

whose constant insight and hard work cannot be understated. I would also like to thank all those

around the lab who were always willing to offer suggestions and help work through roadblocks,

including (but certainly not limited to) Dr. Michael Neumann, Robert McDonald, and Danop

Rajabhandharaks. I would also like to thank all of my predecessors in the lab whose work made

this research possible.

I would also like to thank my family, friends, girlfriend Maggie, and all others who politely

smiled and nodded after asking what my research was about.

A portion of this work was submitted for publication [49].

v

List of Figures

Figure # Title Page #

1 Franka Industrial Robot w/gripper [2], used without copyright permission 1

2 Kitov System - Denso Robot w/ Camera [3], used without copyright permission 1

3 Fetch Mobile Manipulator [5], used without copyright permission 2

4 NASA Opportunity, a mobile sensor suite [6], used without copyright permission 2

5 Harvard’s Kilobot Swarm MMS [7], used without copyright permission 2

6 SCU’s Decabot MMS System 2

7 LF Formation Control for 2 Robots [9], used without copyright permission 4

8 LF for one distance, multiple bearing angles 4

9 LF for one bearing angle, multiple distances 4

10 3-robot LF chain 4

11 Single Repulsive APF [11], used without copyright permission 6

12 Superposition of multiple APF and expected robot path [12], used without copyright

permission

6

13 Key Features in a Scalar Field [34] used with copyright permission 10

14 High-level schematic of SANS control architecture 15

15 Omnibot used in the RSL’s Decabot Testbed System [35], used with copyright permission 16

16 Robot-Level Velocity Control for the Omnibot 17

17 Behavior Level Control 17

18 Swarm-Level Architecture 18

19 User Interface for specification of swarm behaviors and parameters 19

vi

20 Freeze-frame of video of robot swarm behavior 20

21 Post-processing plots of time history of robot positions 21

22 Post processing plots of time history of sensor value readings 22

23 Sample Testbed Grayscale Field with 3 Decabots 23

24 Decabot Indoor Testbed Architecture [35], used with copyright permission 24

25 Schematic of go-to behavior for N=3 Robots 28

26 Behavior simulation (left) and validation in experimental testbed (right) for go-to

coordinates behavior

28

27 Schematic of Attract/Disperse Behavior for N=5 robots 30

28 Simulation of attract with obstacle avoidance range of 1 unit (left) and 0.5 units (right) 30

29 Testbed validation of attract behavior 31

30 Simulation (left) and testbed validation (right) of disperse behavior 31

31 Schematic of Flocking behavior for varying weighting of attract behavior 33

32 Simulation verification of Flocking behavior for varying weighting of Attract behavior 33

33 Schematic of Find Min/Find Max behavior for N=3 Robots 34

34 Simulation: Find Min position history (left) and sensor value history (right) for single sink

field

35

35 Simulation: Find Max position history (left) and sensor value history (right) for single

source field

35

36 Testbed validation of find min behavior 36

37 Schematic of Find Contour Behavior 38

38 Simulation position history (left) and sensor value history (right) for Contour Following 38

39 Testbed Validation position history (left) and sensor value history (right) for Contour

Following

39

vii

40 Complex Scalar Field used for experimentation of behaviors [34], used with copyright

permission

40

41 Max Finding for N=3 Robots 42

42 Max Finding for N=10 Robots 42

43 Minimum Finding for N=3 Robots 43

44 Minimum Finding for N=10 Robots 43

45 Maximum Finding for Obstacle Avoidance Range = 2m 45

46 Maximum Finding for Obstacle Avoidance Range =20m 45

47 Min Finding for Obstacle Avoidance Range = 2m 46

48 Min Finding for Obstacle Avoidance Range = 20m 46

49 Max Finding for non-circular initial conditions in bottom left quadrant 47

50 Max Finding for non-circular initial conditions in bottom right quadrant 48

51 Max Finding for Random Initial Conditions 48

52 Contour Following and Attract for N=3 robots 51

53 Contour Following and Attract for N=10 robots 51

54 Contour Following for Obstacle Avoidance range of 2 m 52

55 Contour Following for Obstacle Avoidance Range of 20 m 53

56 Contour Following for Contour Buffer of 0.5 54

57 Contour Following for Contour Buffer of 5 54

58 Contour Following for Robot Speed of 15 56

59 Contour Following for Robot Speed of 70 56

60 Contour Following for Desired Contour of -15 57

61 Contour Following for Desired Contour of -5 58

viii

62 Contour Following for Desired Contour of 55 58

63 Contour Following for Desired Contour of 40 59

64 Contour Following for Desired Contour of 20 59

65 Local Maxima Finding using Decabot Indoor Testbed System

61

66 Global Maximum Finding using Decabot Indoor Testbed System 61

67 Global Minimum Finding using Decabot System 62

68 Part 2 of Global Minimum Finding using Decabot System 62

69 First run of contour following using Decabot System 63

70 Contour Following with Revised Parameters 63

71 Cluster-based (left) and swarm-based (right) extrema finding 64

72 Cluster-based Contour Following (left) and swarm-based Contour Following (right). 65

A1 Max Finding, N=4 Robots 72

A2 Max Finding, N=5 Robots 73

A3 Max Finding, N=6 Robots 73

A4 Max Finding, N=7 Robots 73

A5 Min Finding, N=4 Robots 74

A6 Min Finding, N=5 Robots 74

A7 Min Finding, N=6 Robots 74

A8 Min Finding, N=7 Robots 75

A9 Max Finding, Obst Avoid = 5 m 75

A10 Max Finding, Obst Avoid = 10 m 75

A11 Max Finding, Obst Avoid = 15 m 76

ix

A12 Min Finding, Obst Avoid = 5 m 76

A13 Min Finding, Obst Avoid = 10 m 76

A14 Min Finding, Obst Avoid = 15 m 77

A15 Contour Following, N=4 Robots 77

A16 Contour Following, N=5 Robots 77

A17 Contour Following, N=6 Robots 78

A18 Contour Following, N=7 Robots 78

A19 Contour Following, Obst Avoid = 5 m 78

A20 Contour Following, Obst Avoid = 10 m 79

A21 Contour Following, Obst Avoid = 15 m 79

A22 Contour Following, Buffer= 1 79

A23 Contour Following, Buffer= 2 80

A24 Contour Following, Buffer= 3.5 80

A25 Contour Following, Speed= 30 80

A26 Contour Following, Speed = 45 81

A27 Positon History for Extrema Finding for Initial Conditions (100, 5, 5) 81

A28 Positon History for Extrema Finding for Initial Conditions (100, 350, 350) 81

A29 Positon History for Extrema Finding for Random I.C.’s, Trial 2 82

A30 Positon History for Extrema Finding for Random I.C.’s, Trial 3 82

A31 Positon History for Extrema Finding for Random I.C.’s, Trial 4 82

A32 Positon History for Extrema Finding for Random I.C.’s, Trial 5 83

x

xi

List of Tables

Table # Title Page #

P1 List of Variables xii

1 Cluster-Space Specification variables for MMS [10] 5

2 Summary of Assumptions-Based Swarm Source-Finding Research 12

3 Contour State Determination 37

4 Simulation Parameters for Scaling Number of Robots for Extrema Finding 42

5 Quantitative Results for Max Finding with Increasing Number of Robots 43

6 Quantitative Results for Min Finding with Increasing Number of Robots 44

7 Simulation Parameters for varying Obstacle Avoidance Range for Extrema Finding 44

8 Quantitative Results for Max Finding with Increasing Obstacle Avoidance 46

9 Quantitative Results for Min Finding with Increasing Obstacle Avoidance 47

10 Simulation Parameters for varying Initial Conditions, Maxima Finding 49

11 Simulation Parameters for Contour Following with varying number of robots 50

12 Quantitative Results for Contour Following with increasing number of robots 51

13 Simulation Parameters for Contour Following with varying obstacle avoidance 52

14 Quantitative Results for Contour Following with increasing Avoidance Range 53

15 Simulation Parameters for Contour Following with varying contour buffer 54

16 Quantitative Results for Contour Following with increasing Contour Buffer 55

17 Simulation Parameters for Contour Following with varying robot speed 55

18 Quantitative Results for Contour Following with increasing Robot Speed 57

19 Simulation Parameters for Contour Following with varying desired contour 57

xii

20 Effect of parameters on Swarm Adaptive Navigation Performance 60

21 Experimental Parameters for Extrema Finding using Decabot Indoor Testbed System. 60

22 Experimental Parameters for Contour Finding and Following using Decabot Indoor

Testbed System.

62

23 Revised Experimental Parameters for Contour Finding and Following using Decabot

Indoor Testbed System.

63

A1 Simulation parameters used to create figures 72

xiii

Table P1. List of Variables

Variable Name Notation Architecture level

Current Robot State (𝑋, 𝑌, Θ, 𝑆𝑉) Swarm Level

Bearing Command for Robot i 𝛷𝑖 Omnibot Level

Velocity vector command for Robot i 𝑉𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ Omnibot Level

Angular velocity for wheels on Robot i 𝜔𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ Omnibot Level

Velocity vector, output, for Robot i 𝑉𝑖𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ Omnibot Level

Number of Robots N User Interface

Simulation Run Time 𝑇𝑠𝑖𝑚 User Interface

Sensor Range 𝑅𝑠 User Interface

Avoidance Range 𝑅𝑎 User Interface

Desired Contour Value 𝑆𝑉𝑑𝑒𝑠 User Interface

Contour Value “Buffer 𝑆𝑉𝑏𝑢𝑓𝑓 User Interface

Robot Speed (Magnitude) 𝑀𝑣 User Interface

Velocity vector, output, for Behavior m

for Robot i
𝑉𝑚𝑖
⃗⃗ ⃗⃗ ⃗ Behavior Level

Velocity vector, output, go-to Behavior

for Robot i
𝑉𝑔𝑖
⃗⃗ ⃗⃗ Go-To Behavior

Velocity vector, output, Attract

Behavior for Robot i
𝑉𝑎𝑖
⃗⃗ ⃗⃗ Attract Behavior

Velocity vector, output, Disperse

Behavior for Robot i

𝑉𝑑𝑖
⃗⃗ ⃗⃗ ⃗ Disperse Behavior

xiv

Velocity vector, output, flocking

behavior for robot i
𝑉𝑓𝑙𝑖
⃗⃗ ⃗⃗⃗⃗ Flocking Composite Behavior

Magnitude of Obstacle Avoidance

Behavior Vector for Robot i
𝑀𝑜𝑖 Obstacle Avoidance Behavior

Velocity vector, output, Obstacle

Avoidance Behavior for Robot i
𝑉𝑂𝑖
⃗⃗ ⃗⃗ ⃗ Obstacle Avoidance Behavior

Distance from Robot i to Robot j 𝑑𝑖𝑗 Behavior Laws

Bearing from Robot i to Robot j ϕ𝑖𝑗 Behavior Laws

Weighting Gain for Behavior m 𝐾𝑚 Behavior Laws

Sensor Value difference from robot i to

j
𝛥𝑆𝑉𝑖𝑗 Sensor Value Comparison

primitive

Find Min/Find Max vector from robot i

to robot j
𝑣𝑓𝑚𝑖𝑗 Find Min/Find Max Vector

Velocity vector, output, Find Min/Find

Max Behavior for robot i
∓�⃗� 𝑓𝑚𝑖 Find Min/Find Max Behavior

Table of Contents

Abstract .. iii

Acknowledgements ... iv

List of Figures ...v

List of Tables .. xi

1. Introduction ...1

1.1 Robotics, Mobile Robotics, and Mobile Multi-Robot Systems (MMS)1

1.1.1 Classification of MMS Applications...3

1.1.2 Formation Control for Mobile Multi-Robot Systems ..3

1.1.3 Robotic Swarms and Research Fields within Robotic Swarms7

1.2 Adaptive Navigation .. 10

1.2.1 Approaches to AN .. 10

1.2.2 Survey of Adaptive Navigation utilizing Swarm Control Techniques 11

1.2.3 Working Definition of Swarm Robotics ... 12

1.3 Major Contributions ... 13

1.3.1 Research Collaboration .. 14

2. Simulator Development ... 15

2.1 Robot-Level: Omnibot ... 16

2.2 Command-Level: Behavior Commands .. 17

2.3 Group Level: Swarm Architecture .. 18

2.4 User Level: User Interface.. 19

2.5 Post-Processing and Visualization of Results ... 20

2.6 Adding Additional Behaviors ... 22

2.7 Testbed Environment ... 23

3. Behavior Control Laws.. 25

3.1 Supporting Calculations ... 25

3.1.1 Out of Range Determination... 25

3.1.2 Sensor Value Comparison .. 26

3.2 Swarm Primitive Behaviors .. 26

3.2.1 Obstacle Avoidance ... 26

3.2.2 Go-To Coordinates ... 27

3.2.3 Attract/Disperse ... 29

3.3 Swarm Composite Behaviors ... 32

3.3.1 Flocking ... 32

3.3.2 Source-Seeking (Find Min / Find Max) .. 33

3.3.3 Find/Follow Contour .. 36

4. Experimentation with Adaptive Navigation Behaviors... 40

4.1 Extrema Finding... 40

4.1.1 Effect of Number of Robots on Extrema Finding.. 41

4.1.2 Effect of Obstacle Avoidance Range on Extrema Finding .. 44

4.1.3 Repeatability of Extrema Finding for Varying Initial Conditions 47

4.2 Contour Finding and Following .. 49

4.2.1 Effect of Number of Robots on Contour Finding and Following 50

4.2.2 Effect of Obstacle Avoidance Range on Contour Finding and Following 52

4.2.3 Effect of Contour Buffer Size on Contour Finding and Following 53

4.2.4 Effect of Robot Speed on Contour Finding and Following.. 55

4.2.5 Repeatability of Contour Finding and Following for Varying Desired Contours 57

4.3 General Design Guidelines and Application to Testbed .. 60

4.4 Comparison to Cluster-Based techniques.. 64

4.4.1 Comparison of Functionality .. 64

4.4.2 Comparison of Design Considerations.. 66

4.4.3 Disadvantages & Advantages of Swarm-Based Adaptive Navigation 66

5. Conclusions and Future Work ... 68

REFERENCES ... 69

Appendix A... 73

1

1. Introduction

1.1 Robotics, Mobile Robotics, and Mobile Multi-Robot Systems

(MMS)

Robotics, primarily in the form of industrial manipulators similar to the articulated arm shown in

Figure 1, have had a large impact on manufacturing due their ability to execute tasks with speed

and repeatability [1]. Initial applications, and the majority of current applications, consist of

some sort of actuation (such as picking and placing parts, welding, and screw driving) in which

the end-effector of the robot has some sort of mechanical device capable of actuating parts in the

environment, as shown in Figure 1. Recent applications may choose to replace the mechanical

end-effector with a sensing suite, shown in Figure 2.

In Figure 2, rather than having a mechanical gripper like the Franka arm in Figure 1, the robot

has an attached high-definition camera. Images from this camera can be used in a vision system

to check parts for failures or defects [3]. These types of applications are likely to become more

common in the so-called “fourth Industrial Revolution,” a term applied to the movement from

automated physical systems to “Smart” Cyber-Physical Systems that incorporate larger numbers

of sensors for robustness and predictability of manufacturing processes. [4]

In parallel to the development of industrial manipulators has been the development of mobile

robotics. In some cases, mobile robots have industrial manipulators attached (Fetch Mobile

Manipulator, Figure 3), which makes the industrial manipulator mobile via its base. In others, the

Figure 1: Franka Industrial Manipulator

w/gripper [2]

Figure 2: Kitov System - Denso

Robot w/ Camera [3]

2

primary role of the mobile robot is as a mobile sensor suite that can take measurements and

gather data about its environment (NASA Mars Rover: Opportunity, Figure 4). These mobile

robots offer a way to fulfill tasks that industrial manipulators cannot, such as material transport

and sensing of a larger environment outside of the industrial manipulator’s workspace.

Figure 3. Fetch Mobile Manipulator [5] Figure 4. NASA Opportunity, a mobile sensor suite [6]

Growing out of the field of mobile robotics is the field of Mobile Multi-Robot Systems

(MMS’s). MMS offers many of the same benefits as mobile robotics, while also providing

improvements upon applications using a single robot. MMS’s utilize multiple smaller, resource

limited robots to achieve similar results as single mobile robots. Using an MMS instead of a

single large mobile robot can provide a few advantages. First, the individual cost of the robots is

reduced, as complexity is often significantly reduced for the individual robots in an MMS.

Second, MMS systems can be easily designed to be robust to individual robot failures, so that the

success or failure of a mission does not depend on the successful operation of one individual

robot. Additionally, there are inherently distributed tasks that require multiple agents, or tasks

that are too complex for single robots to complete. Finally, certain applications benefit from the

use of multiple distributed robots or sensors rather than one individual robot. Figures 5 and 6

show two examples of MMS, with Harvard’s Kilobot swarm of small mobile robots and SCU’s

Decabot system, featuring more robust individual robots.

Figure 5. Harvard’s Kilobot swarm MMS [7] Figure 6. Robots in SCU’s Decabot MMS system

3

1.1.1 Classification of MMS Applications

MMS applications, at a high level, can be categorized mainly by the two following

classifications: Heterogeneous robots vs. Homogeneous Robots, and Collaborative vs. Parallel

applications. MMS applications involving heterogeneous robots may involve multiple types of

robots, each performing their own function within the application. For example, in a warehouse,

a team of 3 robots could be tasked to gathering materials: one tasked to locating the desired

material and broadcasting its location, and another, possibly equipped with a robotic

manipulator, picks and places the materials onto a third “Sherpa” robot, which can then transport

the materials to a desired location. In contrast to this, a homogeneous MMS system consists of

robots that all have roughly the same capabilities, sensor suites, and actuators. For example, a

group of homogeneous robots engaged in bathymetric mapping would all be using the same set

of actuators and sensors to complete their task.

The second classification is between collaborative and parallel applications. As an example,

consider the previous bathymetric mapping application. An MMS system that acts in parallel

could send out a team of N robots that each have their own area to map out, with the aggregate of

their areas fully mapping the desired location. This offers an advantage over a single-robot

system that would take much longer to map out the area, simply because there is less area for

each individual robot to map. These robots act almost completely independently of each other

during operation, and as such are said to act in parallel. In contrast, robots trying to find the

maximum depth of the lake floor would constantly be sharing data and comparing with each

other in order to move towards that maximum depth, and as such would be acting

collaboratively. While there has been research done in multiple areas regarding MMS, this thesis

will focus on reviewing research done in homogeneous, collaborative systems.

Of particular interest in the scope of homogeneous, collaborative systems is the idea of adaptive

navigation. Whereas conventional navigation involves guiding a vehicle along a predefined path

or trajectory, adaptive navigation utilizes environmental data to move towards a target location

not known a priori. While adaptive navigation for a single robot may be achieved through

approaches such as SLAM (Simultaneous Location and Mapping), many approaches to adaptive

navigation utilize MMS in order to exploit the collection of simultaneously collected distributed

information in order to make navigation decisions. This will be discussed in more depth in

section 1.2.

1.1.2 Formation Control for Mobile Multi-Robot Systems

One of the first issues that is addressed within MMS is how to coordinate the motion of multiple

agents, often called formation control. Within the field of MMS there are many different

4

approaches to formation control of the group of robots, which can be broadly classified as

explicit formation control and implicit formation control.

1.1.2.1 Explicit Formation Control

Explicit formation control strictly specifies where robots are to be located in relation to each

other. Typical examples of these are the Leader-Follower model, and an “expanded” version

called Leader-Follower chains. These frameworks are illustrated in Figures 7-10. In a simple

Leader-Follower (LF) framework, the leader moves with some direction, and the follower moves

at some specified distance and bearing behind the leader (Figure 7). This can be expanded to

multiple followers, so that multiple followers follow a single leader. Figure 8 depicts a scenario

in which there is one leader, and multiple followers at different bearings, while Figure 9 depicts

another possible scenario, where robots are given the same bearing angle and different distances.

These are explicit frameworks for control as they distinctly specify where follower robots should

be located in relation to the leader robot at any point in time.

Figure 7. LF formation control for 2 robots [9] Figure 8. LF for one distance, multiple bearing angles

Figure 9. LF for one bearing angle, multiple distances Figure 10. 3-robot LF chain

5

Another expanded version of this is the Leader-Follower chain, where each follower is then a

leader for the robot behind it. This is shown in Figure 10 above. Finally, virtual “leaders” can be

specified, so that the follower robot follows a given point, where a physical robot may not

actually exist. Though leader-follower organization and leader-follower chains allow an easy

way to specify a formation, there are challenges to the approach. Leader-follower chains can be

prone to oscillation given delays in communication along the chain, and at large following

distances, any requirement to maintain position based on the orientation of the leader can result

in unachievable velocities.

Another method of explicit formation control is the Cluster-space formation [10]. In the cluster

space, a group of N robots form a “cluster,” which is specified as a combination of geometry,

position, and orientation variables. By using clusters, position and orientation can be explicitly

specified at any point in time by specifying the motion of the cluster frame. The cluster frame is

specified as a function of the robots, such as the centroid of the formation. Individual robots in

the cluster may have their position and orientation specified in relation to the cluster frame, and

motion of the individual robots can therefore be specified by the movement of the cluster as a

whole via the Jacobian and inverse Jacobian relationships of the cluster. The cluster offers the

benefit of explicit formation control and allows more sophisticated formations than simple

leader-follower or leader-follower chains. This type of formation control is especially important

in certain adaptive navigation scenarios, such as ridge or trench following, where relative

location of environmental readings is important in order to determine characteristics of the scalar

field. The two main challenges that arise when using the cluster space formulation are scalability

(due to computational complexity) and singularity avoidance (although several approaches have

been developed to address this).

Size limitations arise as a result of cluster configurations. For the example of 3-DOF planar

robots (translational DOF’s in x and y, rotational about z), the total number of cluster variables

required for an N-robot cluster will be 3N. Cluster variables are split up into four categories:

cluster position, cluster orientation, relative robot orientation, and “shape” variables. Table 1

below, presented in [10], indicates the cluster space formulation in general and for 4 planar

rovers:

Table 1. Cluster-Space Specification variables for MMS [10]

6

The cluster position and orientation variables are functions of the individual robot degrees of

freedom, while relative robot orientations are a function of the rotational degrees of freedom of

the individual robots and the number of robots in the cluster. As a result, the cluster variable

most affected by scaling the number of robots is the shape variables, which are s= p(n-2) +1. For

example, 10 planar robots will have 17 shape variables. The specification and regulation of all

variables leads to the cluster specification being computationally expensive, particularly when

the number of robots in the cluster increases.

Similar to singularities in industrial manipulator robots, singularities occur in clusters at certain

cluster configurations that cause the Jacobian or its inverse to become singular. It should also be

noted that, similar to industrial manipulators, operating in the vicinity of singularities is

undesirable as it causes very high actuator rates. In the context of clusters, this usually means

that a certain “cluster motion” specification would require a robot velocity that is at or above the

robot’s physical capabilities. As such, the cluster specification is a powerful tool for multi-robot

location specification, but has certain drawbacks, particularly in relation to easy scalability of the

cluster.

1.1.2.2 Implicit Formation Control

While explicit formation control explicitly specifies the location of individual robots, either in

relationship to each other or in global coordinates, implicit formation control allows for a

“bottom-up” emergence of a formation as a result of individual robot behaviors or control laws.

Implicit control includes techniques such as artificial potential fields (APF), behavior based

robotics, and swarm control techniques. In APF, potential fields are artificially created around

certain points so that the robot will move down the potential field in the desired manner. Figures

11 and 12 show a single potential field and the result of super-imposed potential fields. The

combined potential field and a potential path down it shows how this may be used for mobile

robot navigation. Superposition of global APF with “mobile” APF affixed to each individual

robot leads to an “implicit” formation that balances each of the individual potential fields.

Figure 11. Single repulsive APF [11] Figure 12. Superposition of APF, expected robot path [12]

7

This approach could also be accomplished through behavior-based robotics. However, in

behavior based-robotics, the resultant behavior would be a result of individual behaviors rather

than individual potential fields. For example, the first behavior could be “go east,” a second

could be “avoid obstacle X” and a third be “avoid other robots.” In this way, a similar implicit

formation could be achieved through a different formulation. While it is not explicitly different

from the first two approaches mentioned here, swarm control techniques bear mentioning as their

own approach to implicit formation control. The main difference between swarm robotics and

the approaches mentioned above is that swarm behaviors are geared at very large-scale MMS. As

a result of this much larger scale, swarm behaviors often attempt to execute the simplest form of

behaviors, rather than more complex behaviors such as APF. Different approaches to swarm

control techniques and example applications will be discussed in the next section.

1.1.3 Robotic Swarms and Research Fields within Robotic Swarms

As was mentioned in section 1.1.2, swarms often employ very simple individual robot behaviors

and control laws, and rely on the scale of the MMS (the “swarm”) to achieve complex group

behaviors. A more detailed classification of swarm robotics is as follows, adapted from

Senanyake et al. [13] In general, a rough set of criteria for swarm robotics is as follows:

1. Swarms consist of autonomous robots, capable of sensing and actuating. As a result,

stationary sensor networks or pure software agents are not “swarms.”

2. Swarms are large. Swarm behaviors can be studied at a small scale, but should be made

with an aim towards scalability and large numbers of agents.

3. Swarms are homogeneous and redundant. While having heterogeneous robots does not

exclude an MMS from being a swarm, the heterogeneity must be very limited so that the

swarm is redundant and robust to individual robot failures.

4. Swarms improve performance through cooperation. In particular, the swarm robots would

not individually be able to complete the task at hand (or would do it very inefficiently)

outside of the context of the swarm. This is sometimes referred to as “swarm

intelligence,” or the idea that the swarm is able to “know” things that individual robots

themselves do not.

5. Swarm robots do not have extensive individual capabilities. Swarm robots should have

limited sensing and communication abilities in an attempt to implement more distributed

coordination.

Within the criteria above, there are many different foci in research involving swarms. Some of

these research areas are applications based (such as mapping and localization, source seeking,

and object transportation), some are focused on a particular design approach (such as bio-

8

inspiration), and others are focused on swarm protocols (such as communication, control

protocols, motion coordination, and “learning” via swarm intelligence) [14]. These areas are not

necessarily exclusive. For example, certain groups may utilize bio-inspiration (design approach)

for their communication protocols (swarm protocols) for swarms engaged in source seeking

(application-based). Each of these areas is briefly discussed below, with references to studies in

each area.

1.1.3.1 Bio-Inspired Swarms

Bio-inspired swarms refers to the explicit effort to re-create group behaviors seen in natural

groups of animals with limited individual capabilities, such as ants, bees, birds, and fish. While

other research areas within robotics use bio-inspiration for design of actuators and physical

robots [15, 16], bio-inspired swarm research focuses on group behavior algorithms and

communications to utilize the “swarm intelligence.” [17] Perhaps the most common research

area within bio-inspired swarms is the attempt to recreate insect swarm behaviors, including such

applications as foraging (mimicking ant foraging) [18] and source seeking. While insects are the

most common inspiration, researchers have also mimicked fish as well as packs of wolves [19].

1.1.3.2 Communication, Control, and Motion Coordination Protocols

The issues of communication, control, and motion coordination protocols fall within the area of

“swarm protocols,” or how the swarm behaviors will actually be achieved.

Communication is a necessity given the inter-connectedness and collaboration of robotic

swarms, and can be done explicitly or implicitly. Explicit communication involves direct

transmittal of robot data (such as position and sensor reading data), while implicit

communication is most commonly achieved through stigmergy. Stigmergy involves indirect

communication through actuation on the environment. A common implementation of this in

swarms is through virtual “pheromones” [20]. For example, it may be desired to share data about

an individual robot’s sensor values for a certain pollutant. Explicit communication would involve

directly sending this information to other robots (or to a centralized location that then transmits it

to other robots). In contrast, stigmergy would involve the robots releasing a “pheromone” at a

level proportional to their sensor value reading. In this implicit communication, data can be

shared more easily across a wider array of robots, but there are other concerns that arise with lag

in sharing of data, imprecise data sharing, and additional sensors needed to sense the

“pheromone.” Despite these concerns, the use of “pheromones” can help reduce computational

load by only sharing data with local neighbors.

9

At the control level, a decision is made about whether control will be done in a centralized or

distributed manner. While individual commanded velocities must be distributed to each

individual swarm robot, the process of the control is a key decision. Centralized control involves

one controller/computer that calculates all robot velocities and then distributes them to the proper

agents. In contrast, distributed control involves each robot making its own calculations through a

set of control or behavior laws and acting off of those. A blend of distributed and centralized

control is also possible for certain applications [30].

1.1.3.3 Swarm Intelligence and Swarm Learning

As was stated in section 1.1.3, all swarm robotic systems utilize swarm intelligence at some

level, as they all leverage the knowledge or abilities of simple agents to create a complex group

behavior. However, some areas of swarm research are much more focused on this “intelligence”

aspect of the swarm and attempt to utilize learning algorithms to maximize the “intelligence” of

the swarm. This area is especially relevant for groups focused on implementing swarms in

unknown or rapidly changing applications [22]. Swarm learning may take a variety of forms,

such as decision trees [24] or neural networks [25]. It should be noted that this area of research is

closely linked with AI, Machine Learning, and other research fields, and is not exclusive to

swarm robotics. However, the typical architecture of a robotic swarm lends itself to research in

this area, and oftentimes may serve as a testbed for these research areas.

1.1.3.4 Applications-Based Swarm Development

Whereas sections 1.1.3.1-1.1.3.2 have discussed particular research areas within swarm robotics,

a particular approach to swarm robotics research that places the desired application at the

forefront is discussed in this section. It should be noted that this can be executed in conjunction

with the other research areas previously stated, but that the main goal of the research is toward a

certain application, rather than the development of a capability. The most common applications

found in research currently are task allocation, object transportation and manipulation, and

source finding. Task allocation is necessary when the swarm must accomplish multiple goals

simultaneously. In these instances, it is necessary for the swarm to determine which robots

should complete each task [26]. Many different strategies have been proposed for how to most

successfully allocate tasks. These include market-based [27], auction-based [28], distributed

planning [29], and fault-tolerant techniques [30]. Object transportation and manipulation can

encompass “grasping” a physical object [31], pushing the object without grasping [32], or

“guarding” a target [33]. Finally, source finding has been explored by multiple researchers. Due

to its direct connection to adaptive navigation techniques and this thesis, current research in this

area is discussed in section 1.2.2.

10

1.2 Adaptive Navigation

The focus of this section of the paper is to discuss a particular application - Adaptive Navigation

- for which swarm control techniques can be utilized.

Adaptive Navigation (AN) is the process of determining a goal location during transit rather than

specifying a goal a priori. This stands in contrast to traditional navigation, which often involves

goal coordinates, waypoints, or a time-dependent trajectory. Oftentimes, AN implies that the

quality of the goal location may be known, rather than the specific coordinate(s) or location(s). A

disaster-relief example of AN might involve the mapping of the spread of a pollutant, in order to

determine which areas need to be evacuated. In this example, the goal of the AN would be to use

sensor readings of pollutant concentrations in order to effectively map and determine pollutant

spread. Subsequent sections will discuss approaches to AN, with a survey of techniques in

general, and a section that will focus on swarm approaches to implementing AN.

Frequently, adaptive navigation is used in scalar fields, that is, fields that have a discrete scalar

value for each position in the field. Adaptive navigation is particularly useful in finding features

of interest within scalar fields, such as maxima or minima, contours of a specified value, ridges

and trenches, or saddle points, as indicated in Figure 13.

Figure 13. Key Features in a Scalar Field [34]

1.2.1 Approaches to AN

Adaptive Navigation is heavily linked with the field of mobile robotics, including applications in

single mobile robot systems as well as MMS. Single mobile robot adaptive navigation systems

may utilize AN for similar reasons as MMS, but are often more limited in their abilities or

11

approaches. Single mobile robot systems may utilize differential sensing, but are limited by the

fact that the sensors are limited in their distribution by the robot’s size. Despite this, efforts have

been made to utilize single quadcopters with differential sensing for source-seeking applications

[36]. Alternatively, single mobile robots may implement adaptive navigation techniques that are

much more dependent on memory and storage of previous conditions, such as Simultaneous

Location and Mapping (SLAM) algorithms [37]. Such algorithms, while powerful, require robust

systems with much higher computing power and storage capacity.

One of the main advantages of utilizing MMS for adaptive navigation, especially when

implementing differential sensing techniques, is that the sensors can be spread over a much

wider area. This wider area can be utilized to more accurately estimate relevant gradient

information, which is the basis for most scalar field adaptive navigation techniques. Recently, the

RSL has successfully implemented such scalar field AN techniques utilizing the cluster-space

MMS technique discussed in section 1.1.2.1. By utilizing differential sensing across robots in the

cluster, feature information could be estimated in order to successfully accomplish minima and

maxima finding, contour following, ridge and trench following, and saddle-point “station

keeping.” [34] Another advantage of utilizing MMS for AN is the fact that decisions can be

based solely off real-time sensor readings, which makes the system more agile than a single

robot basing decisions on both current and past states.

1.2.2 Survey of Adaptive Navigation utilizing Swarm Control Techniques

As was mentioned in section 1.2.1, there are many advantages to utilizing MMS for AN. In the

area of swarm control techniques, a detailed survey of the research did not indicate that

researchers have explicitly been working towards creating “adaptive navigation primitives”

similar to those presented in [34]. There is, however, extensive research in utilizing robotic

swarms for source finding and tracking. In the context of [34], this would be the problem of

minima or maxima finding, depending on the type of the source.

As mentioned in section 1.1.3.1, robotic swarms are often bio-inspired, and this trend is

especially prevalent in source-finding applications. For example, efforts have been made to

mimic moth behaviors in source finding applications [38]. In [38], a behavioral architecture was

used that involved tracking and reacquiring a “plume,” which implies a well-defined scalar field

ridge. While this architecture is similar to that used in this thesis’ behavioral architecture, the

individual behaviors are more complicated and involve the storage of previous states. Similar

plume-tracking behaviors have also been expanded [40] and have been proven effective for time-

variant sources as well. In addition to moth-inspired algorithms, some researchers have based

search algorithms off schools of fish [41, 42]. This strategy involves a dual-input velocity

12

determination, wherein velocity is based off formation keeping as well as individual

measurements of the scalar field.

In addition to these bio-inspired approaches, research has been done in swarm-based source

seeking that attempts to work past a common assumption within other research areas. These are

summarized in Table 2.

Table 2. Summary of Assumption-based Swarm Source-Finding Research

Common Assumption Description of Work addressing

Assumption

Author(s)

Swarm robots have unlimited

battery life in the context of

their mission

Employ a “layered” behavior architecture that

includes behaviors for returning home to

recharge. Tested on quadcopters with flight

endurance constraints.

Gainer, J. et

al. [44]

Source will be constant (or if

time-variant, always

measurable)

Simulated tracking of an intermittent RF

Source that may not always be measurable or

detectable. Employed an estimator and path-

planning optimizer for achieving fastest

convergence to source.

Koohifar, F.

et al. [45]

Swarm Robots have

knowledge of their global

position

Structured behaviors off of relative bearing

angle to other robots in the swarm, without

using distance or global position of individual

robots

Fabbiano and

Garin [46]

Swarm robots are essentially

acting as particles, as their

size is small relative to the

source

Based simulations off of larger robots with

non-holonomic kinematic constraints to

verify that cooperation algorithms hold for

non-particle robots.

Xue

Songdong

[47]

1.2.3 Working Definition of Swarm Robotics

Given the wide variety of uses and definitions of Swarm Robotics, it is necessary to present a

working definition of “swarm robotics.” In this thesis, a swarm is:

1. Homogeneous: All robots within the swarm should have similar actuation and sensing

capabilities to ensure interchangeability of individual robots. The robots can have an

“identity,” whether this is through numbering or naming of robots.

13

2. Complex Group Behavior: Swarms should achieve behaviors that individual robots are

not capable of by themselves.

3. Simple, Superimposable, Universal Behaviors: Robot control is achieved through simple

behaviors that can be superimposed or “stacked.” All robots within the swarm should be

programmed to have the same set of behaviors.

4. Local, Real-time information: Robots should only utilize information between local

neighbors (and not global information), and the robots should only use real-time

information in behavioral calculation, rather than storing past information in a buffer for

more complex calculations.

5. Constant-Speed Robots: Robots within the swarm should be set to move at a constant

speed, with behavioral commands resulting in a bearing command, thus controlling the

direction rather than the magnitude of the robot’s velocity.

1.3 Major Contributions

As discussed in previous sections, swarm control techniques have been utilized for a variety of

“source-seeking” applications, though no previous research was found that made the explicit

jump from source-seeking to adaptive navigation applications. The goal of this thesis is to make

this jump, and achieve adaptive navigation primitives with swarm control techniques similar to

those achieved using the cluster-space formulation. The three main contributions of this thesis

are as follows:

1. Development of a Simulation Environment in Matlab/Simulink - An easy-to-use

simulation environment was developed in Matlab/Simulink that allows for rapid testing

and vetting of swarm behaviors. The simulator was developed so that it can easily

interface with the testbed previously developed by RSL [35].

2. Demonstration of top-down specification of swarm behaviors - As was mentioned in

section 1.1.3, swarm robotics often involves the use of “emergent” behaviors that result

from a combination of simple “primitive” behaviors. This paper demonstrates a

movement towards more distinctly specifying behaviors from a top-down perspective.

This includes specification of design guidelines for achieving certain desired swarm-level

behaviors.

3. Demonstration of Adaptive Navigation Primitives - This thesis successfully demonstrates

adaptive navigation primitives such as minima and maxima finding and contour finding

and following. These AN primitives are vetted in simulation and have been validated on

the RSL’s testbed.

The development of adaptive navigation behaviors using swarm robotic techniques provides an

alternative method to the cluster-space technique that may be more easily applicable in cases of

14

poor communication or high probability of individual mobile robot failures. The adaptive

navigation techniques that are developed have the potential to more rapidly complete mapping

applications and could also be used in disaster-relief scenarios.

1.3.1 Research Collaboration

This research began as class project for MECH 296A: Mobile Multi-robot Systems at Santa

Clara University, where a simulation environment for swarm behaviors was initially developed

in Matlab/Simulink, with collaboration between the author and classmates Jimmy Nguyen and

Jason Fu. This simulator was built to observe the behavior of 10 swarm robots for swarm

behaviors including Attract, Disperse, and Go-To Coordinates. The initial work associated with

this thesis involved an expansion of the MECH 296A simulator and was done in collaboration

with Santa Clara University graduate students Maximilian Reese and Shae Hart. Much of the

initial expansion of the simulator was done by Max Reese, including extensive Matlab/Simulink

programming to allow for a variable number of robots and easy manipulation of behavior laws

across all robots. The conversion of the simulation environment to interface with the existing

testbed environment was done by Shae Hart. The author: (1) developed a GUI to allow rapid

variation and testing of simulation and experimentation parameters, (2) developed post-

processing plots and metrics to evaluate swarm performance, and (3) conducted the simulation

and hardware experiments described in Chapter 4. Adaptive Navigation behaviors such as

extrema finding and contour following were developed and refined in collaboration between all 3

students.

15

2. Simulator Development

One of the main foci of this research has been to develop a Swarm Adaptive Navigation

Simulator (SANS) that easily allows for the composition, superposition, and testing of swarm-

level behaviors. Initial testing and behavior development is performed in SANS’ simulation

mode. Once behaviors are fully vetted, they can be tested on hardware using SANS’ testbed

mode. SANS is segmented into different tiers, which are discussed in the following section from

the lowest level to the highest level.

The simulator is structured in a way that it can be used to rapidly run and test different behaviors

for different numbers of robots, lengths of simulations, types of behaviors, robot speeds, and

scalar fields. Additionally, as is discussed in section 2.6, new behaviors can be added to the

simulator and rapidly tested and verified.

A high-level view of the simulator control architecture is shown in Figure 14.

Figure 14. High-level schematic of the SCUSANS control architecture.

At the highest level, each robot shares its current state, which can include position, orientation,

and sensor value information. This current state is then fed as inputs to each individual robot at a

behavior control level, where each behavior calculates a velocity vector based on the current

swarm poses. These velocities are then aggregated and converted into a bearing angle that is

given as a command to an omnibot with on-board velocity control. The conversion function is

16

the summation and weighting of the input velocity vectors, as well as the conversion of that

information into a bearing command angle for the constant speed robot. The behaviors,

conversion function, and constant-speed robots are discussed in the following sections. In the

simulation environment, there is a necessary screening of incoming data to simulate the

communication range of the individual robots within the swarm.

2.1 Robot-Level: Omnibot

The base level of SANS is the Omnibot, based off the Decabots used in the RSL’s mobile

robotics testbed, shown in Figure 15. The Omnibots are equipped with three Omni-wheels that

allow the robot to move instantaneously in any direction, while also allowing for rotation about

the robot’s z axis. Each Omnibot is also equipped with an on-board sensor that can read the gray-

scale value of scalar field printouts that are laid out on the testbed. We also assume that each

swarm robot has knowledge of its position, via either GPS, or in the case of the testbed, an

OptitrackTM system, and that this data can be transmitted to other robots in the swarm.

Figure 15. Omnibot used in the RSL’s Decabot Testbed System [35]

For the SANS simulation mode, a model of these omnibots is used to calculate the robot-level

position response to an input bearing command. For each robot, once the new position has been

determined it is fed through a function that determines the robot’s “scalar value,” which is the

value at that (x,y) location in the loaded scalar field. This simulates the Decabot’s reading of a

grayscale value from its on-board sensors.

In SANS, the holonomic omnibots are running at a constant speed. Robot control is therefore

specified as a bearing angle, which is then converted to individual wheel velocities using the

inverse Jacobian for the robot. The robot-level velocity control architecture is shown in Figure

16. The commanded global bearing for robot i, Φ𝑖 , is converted into a velocity in the robot

frame, 𝑉𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. For the omnibot in Figure 15, this velocity vector has translational components in

the robot’s and x and y axes, and a rotational component about the robot’s z axis. Using the

17

robot’s inverse Jacobian, the robot velocity is converted into wheel velocities, 𝜔𝑖𝑐𝑚𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Each wheel

is modeled as a first-order transfer function, and is represented by the blocks Wheel N. The

output from each Wheel N is the dynamic response to the commanded wheel velocity. The

combined dynamic response is multiplied by the Jacobian to convert back to robot-level

velocities and is then transformed back to the velocity in the global frame. Integrating the global

velocity over time yields the current pose of the robot, (xi , yi, θ𝑖).

Figure 16. Robot-Level Velocity Control for the Omnibot

2.2 Command-Level: Behavior Commands

Behavior command occurs at the level above robot speed control. At this level, the current robot

position and sensor data from local neighbors yields a bearing angle command that is then sent as

an input to the constant-speed robot discussed above. In this level, multiple behaviors are

specified and can be switched on or off, depending on what behavior or combination of

behaviors is desired. Each behavior is a function of the current “robot parameters,” which are the

current position and sensor value readings of each robot in the swarm. Although global swarm

data is available in the simulation environment, only local information may be used in order for

the swarm to conform to our working definition in section 1.2.3. As such, data from robots that

are not within communication range is filtered out in SANS. The individual behaviors are

discussed in depth in Chapter 3.

Figure 17. Behavior Level control

18

The control architecture for the behavior level is shown in Figure 17. The global swarm

information, including robot position, orientation, and sensor value data (X, Y, S) is the input to

each behavior. Though not shown in Figure 17, this data is filtered to ensure that only local

information is used. Each behavior m for robot i yields a command velocity vector 𝑉𝑚𝑖
⃗⃗ ⃗⃗ ⃗ in the

global frame. These command velocities are then converted to a bearing command in the global

frame, 𝜙𝑖. The conversion function also allows for weighting of behaviors via a gain associated

with each commanded velocity vector. Generally, behaviors were given equal weighting.

However, for certain composite behaviors, such as flocking (Section 3.2.1), utilizing different

weighting gains can yield different swarm-level behaviors.

For the purposes of this swarm, all robots are assumed to be identical with the exception of

individual robot numbers. This means that each robot has the same behaviors programmed in at

the behavior command level, and all robots will have the same behaviors turned on or off. In

Figure 17, the “Constant Speed Robot” block is a subsystem that consists of the functions

depicted in Figure 16.

2.3 Group Level: Swarm Architecture

Above the behavior control level is the swarm architecture. At the swarm level, N identical,

numbered robots can be specified, as shown in the block diagram below:

Figure 18. Swarm-Level Architecture

In the block diagram above, each block for robot i includes both the omnibot and the behavior

commands discussed in the prior two sections. Thus, at the swarm level, the input is the current

19

“swarm state,” which includes information about all robot position and sensor data, and the

output is the swarm pose at the next time step. This updated swarm pose is then fed back as the

input for the robot behaviors of the next iteration. In the context of the simulator, it is important

to note that while each robot receives data about every other robot, not all of this data is marked

as “usable” by the robot. As will be discussed in the Behavior Algorithms section, we make the

assumption that each robot has a finite “Communication Range” in which it would be able to

communicate with other robots in the swarm. If robots fall outside of this communication range,

although data is received, it is not used in behavior algorithms.

2.4 User Level: User Interface

The top level of the swarm simulator is the user interface, which allows for easy specification of

robot behaviors, swarm size, and other factors. The GUI is shown in Figure 19 and is split into

five main categories: behavior selection, simulation parameter selection, scalar field selection,

mode selection, and robot selection. The robot selection is only necessary for the testbed, and not

the simulator.

Figure 19. User Interface for specification of swarm behaviors and parameters

The first category, labeled Select Behaviors, allows the user to specify which behaviors will be

turned on for the swarm as whole. These relate to the switches shown in Figure 17 that detail

switching of behaviors at the behavior command level.

The second main category is simulation parameters, which has the following components:

20

- Number of Robots - user can specify up to 10 robots to be part of the swarm

- Simulation Run Time - allows user to specify how long the simulation will run

- Sensor Range - used in determining which robots are “in range” of each other.

- Avoidance Range - used in the obstacle avoidance algorithm.

- Desired Contour and Contour “Buffer” Zone - used in the Find/Follow contour behavior.

- Robot Speed - Sets the speed of the constant speed robot at the Omnibot level.

The sensor range, avoidance range, desired contour, and contour “buffer” zone are all discussed

in more depth in Chapter 3.

The third section of the GUI allows the user to specify which scalar field to use for adaptive

navigation purposes. The user’s selection is loaded into the scalar field reading function at the

Omnibot level that determines each robot’s “scalar value” when in simulation mode. Finally, the

GUI allows the user to specify initial conditions in three ways. The first is by using “Default”

conditions. Default conditions allow the user to specify the center and radius of a circle, and then

spaces the individual robots equally along the circumference of that specified circle. Users can

also set robot initial conditions “manually,” where the user can specify initial conditions via

mouse click in a coordinate plane. Finally, the user can select “random” and have the robot initial

conditions randomly dispersed throughout the scalar field domain.

The final section of the GUI, Select Mode, allows users to easily transition from simulation to

experimental validation on hardware. To use this mode, the user specifies in the Select Robots

section which robots will be used for their experiment. Then the SANS backend handles

importing and connecting all of the Simulink blocks necessary for communication with the

OptiTrack system and the individual robots. During this transition, the SANS control architecture

remains unchanged; the only two differences are the use of the OptiTrack system to determine

robot pose instead of calculating poses from the Decabot models and the use of the Decabots’

onboard sensors to measure scalar values instead of using the provided scalar field function.

2.5 Post-Processing and Visualization of Results

In order to easily visualize the results of the simulation, there are 3 post processing outputs

produced by the simulator. The first is a video that displays the robots’ positions over a color-

coded scalar field, as shown in Figure 20. In this video, each robot is represented as a colored

point. The blue line running through the image represents the specified “desired contour value.”

21

Figure 20. Freeze-frame of video of swarm behavior

In addition to the video, a time history of the robot positions is superimposed on a contour map

of the scalar field. In this view, each thick line represents a robot trajectory, while the thin lines

represent contours of specific values. Figure 21 shows this functionality for a “Find Max”

behavior (left) and for a “Follow Contour” behavior (right). The 3D view of the time history

allows for easy visualization of performance of adaptive navigation behaviors.

Figure 21. Post-processing plots of time history of robot positions

Finally, for adaptive navigation behaviors (such as find min, find max, or follow contour) it can

be beneficial to view the time history of the sensor values, as these readings are being used in the

behavior control laws. Two examples are displayed below for “Find Max” and “Follow

Contour.” These plots include not just the sensor values, but also information that can help show

how effectively the swarm has achieved the desired behavior. For example, the Find Max Sensor

22

Value Time History indicates the known global max value, while the Follow Contour displays

the desired contour value. This can be seen in Figure 22, with the left image showing a Sensor

Value time history for a Find Max behavior, and the right image showing the time history for a

Follow Contour behavior.

Figure 22. Post processing plots of time history of sensor value readings

These post-processing plots help to give an indication of how well the system is achieving the

desired swarm behavior. For example, the left plot of Figure 22 shows that the swarm

successfully moves toward locations with higher scalar field values and settles around the known

global maximum value. Around t=14 seconds, the swarm drifts from the global maximum but

successfully re-locates the max by t=18 seconds.

2.6 Adding Additional Behaviors

The main goal of developing the simulator was to enable rapid testing of individual behaviors

and combinations of behaviors. This was accomplished by creating an easily scalable system that

allows for user-inputs for system variables (such as number of robots, robot speeds, and

simulation times). Additionally, the user interface makes it easy to visualize which behaviors are

being utilized. It should also be noted that, because the architecture is structured to allow

individual behaviors to be stacked, new individual behaviors can be added relatively quickly. In

order to add a new primitive or composite, it must be added in the following locations:

- Simulink Behavior Block and Behavior Switch - The new behavior block must be added

as a “Matlab Function” block in the Simulink file “Swarm_Robot_Base.” In order to

make this behavior switchable, a switch must be added downstream, with a zero velocity

vector set to the “switch off” position.

time (s) time (s)

S
ca

la
r1

V
a
lu

e

S
ca

la
r1

V
a
lu

e

23

- Conversion Block - the new behavior must be added to the “SwarmSimSum” function,

and a gain selected for the conversion function.

- User Interface - In order to switch the behavior on or off in the user interface, the

interface must be updated (using GUIDE) to have a checkbox associated with the

behavior switch in “Swarm_Robot_Base.”

- (Optional) plotRobotHistory - As discussed in 2.5, the simulator will produce a post-

processing video of the robots, displayed over the current scalar field. A separate post-

processing plot, if desired, (such as the time history of the robots, or the time histories of

the sensor values) can be added in the plotRobotHistory sub-function of

SwarmRobotTestSim. It should be noted that in order to do this, a new case must be

added for the desired behavior, and the setup for this case can be done in the

SCUSANS_GUI function.

2.7 Testbed Environment

After behaviors are developed and vetted in the simulation environment, they are tested and

validated on hardware. The hardware used for these swarm robots is the Decabot indoor testbed

system in Santa Clara University’s Robotics Systems Laboratory (RSL) presented in [35]. The

Decabot system can utilize up to 10 of the omnibots shown in Figure 15. These robots are

equipped with grayscale sensors that allow for the reading of the magnitude of a grayscale plot.

Each robot sends its grayscale sensor value reading to the control computer via wireless

connection. A sample grayscale plot with 3 omnibots is shown in Figure 23.

Figure 23. Sample Grayscale Field with 3 Decabots

Robot position and orientation is determined using an OptiTrack system. Each robot has

uniquely spaced markers on it that are sensed by the OptiTrack system and are used to define a

24

rigid body. The position of each marker is sensed by the OptiTrack cameras, and the OptiTrack

system then converts this raw marker position data to the position and orientation of each of the

uniquely defined rigid bodies. The position and sensor value readings are then sent to the

Simulink environment, where behavioral control laws are implemented. In this controlled testbed

environment, the global swarm data is still available, so filtering of robot data to only utilize

local neighbors’ information is still necessary. The architecture for the testbed is shown in

Figure 24, adapted from [35]. A streaming server, DataTurbine, is used as an intermediary to

send and receive data. Via this channel, Matlab/Simulink receives sensor data from the robots

and position data from the OptiTrack system. The robot velocity commands are then calculated

in Matlab and distributed to the individual robots. Despite using a centralized computer, the

swarm control techniques are still a distributed technique due to the control architecture,

presented in 2.2-2.3.

Figure 24. Decabot Indoor Testbed Architecture [35]

25

3. Behavior Control Laws

As discussed in section 2.2, robot control is achieved through behavior control, where current

information about individual robots within the swarm is converted into a velocity command for

the omnibots. In general, these behaviors can be split into two main categories of “Primitives”

and “Composites.” Primitives are base-level calculations or behaviors, while composites are

“stacks” of multiple primitives. Behaviors can stack in multiple ways, such as addition,

multiplication (or scaling one primitive by another), or some combination of the two. The

behavior descriptions below provide a schematic for the intended result of the behavior, a

mathematical definition of how the behavior can be implemented, verification of the behavior in

simulation, and validation of the behavior in the testbed.

While these behaviors have been split into primitives and composites, it should be noted that

some composite behaviors can also be labeled as “adaptive navigation primitives” to be

consistent with [34]. For example, the Find Min/Find Max behavior is an adaptive navigation

primitive, but is a swarm composite behavior consisting of the swarm primitives of attract and

sensor value comparison.

3.1 Supporting Calculations

Swarm behaviors, whether primitives or composites, yield an output velocity vector that can be

superimposed with other behaviors. In the process of computing these behaviors, there are two

supporting calculations that do not yield output velocities in and of themselves. The first, out-of-

range determination, is a condition imposed in simulation to reflect hardware communication

conditions. The second, sensor value comparison, can be utilized as a gain in later composite

behaviors, but by itself does not result in a commanded velocity.

3.1.1 Out of Range Determination

The “out of range determination” is an artificial constraint imposed in simulation to mimic the

communication range constraint of individual robots in the swarm. As was mentioned in section

1.2.3, one of the defining characteristics of swarms is the fact that they are limited to local

communication only. However, in simulation, all robot data is available to each other. Therefore,

it is necessary to implement a constraint on inter-robot communication so that behaviors are only

a function of robots that are within communication range of each other. The range determination

is accomplished by calculating the distances, dij , from each robot i to all other robots j, by using

the (x, y) position of each robot i (xi, yi) and robot j (xj , yj) as shown in Equation 1.

26

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 Equation 1

The distance from each robot i to j is then compared to the robots’ communication range, Rs. For

all dij >Rs, the robot j is considered to be “out of range” of the robot i, and vice-versa. These out

of range robots are then “discarded” and not used in the determination of the rest of robot i’s

behavior controls.

3.1.2 Sensor Value Comparison

Sensor value comparison is another supporting calculation, as it does not explicitly affect the

swarm behavior unless it is paired with another behavior. The sensor value of robot i is

compared to all other robots j:

𝛥𝑆𝑉𝑖𝑗 = 𝑆𝑉𝑖 − 𝑆𝑉𝑗 Equation 2

For future behaviors, it is important to note that for this convention, positive values of

𝛥𝑆𝑉𝑖𝑗 indicate that robot i has the higher sensor value reading, while a negative value indicates

that robot j has the higher reading.

3.2 Swarm Primitive Behaviors

The following behaviors are “primitive” behaviors that can be used by themselves, or stacked

with other primitives in order to achieve more complex swarm behaviors.

3.2.1 Obstacle Avoidance

An obstacle avoidance algorithm is necessary in any mobile robotics application, and especially

in mobile multi-robot systems, so that the individual robots will not collide with each other.

Obstacle avoidance is particularly important in adaptive navigation scenarios where the terrain

being explored may be unknown and external obstacles may be present.

The obstacle avoidance algorithm constantly monitors the relative positions of the other robots,

but does not put out an avoidance velocity component unless the avoidance range has been

triggered. In contrast to the other behaviors in the simulator, the obstacle avoidance behavior has

a variable velocity magnitude. In this way, the obstacle avoidance, when triggered, has the ability

27

to “override” and dominate other behaviors to insure that inter-robot and robot-object collisions

are avoided. The magnitude of the avoidance velocity is:

 𝑀𝑂𝑖𝑗 =
𝑅𝑎

4

𝑑𝑖𝑗
4 , 𝑑𝑖𝑗 < 𝑅𝑎 Equation 3

𝑀𝑂𝑖𝑗 = 0 , 𝑑𝑖𝑗 > 𝑅𝑎

where 𝑀𝑂𝑖𝑗 is the magnitude of the obstacle avoidance velocity for robot i in the direction away

from robot j. Ra is the obstacle avoidance range. Chapter 4 discusses criteria for selecting an

obstacle avoidance range, but the range must be at least ~2.5x the radius of the physical robots to

ensure collision avoidance. The range must also be significantly smaller than the communication

range so that robots do not repel each other out of communication range. The distance from robot

i to robot j, dij , must also be calculated as described in Equation 1. The obstacle avoidance

behavior is not individually validated, but is validated in combination with the other primitive

behaviors described in sections 3.1.4-3.1.5.

The magnitude of the obstacle avoidance velocity is determined using methods similar to those

presented in [49]. This allows for strong repulsion in the vicinity of obstacles and other robots,

while yielding negligible obstacle influence when robots are farther away from obstacles or other

robots. The ratio of the avoidance range to the distance between robots is raised to the 4th power

because this was found to yield effective collision avoidance without negatively affecting other

swarm behaviors.

3.2.2 Go-To Coordinates

A Go-To Coordinates behavior was implemented for the swarm. In this behavior the user

specifies the goal pose’s x and y coordinates and each robot attempts to travel to it. It should be

noted that this is not necessarily a “swarm” behavior, as each robot can perform the behavior

individually, without needing robot-to-robot communication. This can be seen by the fact that

each robot’s velocity vector is a function of its own pose and the desired pose only:

 𝑉𝑔𝑥𝑖 = 𝐾𝑔(𝑥𝑑𝑒𝑠 − 𝑥𝑖) Equation 4

𝑉𝑔𝑦𝑖 = 𝐾𝑔(𝑦𝑑𝑒𝑠 − 𝑦𝑖)

where 𝑉𝑔𝑥𝑖 is the x-component and 𝑉𝑔𝑦𝑖 is the y-component of the velocity output vector for the

go-to behavior that is fed into the conversion function at the behavior level (see section 2.2). Kg

28

is a scaling gain, nominally set to 1. Though the Go-To Coordinates behavior doesn’t utilize

information from other robots, it is an important behavior to implement for multiple reasons.

First, this simple behavior can be easily verified when moving from the simulator to the testbed.

Second, it can be coupled with other primitives to achieve more complex composites. A general

schematic for the go-to behavior is shown in Figure 25. The left image shows the robots at time

t=0, while the right image shows the expected behavior once they have settled, with the robots

reaching an equilibrium position that balances the go-to velocity vectors with the obstacle

avoidance the robots feel against each other (see section 3.2.1 for details on obstacle avoidance).

Figure 25: Schematic of go-to behavior for N=3 robots

The go-to behavior is first verified in simulation and then validated using the testbed. To validate

the effectiveness of the go-to behavior, the centroid of the swarm is calculated by taking the

average position of the robots, and comparing this to desired goal location, as can be seen in

Figure 26. The left figure indicates the go-to functionality in the simulation environment, and the

figure on the right indicates that the behavior is repeated effectively in the experimental testbed.

In the figures below, x’s indicate the initial robot positions, and 0’s indicate final robot positions.

Figure 26: Behavior simulation (left) and validation in testbed (right) for go-to coordinates behavior.

29

3.2.3 Attract/Disperse

The attract behavior causes robots within the swarm to move closer to other robots, while the

disperse behavior causes them to spread out from each other. While these are useful

functionalities on their own, it should also be noted that the attract behavior is an important part

of the AN strategy as it allows for the swarm to stay within communication range of each other

while performing the desired AN task. As will be shown in the results section, the attract

function can dramatically improve the performance of AN behaviors.

The first step of the attract behavior is a response based on the distance and bearing of a robot i

relative to all other robots j:

𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 Equation 5

𝜙𝑖𝑗 = arctan (
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
) Equation 6

Where 𝑑𝑖𝑗 is the distance from robot i to robot j and 𝜙𝑖𝑗 is the bearing angle from robot i to robot

j. The distance 𝑑𝑖𝑗 is used to determine which robots are in range, as discussed in section 3.1.

The bearing angle is then used to determine a velocity in the direction of each in-range robot,

with constant speed V:

𝑣𝑎𝑥𝑖𝑗 = 𝑉𝑐𝑜𝑠(𝛷𝑖𝑗) ; 𝑣𝑎𝑦𝑖𝑗 = 𝑉𝑠𝑖𝑛(𝛷𝑖𝑗) Equation 7

where 𝑣𝑎𝑥𝑖𝑗 is the x-component and 𝑣𝑎𝑦𝑖𝑗 is the y-component of the attraction velocity of robot i

with respect to j. The attract/disperse function is then a simple summation of the velocity

components in (7) for all robots that lie within the designated sensor range 𝑅𝑠, or:

For all robots j s.t. 𝑑𝑖𝑗 < 𝑅𝑠: 𝑉𝑎𝑥 = ∑ 𝑣𝑎𝑥𝑖𝑗
𝑁
𝑗=1 ; 𝑉𝑎𝑦 = ∑ 𝑣𝑎𝑦𝑖𝑗

𝑁
𝑗=1 Equation 8

This behavior is illustrated in Figure 27. In this 5-robot configuration, note that all robots are

within range of each other with the exception of the leftmost robots. Therefore the aggregate

“attraction” for the bottom left robot is based off the information from the 3 robots to its right,

and not the robot directly above it.

30

Figure 27. Schematic of Attract/Disperse behavior for N=5 robots

The disperse behavior can be thought of as the direct opposite of the attract function. The same

aggregate vector in Equation 7 is calculated, with the disperse behavior simply going in the

negative sense of that vector.

The attract behavior was first verified in simulation and validated in the testbed for varying

obstacle avoidance and sensor range values. Figure 28 indicates the position history for the

robots when using an obstacle avoidance range of 1 unit (left) and 0.5 units (right). In both cases,

the robots, as a result of the selected behaviors, achieve a formation that minimizes the distance

between themselves and all other robots.

Figure 28. Simulation of attract with obstacle avoidance range of 1 m (left) and 0.5 m (right)

After vetting the attract behavior in simulation, it could be validated using the experimental

testbed, the time histories of which are shown in Figure 29.

31

Figure 29. Testbed Validation of Attract Behavior

The testbed results show two key results. The first, as seen in the left image of Figure 29, is that

the initial conditions can have a dramatic effect on individual robot behaviors, as is seen in the

case of robot 3. While robot 3 still successfully completes the attract behavior, it does so by

“orbiting” robots 4 and 5, rather than having the roughly linear behavior observed in the

simulation. The second image on the right indicates a “clumping” that happens when the robots

are out of communication range of each other. Because robots 1 and 2 are out of range of 3, 4,

and 5, they separately complete the attract behavior without use of the other robots’ position

information.

The “opposite” behavior of the attract behavior is the disperse behavior, which is similarly tested

and verified, as shown in Figure 30.

Figure 30: Simulation (left) and testbed validation (right) of disperse behavior

32

In both cases, the robots move away from each other until they are all out of range of each other,

at which point they “wander” in the negative 𝑥 direction. As seen in the figures, the testbed

validation closely matches the simulated behaviors.

3.3 Swarm Composite Behaviors

Composite behaviors are formed by combining multiple primitives together. In most cases, this

involves simple multiplication or addition, or a combination of the two. The main exception to

this rule is the case of Out-of-Range Determination, which is implemented only in simulation to

conform to the swarm definition presented in 1.2.3. Though not listed in the formulation of any

of the composites, it should be noted that this is used for all behaviors, so that only agents that

are “in-range” are used when calculating the behaviors. Obstacle Avoidance is also assumed to

be “turned on” for all behaviors, and is added to the final resultant velocity of the behavior

control laws.

3.3.1 Flocking

The natural response of the swarm in go-to-coordinates mode is to attract to a certain point and

space out around that point based on the robot obstacle avoidance range. However, for some

applications it may be desired that the swarm group together and travel as a pack rather than

meeting at the specified coordinates. For such an application, the robot bearing can be

commanded as a sum of the attract and go-to behaviors, as shown in equation 9:

𝑉𝑓𝑙𝑖 = 𝐾𝑎𝑉𝑎𝑖 + 𝐾𝑔𝑉𝑔𝑖 Equation 9

where K represents a gain that can be scaled depending on desired weighting of behaviors. For

example, a large Ka would result in the swarm grouping together and then moving towards the

goal coordinates, while a smaller Ka would lead to a more gradual convergence. A simple

schematic for flocking is shown in Figure 31, and compared to the primitive go-to coordinates.

Rather than going straight to the desired coordinates as shown in Figure 25, the flocking

behavior is designed to cause the robots to group together and then head towards the goal

coordinates, or to do so simultaneously. The preliminary simulation verification of this is shown

in Figure 32.

33

Figure 31. Schematic of Flocking behavior for varying weighting of attract behavior

Figure 32. Simulation verification of Flocking behavior for varying weighting of Attract

The image on the left is a “pure” go-to primitive, while the middle image has added a weak

attract (Ka= 0.5) to the behavior composite. The paths of robots 1 and 3 are influenced by robot

2’s location, as they are attracted back to the group rather than directly to the goal coordinates.

This is seen even more clearly when using a strong attract (Ka=1.5) as shown in the right image.

3.3.2 Source-Seeking (Find Min / Find Max)

As was discussed in the background on adaptive navigation (section 1.2), it is often desired to

find the local or global extrema (minima or maxima) within a scalar field. In SANS, this is

34

accomplished by implementing a source-seeking composite behavior. The source-seeking

composite behavior is based off differential sensing, and implicitly utilizes an approximation of

the local gradient sensed by the swarm. The goal of the source-seeking composite behavior is to

compare robot i’s sensor value to the sensor values of all other in-range robots j, and then move

toward the robots with higher values (for find max) or lower values (for find min). To

accomplish this, the attract vector (equation 7) is scaled by the sensor value comparison scalar

(equation 2), yielding the following behavioral composite:

𝑣𝑓𝑚𝑖𝑗 = 𝛥𝑆𝑉𝑖𝑗 ∗ 𝑣𝑎𝑖𝑗 Equation 10

where 𝑣𝑓𝑚𝑖𝑗 is the resultant source seeking velocity for the robot pair ij, 𝛥𝑆𝑉𝑖𝑗 is the sensor value

comparison as defined in equation 2, and 𝑣𝑎𝑖𝑗 is the attract velocity for the robot pair ij as defined

in equation 7. The source-seeking velocity is calculated from robot i to all other robots j, and

then summed as shown in equation 8. A visual schematic for this is shown in Figure 33.

Figure 33. Schematic of Find Min/Find Max behavior for N=3 Robots

Figure 33 depicts a source-seeking behavior calculation for a single time-step of a simulation.

Robot 1 (bottom left) senses a scalar field value of 1, Robot 2 (bottom right) a value of 2, and

Robot 3 (top center) a value of 3. The nominal attract vectors are of equal magnitude and show

how the robots would be drawn together without scaling, while the scaled attract vectors show

how this is scaled by the sensor value difference. The find max aggregate velocity 𝑉𝑓𝑖𝑗 is then the

sum of the individual scaled attract vectors. This figure highlights two key characteristics of the

35

source finding algorithm. The first is that all robots are using the same behavior. This means that

while the robots with smaller sensed scalar field readings are drawn towards the robots with

higher readings, the robots with higher readings are equally “pushed” away from the robots with

lower readings. The second is that the find min behavior is the same as the find max behavior,

with the exception being the commanded velocity 𝑉𝑓𝑚𝑖𝑗 is in the negative sense of the vector.

This again relates to the formulation of the sensor-value comparison primitive (Equation 2).

The find min and find max are both verified in simulation, as seen in Figures 34 and 35. The

figure on the left indicates the find min behavior for 3 robots on a “single sink” scalar field- there

is only one minimum in the scalar field. The time history of the sensor values is shown to the

right, and indicates that the robot sensor values move down gradient towards the minimum. The

same behavior is run for find max on a “single source” behavior, and the simulation results are

shown in Figure 35.

Figure 34. Simulation: Find Min position (left) and sensor value history (right) for single sink

Figure 35. Simulation: Find Max position (left) and sensor value history (right) for single source

36

The find min behavior has been validated on the testbed with N=3 robots, shown in Figure 36.

The left image shows the robots successfully moving down the gradient, while the right image

shows the sensor value readings of the individual robots approaching the known global

minimum.

Figure 36. Testbed validation of find min behavior

Figures 34-36 demonstrate the functionality of the find min and find max composite behaviors,

both in simulation and on hardware. They also indicate the steady-state behavior of the extrema

finding behavior, particularly in the right image of Figure 35. While robots do move up the

gradient, they eventually reach a point where they lose gradient definition due to all being

situated on the same contour. Approaches to improve this steady-state behavior are discussed in

Chapter 4, which include increasing the number of robots and stacking of additional behaviors.

3.3.3 Find/Follow Contour

During AN, it may be desired to find and follow a contour in the scalar field. For example,

tracing and mapping the contour of a pollutant may indicate how far a pollutant has spread, and

can therefore indicate areas that may be safe or unsafe for human occupation. With this in mind,

a composite behavior to find and follow a contour was developed.

The contour finding and following composite behavior is a two-step process. The first step is for

robot i to self-identify whether it is on the contour, above the contour, or below the contour. This

is determined by comparing the robot’s sensed scalar field value to the desired contour value,

𝑆𝑉𝑑𝑒𝑠 . Each robot first checks if it is “on the contour.” This could be done by simply checking if

the robot’s sensed scalar field value is equal to 𝑆𝑉𝑑𝑒𝑠 . However, this would require that the

sensor value exactly match the desired contour value. Therefore, a “buffer range,” 𝑆𝑉𝑏𝑢𝑓𝑓 , is

37

established. The robot then checks if it is on the contour by calculating its sensed scalar field

value in reference to the buffered contour value. Namely, robot i is designated as on the contour

if:

𝑆𝑉𝑖 < 𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓 and 𝑆𝑉𝑖 > 𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓 Equation 11

If the robot is not on the contour, then the robot must determine if it is above the contour or

below the contour. If the robot’s sensed scalar field value is greater than 𝑆𝑉𝑑𝑒𝑠 , then the robot is

above the contour, and if the robot’s sensed scalar field value is less than 𝑆𝑉𝑑𝑒𝑠 , then the robot is

below the contour. At the end of this process, robot i has successfully established its “contour

state” as either on contour, below contour, or above contour. Once robot i’s contour state has

been established, the robot moves in the direction of the contour, or along the contour if it is on

the contour. The formulation of the commanded velocity is summarized in Table 3. It should be

noted that for Vfci for the “On Contour” contour state in Table 3, the formulation indicates a

rotation of vector Vfi by
𝜋

2
 radians.

Table 3. Contour State Determination

Robot i Sensor Value Contour State Behavior Formulation

 𝑆𝑉𝑖 > 𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓 Above Contour Find Min 𝑉𝑓𝑐𝑖 = −𝑉𝑓𝑚𝑖

 𝑆𝑉𝑖 < 𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓 Below Contour Find Max 𝑉𝑓𝑐𝑖 = 𝑉𝑓𝑚𝑖

(𝑆𝑉𝑑𝑒𝑠 − 𝑆𝑉𝑏𝑢𝑓𝑓) < 𝑆𝑉𝑖 < (𝑆𝑉𝑑𝑒𝑠 + 𝑆𝑉𝑏𝑢𝑓𝑓) On Contour Follow

Contour
𝑉𝑓𝑐𝑖 = 𝑉𝑓𝑖 ± 𝜋/2

In the above equations, 𝑣𝑓𝑐𝑖 is output velocity for robot i, and 𝑉𝑓𝑖 is the summation source-

seeking velocity as defined in equation 8. As was discussed in section 3.2.2, the positive sense of

𝑉𝑓𝑖 results in gradient ascent, or find max behavior, while the negative sense results in gradient

descent, or find min behavior. In order to move along the contour, it is not desired to move up or

down gradient, but perpendicular to the gradient. Therefore to move along the desired contour, it

is required to move perpendicular to the gradient direction approximated by 𝑉𝑓𝑖 , which is

accomplished by adding ±
𝜋

2
 radians to the commanded bearing angle. The choice of positive or

negative ±
𝜋

2
 will affect the direction of encirclement of the contour, with positive relating to

38

counterclockwise travel about the contour, and negative relating to clockwise travel. A simplified

schematic in Figure 37 depicts the contour finding/following composite behavior for 3 robots.

Figure 37. Schematic of Find Contour Behavior

In the schematic of Figure 37, there are again 3 robots with their sensor values indicated, similar

to Figure 33. In the given scenario, robot 2’s sensor value lies within the range of the buffered

desired contour, robot 3 is above the contour, and robot 1 is below the contour. The circled

vector indicates the final velocity that each robot will use. Robot 3 is above the contour and

therefore uses a find min vector, robot 1 is below the contour and uses find max, and robot 2 is

within the contour bounds and uses the follow contour vector. As with other behaviors, the

contour behavior was simulated and validated in the testbed, as shown in Figures 38 and 39.

Figure 38. Simulation position (left) and sensor value history (right) for Contour Following

39

Figure 39. Testbed Validation position (left) and sensor value history (right), Contour Following

In both simulation and the testbed, the swarm successfully follows the contour, and traces a full

circle that maps the contour value. The testbed experiment in particular begins to indicate a few

design parameters for use of the contour following, namely:

1. Contour buffers- the contour buffers must be large enough to allow for the variation in

the sensor value signal due to noise.

2. Avoidance Range- The avoidance range must be balanced with the distance over which

the contour buffer occurs. For example, if an avoidance range of 5 m is set, the dictated

contour buffer should occur over a distance of greater than 5 m, or the avoidance will

override the contour behavior before the robots can converge on the contour.

3. Robot Speed - The robot speeds must be set low enough that they do not overshoot the

desired contour value before they can “continue on” along the contour that they have

found.

These preliminary design parameters are tested and expanded in Chapter 4.

40

4. Experimentation with Adaptive Navigation Behaviors

Chapter 3 demonstrated the functionality of primitive and composite behaviors in simulation and

confirmed that the simulated behaviors were reproducible when used on the Decabot indoor

testbed system. The intent of Chapter 4 is to describe the effects of changing design parameters

and to apply the behaviors to a more complicated scalar field. The scalar field used in this section

is shown in Figure 40, adapted from [34]. This scalar field is desirable for experimenting with

adaptive navigation behaviors because it has multiple extrema, as well as ridges and trenches.

Figure 40. Scalar Field used for experimentation of behaviors [34]

4.1 Extrema Finding

Chapter 3.2.2 indicated the capability of the swarm to move up or down a gradient based on

local, real-time scalar field readings. As was seen in Figure 34, it is possible that the swarm

robots may be arranged such that they are on a contour, and therefore all have the same scalar

field reading. This scenario yields swarm stagnation, and the swarm may not reach the scalar

field extrema in this case. For this reason, Extrema Finding entails stacking the Find Min/Find

Max behavior with the Attract behavior. This serves two purposes. First, in the case of the robots

aligning on a contour, the attraction force would cause them to “dither” off the contour, which

allows for differential readings. Second, the attract function serves as an implicit low degree of

freedom formation control method to keep the swarm within communication range of each other.

41

In order to quantitatively measure the effects of changing parameters on the swarm’s overall

extrema finding capability, performance metrics are introduced that are similar, but not identical,

to those used to characterize 2nd-Order system dynamics.

- Rise Time - the rise time for the swarm is defined as the amount of time it takes the

average sensor value reading of the swarm to reach 90% of the extreme value. For

example, if the initial average reading is 5, and the known maximum is 70, then the rise

time is the time at which the average sensor value first reaches 0.9*(70-5) + 5 = 63.5.

The rise time gives an indication of the speed of response of the swarm.

- Steady-State Error - The steady-state error is found as the difference between the known

global extreme value and the swarm’s average steady-state sensor value. The steady-state

error indicates how well the swarm has found the extreme value.

These quantitative metrics are used in addition to qualitative analysis of the system response to

show how extrema finding is affected by design parameters such as number of robots in the

swarm, obstacle avoidance range, and variation of initial conditions. Because rise time and

steady-state error may be dependent on the size of the feature and how far the swarm must travel

to reach the feature, they are more useful when comparing small changes to a single design

parameter while keeping the other design parameters constant. By keeping the other parameters

constant, the rise time can indicate how efficiently the swarm is moving towards the extrema, or

how direct its path is.

While these performance metrics are limited, they help quantify the effect of changing design

parameters to achieve top-down specification of swarm parameters. Further possible

performance metrics are presented in Chapter 5. To the author’s knowledge, this is the first

published presentation of quantitative metrics for swarm performance.

4.1.1 Effect of Number of Robots on Extrema Finding

The extrema finding behavior outlined in 4.1 was tested for both maxima and minima finding on

the scalar field presented in Figure 40. As discussed in Chapter 1, one of the main defining

characteristics of swarm robotics is that the swarm utilizes a large number of robots, and that the

overall swarm behavior is improved with an increased number of individual swarm robots. For

extrema finding, performance is improved for an increasing number of swarm robots because the

increased number of robots yields a better estimation of the local gradient. This is demonstrated

in simulation by scaling the number of robots from 3 to 10 and observing the behavior of the

swarm. All other parameters were held constant, as shown in Table 4. The initial conditions of

42

(R,x,y) indicate the swarm robots are initially placed such that they are evenly spaced along the

circumference of a circle with radius R centered at (x, y).

Table 4. Simulation Parameters for Scaling Number of Robots for Extrema Finding

of

Robots

Simulation

Time(s)

Sensor

Range(m)

Avoidance

Range(m)

Robot Speed

(m/s)

Initial

Conditions

N 20 150 10 45 (5,5,5)

Qualitatively, it can be shown that the swarm extrema finding performance improves as the

number of robots increases. For example, Figures 41 and 42 show the swarm response for

Maxima Finding with 3 robots and 10 robots, respectively. During the given simulation interval,

the larger swarm in Figure 41 locates the maximum faster and more effectively, which can be

seen in the position history, as well as the fact that all robots in the swarm have a higher sensor

value reading than at the end of the simulation for 3 robots.

Figure 41. Max Finding for N=3 Robots

Figure 42. Max Finding for N=10 Robots

The same phenomenon can also be seen for Minima finding, shown in Figures 43 and 44.

43

Figure 43. Min Finding for N=3 Robots

Figure 44. Min Finding for N=10 Robots

The experimental results for increasing number of robots for maximum finding and minimum

finding are shown in Table 5 and 6. Time histories for position and sensor values are shown in

the indicated figures, with numbers starting with an A indicating figures in Appendix A.

Table 5. Quantitative Results for Max finding with increasing number of robots

Figure Number of Robots Rise Time (s) Steady-State Error

41 3 19.5 6.42

A1 4 14.17 3.54

A2 5 18.59 6.31

A3 6 14.27 5.42

A4 7 13.57 6.22

42 10 13.21 3.95

44

Table 6. Quantitative Results for Min finding with increasing number of robots

Figure Number of Robots Rise Time (s) Steady-State Error

43 3 14.87 0.89

A5 4 19.8 2.02

A6 5 12.96 0.67

A7 6 N/A N/A

A8 7 12.26 0.51

44 10 12.16 3.1

As can been seen in Figure A7, the find min for N=6 robots and the parameters given in Table 4

does not converge to the global minimum during the simulation time. This can be attributed to

the obstacle avoidance causing the robot’s convergence to slow down. The rest of the data in

Tables 5 and 6 indicates that the speed of response of the swarm increases as the number of

robots increases, but that the steady state error does not necessarily decrease as the number of

robots in the swarm increases. As was mentioned above, the speed of response is improved with

more robots due to the better definition of the local gradient estimation. This better definition

means that each individual robot’s commanded bearing is closer to the location of the extrema

than it is with less robots. The lack of improvement of steady-state response can be accounted for

by the fact that the robots are limited in their ability to locate themselves directly on the location

of the extrema due to their avoidance of other robots. This can be seen in Figure 44 for N=10

robots. The final position of the swarm is roughly centered on a local minimum, but the obstacle

avoidance prevents individual robots from positioning themselves directly on the extremum.

4.1.2 Effect of Obstacle Avoidance Range on Extrema Finding

In addition to varying the number of robots in the swarm, the obstacle avoidance range of the

robots can also be varied as a form of implicit formation control. The lower limit of the obstacle

avoidance range is a function of the individual robot sizes and dynamics and must be sufficiently

high to avoid robot collisions. The upper limit of the obstacle avoidance must be lower than the

communication range of the robots to ensure that they do not repel to a point where they cannot

communicate with each other. Simulations were run to show the effect of the obstacle avoidance

range on the swarm steady-state error, using the parameters defined in Table 7.

Table 7. Simulation Parameters for varying Obstacle Avoidance Range for Extrema Finding

of Robots Sim Time(s) Sensor Range (m) Avoid Range(m) Robot Speed(m/s) I.C.

5 30 150 variable 45 (5,5,5)

45

The obstacle avoidance range was varied from 20m to 2m, with the results summarized in Tables

8 and 9. Figures 45 and 46 show the time histories for the two extremes of this range for

maximum finding, and Figures 47 and 48 indicate the swarm response for minimum finding.

Qualitatively, comparing Figures 45 and 46 shows that increased obstacle avoidance range does

not allow the robots to group as tightly around the maxima, and as a result the individual robot

sensor value readings are farther away from the known maximum. Figure 46 also indicates one

of the shortcomings of using low degree of freedom formation control. A swarm formation with

one robot on the extremum and the other four surrounding it would more effectively locate the

extremum. The use of a low degree of freedom formation controller does not allow for this type

of formation specification, and can yield final formations similar to that seen in Figure 46.

Figure 45. Max Finding for Obstacle Avoidance Range = 2m

Figure 46. Max Finding for Obstacle Avoidance Range =20m

Similarly, comparing the swarm behavior for minima finding shows the same result of greater

steady-state error for higher obstacle avoidance. Despite these changes in system performance,

46

the swarm is able to locate the extrema for the variety of obstacle avoidance ranges presented in

Tables 8 and 9.

Figure 47. Min Finding for Obstacle Avoidance Range = 2m

Figure 48. Min Finding for Obstacle Avoidance Range =20m

Table 8. Quantitative Results for Max finding with increasing obstacle avoidance range

Figure Obstacle Avoidance Range (m) Rise Time (s) Steady-State Error

45 2 15.85 0.42

A9 5 13.75 1.15

A10 10 18.59 6.31

A11 15 19.26 2.21

46 20 21.27 4.72

47

Table 9. Quantitative Results for Min finding with increasing obstacle avoidance range

Figure Obstacle Avoidance Range (m) Rise Time (s) Steady-State Error

47 2 9.732 0.38

A12 5 13.34 0.52

A13 10 15.21 1.18

A14 15 13.95 1.31

48 20 15.35 1.99

As was expected, the steady-state error of the system increased as the obstacle avoidance range

increased. In addition, the swarm response was slowed, as seen by the rise time increasing as the

obstacle range increased, because the obstacle avoidance acts as another “constraint” on the

swarm robot motions that prevents them from moving directly toward the extrema location. As a

result, lowering the obstacle avoidance range can help the swarm more precisely locate the

extrema location, but a range that is too low may cause lack of gradient definition and collisions.

4.1.3 Repeatability of Extrema Finding for Varying Initial Conditions

Because AN involves moving to an unknown goal location, it was necessary to validate that the

swarm could locate extrema from a variety of initial locations in the field. In addition, placing

robots in varying locations with respect to each other (in opposition to the default spacing along

the circumference of a circle) demonstrated that the swarm was capable of locating extrema for

different starting locations and relative orientations in the scalar field. To achieve non-circular

placing in the scalar field, initial conditions were selected via the manual selection rather than by

using the default initial conditions. Figures 49 and 50 below show the position history for two

such initial conditions.

Figure 49. Max Finding for non-circular initial conditions in bottom left quadrant

48

Figure 50. Max Finding for non-circular initial conditions in bottom right quadrant

Figure 49 shows that the swarm will converge to a local maximum, but this is not necessarily the

global maximum value. Despite this, the swarm history in Figure 49 shows the successful

climbing of the gradient to the local maxima for a different initial condition than was used in

sections 4.1.1-4.1.2. In addition, comparing the swarm behaviors in Figures 49 and 50 reveals

that they exhibit the same swarm-level behavior. Both swarms start up the steepest path of the

gradient until they reach a ridge. The swarms then oscillate about the ridge while progressing up

the gradient to their respective maxima. This behavior is expected from the design of the

extrema-finding behaviors, which causes the individual robots to move in the direction of the

gradient. Including the trials shown in Figures 49 and 50, a total of 10 trials were run for varying

initial conditions, summarized in Table 10. The “random” initial condition selection places the

robots randomly in the field, as shown in Figure 51. For the purposes of these tests, the

communication range was set to the total field width (600m) so that robots are initially within

communication range of each other.

Figure 51. Max Finding for Random Initial Conditions

49

Table 10. Simulation Parameters for varying initial Conditions, Maxima Finding

Figure # of

Robots

Simulation

Time (s)

Sensor

Range(m)

Avoidance

Range(m)

Robot

Speed(m/s)

Initial

Conditions

A13 5 60 600 10 45 (5,5,5)

49 5 60 600 10 45 Manual

50 5 60 600 10 45 Manual

A27 5 60 600 10 45 (100,5,5)

A28 5 60 600 10 45 (100,350,350)

51 5 60 600 10 45 Random

A29 5 60 600 10 45 Random

A30 5 60 600 10 45 Random

A31 5 60 600 10 45 Random

A32 5 60 600 10 45 Random

For all conditions in Table 10, the swarm successfully located a maximum, as is visible in the

position and sensor value histories presented in each accompanying figure. Of particular interest

is the swarm’s success for random initial conditions, such as in Figure 51. The successful

location of the maximum from random initial conditions indicates that the extrema finding

behavior is not dependent on specific initial conditions. Additionally, using the attract behavior

in conjunction with extrema finding helps the swarm locate the maximum despite an initial

distribution that is large relative to the dominant spatial wavelength of the scalar field. Chapter 5

will discuss additional work that could be done to further guarantee the functionality of the

swarm to varying initial conditions.

4.2 Contour Finding and Following

Contour finding and following is an important adaptive navigation behavior for applications

where it is desired to map how far a pollutant has spread, or to maintain a constant desired value.

Whereas the two main design criteria for swarm performance in extrema finding are the number

of robots and the obstacle avoidance range, contour finding has additional design criteria in the

form of desired contour and contour buffer range. The effect of varying each of these is shown in

the subsequent sections, and the contour finding behavior is shown to be robust to varying initial

50

conditions and desired contours. As in 4.1, a set of performance evaluation metrics are

introduced, namely:

 Time to Contour - The time to contour is the time it takes for all robots to reach the

desired contour value, plus or minus the contour buffer. This gives an indication of the

speed of response of the swarm, with lower times indicating faster responses. As with the

Rise Time presented in 4.1, this can help indicate how directly the swarm moves to the

contour for swarms starting from the same initial conditions.

 Percent of time in Contour Buffer- The percentage of time, after initially finding the

contour, that the robots are within the contour buffer range. This is a measure of the

ability of the swarm to closely follow the contour, with higher percentages indicating

more precise following of the contour. The percent of time in the contour buffer is

determined by first taking the amount of time that each robot is within the buffer after

initially reaching the contour, and then taking the average of each of these percentages

for all robots in the swarm.

 Distance travelled along contour- Expressed as a percent of the contour length, the

distance travelled along the contour gives an indication of how quickly the swarm is

progressing along the contour. A larger distance indicates that the swarm has progressed

farther along the contour, which could indicate more efficient mapping of the contour in a

real-world scenario.

4.2.1 Effect of Number of Robots on Contour Finding and Following

As discussed in section 3.2.3, the contour finding and following behavior utilizes the gradient

estimation that is used in extrema finding, and then goes up, down, or perpendicular to the

gradient depending on the robot’s current sensor value reading. As a result, it is expected that a

greater number of robots will result in better swarm performance, because the gradient

estimation is improved with more robots. This was tested in simulation, using the following

simulation parameters:

Table 11. Simulation Parameters for Contour Following with varying number of robots

of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C.

N 60 150 5 -15 1 (5.5.5)

The result of increasing the number of robots can be seen qualitatively by comparing the position

and sensor value history for N=3 robots in Figure 52 to the position and sensor value history for

N=10 robots in Figure 53. In general, the time to reach the contour is decreased by using more

robots, and the distance along the contour is increased. The percent of time on the contour is

roughly constant. The quantitative results of the simulations are summarized in Table 12 below,

using the performance metrics outlined in 4.2.

51

Figure 52. Contour Following and Attract for N=3 robots

Figure 53. Contour Following and Attract for N=10 robots

Table 12. Quantitative Results for Contour Following with increasing number of robots

Figure Number of

Robots

Time to Contour (s) % of time on

Contour

Distance along

Contour

52 3 6.51 73.5 1.47

A15 4 7.012 71.3 1.56

A16 5 5.71 76.1 1.54

A17 6 5.65 74.6 1.67

A18 7 5.41 68.2 1.57

53 10 4.62 72.4 1.72

52

As was expected, the time to reach the contour is decreased when using a greater number of

robots, and the distance travelled along the contour is also increased for a larger number of

robots. This is due to the better gradient estimation from a larger number of robots. The

percentage of time within the contour buffer is largely unchanged for increasing numbers of

robots. This metric does not improve for larger numbers of robots because the obstacle

avoidance “pushes” the individual robots out of the contour buffer range, similar to the

phenomenon seen in extrema finding. This again indicates that further refined metrics may be

necessary, and will be discussed in Chapter 5.

4.2.2 Effect of Obstacle Avoidance Range on Contour Finding and Following

To observe the effect of the obstacle avoidance range on contour finding and following, the

obstacle avoidance range was varied while other simulation parameters were kept constant. The

simulation parameters used are shown in Table 13 below:

Table 13. Simulation Parameters for Contour Following with varying obstacle avoidance

of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C.

5 45 150 variable -15 1 (5.5.5)

The position and sensor value history for an obstacle avoidance range of 2 units are shown in

Figure 54, and the history for an obstacle avoidance range of 20 units is shown in Figure 55.

Figure 55 clearly illustrates that the larger obstacle avoidance range can cause decreased

performance in the swarm, but that the swarm is still able to roughly follow the contour. The

quantitative results are summarized in Table 14.

Figure 54. Contour Following for Obstacle Avoidance range of 2 m

53

Figure 55. Contour Following for Obstacle Avoidance range of 20 m

Table 14. Quantitative Results for Contour Following with increasing Avoidance Range

Figure Avoidance Range Time to Contour(s) % of time on Contour Distance along Contour

54 2 8.82 75.2 1.31

A19 5 5.71 76.1 1.08

A20 10 4.81 69.4 0.92

A21 15 5.01 64.7 0.71

55 20 5.22 59.7 0.95

Increasing the obstacle avoidance range causes the swarm to follow the contour less precisely,

but also increases the speed of response, as it allows the swarm to initially find the contour more

quickly. The larger obstacle avoidance range causes the swarm to spread out more, which in

turns yields gradient information over a larger area and can improve the quality of the swarm’s

gradient estimation. However, if obstacle avoidance range is larger than the distance over which

the contour buffer occurs, as can happen in particularly steep gradients, the robots continually

repel each other outside of the contour buffer range as seen in Figure 55. This indicates that it

may be advantageous to have a varying obstacle avoidance size depending on whether the swarm

is finding or following a contour. This will be further discussed in Chapter 5.

4.2.3 Effect of Contour Buffer Size on Contour Finding and Following

The contour buffer, as defined in 3.2.3, is the sensor value range for which the individual robots

will be considered “on the contour.” As such, a smaller contour buffer can be used for more

precise following of the contour, while a larger contour buffer can be used if a rougher

estimation is acceptable. Table 15 details the simulation parameters used to test the effect of the

contour buffer range on the swarm performance.

54

Table 15. Simulation Parameters for Contour Following with varying contour buffer

of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C.

5 45 150 2 40 variable (5.5.5)

Figures 56 and 57 show the position and sensor value history for a contour buffer of 0.5 and 5,

respectively. The time histories indicate that the lower contour buffer causes the swarm to more

precisely follow the contour, but that the swarm does not progress as far along the contour. This

is expected, as the smaller contour buffer causes the robots to re-enter contour finding rather than

contour following, as their sensor value reading is outside the contour buffer.

Figure 56. Contour Following for Contour Buffer of 0.5

Figure 57. Contour Following for Contour Buffer of 5

The results in Table 16 indicate that decreasing the contour buffer range causes the robots to

more closely follow the contour, while larger contour buffers allow for faster mapping and

movement along the contour. A larger contour buffer also causes the percentage of time on the

contour to be higher because there is more sensor value range that is considered “on contour.”

55

Figure 57 also shows a situation in which a lower contour buffer may be desirable. On contours

that span ridges or trenches, there will be tighter “turns” that the robots must make to stay on the

contour. The larger contour buffer used to produce Figure 57 causes the robots to “cut the

corner” of this contour as it passes over the ridge. A higher contour buffer also causes the swarm

to progress farther along the contour because there is more range for which robots are considered

“on the contour” and moving along the contour rather than re-locating it using find max or find

min.

Table 16. Quantitative Results for Contour Following with increasing Contour Buffer

Figure Contour Buffer Time to Contour(s) % of time on Contour Distance along Contour

56 0.5 7.82 84.2 0.52

A22 1 7.71 81.3 0.59

A23 2 7.62 79.7 0.68

A24 3.5 7.39 83.6 0.82

57 5 7.23 92.1 0.86

4.2.4 Effect of Robot Speed on Contour Finding and Following

As discussed in Chapter 2, robot control is achieved via specifying a bearing angle while

maintaining a constant robot speed. Because each individual robot has its own dynamics, the

robot does not immediately move in the direction of the commanded bearing angle, but has to

dynamically respond to the command. This results in individual robot dynamics within the

swarm. As is often the case with dynamic systems, simply going slower generally reduces

overshoot to commands. In the context of contour finding and following, this overshoot is linked

to the percentage of time that the swarm is within the contour buffer, and affects how well the

robots can follow the contour. Simulations were run to show the effect of varying robot speed,

with the simulation parameters used shown in Table 17.

Table 17. Simulation Parameters for Contour Following with varying robot speed

of

Robots
Sim

Time(s)
Sensor

Range(m)
Avoid

Range(m)
Des.

Contour
Cont.

Buffer
I.C. Robot

Speed(m/s)

5 45 150 2 20 1 (5.5.5) variable

56

Figures 58 and 59 show the response of the swarm when using a robot speed of 15 and 70,

respectively. The position history shows that the higher robot speed allows the swarm to progress

along more of the contour during the simulation, which is expected because the robots are

moving faster. However, the tradeoff for this increased distance along the contour is more

individual overshoots, and less percentage of time within the contour buffer.

Figure 58. Contour Following for Robot Speed of 15

Figure 59. Contour Following for Robot Speed of 70

Table 18 summarizes the quantitative results for contour following with increasing robot speed,

from robot speeds of 15 m/s to 70 m/s. The results in Table 18 confirm the expected results,

namely that the time required to reach the contour is lowered with increased speed, and that the

swarm is able to progress more quickly along the contour. The results in Table 18 indicate that

these relationships are not proportional, which suggests a limited benefit to increasing the robot

speed. Therefore the benefits of increasing robot speed need to be evaluated on a case-by-case

57

basis. Generally, the increased progression along the contour is not significant enough to warrant

using drastically higher robot speeds, especially considering that these higher speeds may require

more robust and expensive motors on the physical swarm robots. Additionally, the swarm

follows the contour less precisely at increased robot speeds, which is expected due to the

individual robot dynamics.

Table 18. Quantitative Results for Contour Following with increasing Robot Speed

Figure Robot Speed(m/s) Time to Contour(s) % of time on Contour Distance along Contour

58 15 6.61 93.4 0.23

A25 30 4.6 84.2 0.48

A26 45 3.9 83.5 0.74

59 70 3.82 73.7 0.81

4.2.5 Repeatability of Contour Finding and Following for Varying Desired

Contours

To validate the contour finding and following behavior, it is necessary to test the behavior for a

variety of contours. To accomplish this, simulations were run for a variety of desired contours,

using the simulation parameters in Table 19.

Table 19. Simulation Parameters for Contour Following with varying desired contour

of Robots Sim Time(s) Sensor Range(m) Avoid Range(m) Des. Contour Cont. Buffer I.C.

5 45 150 2 Variable 1 (5.5.5)

The contour finding and following behavior was validated for a variety of contours ranging from

-15 to 55, and successfully found and tracked the contours in all cases. The contour following for

desired values of -15 and -5, shown in Figures 60 and 61, respectively, indicate that the swarm is

able to travel down gradient and locate a contour and follow it. Figure 62 shows the swarm

successfully following a desired contour of 55, indicating that the swarm can travel up the

gradient to locate and follow the contour.

58

Figure 60. Contour Following for Desired Contour of -15

Figure 61. Contour Following for Desired Contour of -5

Figure 62. Contour Following for Desired Contour of 55

Figure 63 below shows the swarm following a contour of 40. It should be noted that the contour

level of 40 is non-unique in this scalar field, as another contour of 40 exists in the local maxima

59

in the upper left of the field. This indicates that while the swarm can successfully locate and

follow a contour of desired value, it does not necessarily locate all contours of that desired value.

This is similar to the issue of global or local extrema discussed in section 4.1.3.

Figure 63. Contour Following for Desired Contour of 40

Finally, Figure 64 shows the swarm following a contour at a desired value of 20. The contour

value of 20 is interesting because it takes the swarm to the saddle point at the top of the trench.

For the given set of simulation parameters, the swarm continues over the saddle point and

follows the contour on the other side of the saddle point. The sensor value history does not

indicate large errors in sensor values that would indicate losing the contour, which means that the

simulation parameters may need to be adjusted for this particular contour, as there is a very sharp

turn in the contour. In particular, the contour buffer may need to be reduced for successful

following of this specific contour. This will be revisited in section 4.3, which discusses design

decisions for certain characteristics of the desired swarm behavior.

Figure 64. Contour Following for Desired Contour of 20

60

4.3 General Design Guidelines and Application to Testbed

One of the main goals of this research was to move toward “top-down” specification of swarm

behaviors. Using the information presented in 4.1 and 4.2, the effect of different design

parameters can be seen for adaptive navigation using swarm techniques. The effect of each

design parameter is summarized in Table 20 below.

Table 20. Effect of parameters on Swarm Adaptive Navigation Performance

Parameter Effect on Extrema Finding Effect on Contour Finding and Following

Increasing

Number of Robots

Yields a better gradient estimation, causing faster response but possibly higher

steady-state error

Decreasing

Obstacle

Avoidance

Lowers steady-state error but

may decrease speed of

response

Allows robots to more precisely follow the

contour

Varying Initial

Conditions

May affect whether robots

locate local or global maxima

May affect which contour is tracked if there are

multiple contours of the desired value in the

field.

Decreasing

Contour Buffer

N/A

Allows robots to more precisely follow the

contour, but slows the speed of procession

around the contour.

Decreasing Robot

Speed

Slows speed of response but

reduces system “overshoot.”

Slows speed of response but allows swarm to

track contour more precisely, and spend less time

re-locating the contour.

Using the design guidelines outlined in Table 20, the indoor Decabot testbed system was used to

validate the swarm behaviors on a basic paraboloid scalar field with a single minimum.

Additionally, the scalar field presented in Figure 40 was printed in grayscale to facilitate testing

the finding of local maxima, global maximum, the global minimum, and to follow a contour that

requires the swarm to reverse the sense of commanded bearings as it passes through a trench.

The first test run using the more complicated scalar field was to find a local maxima. The swarm

was started in the upper left quadrant of the field as shown in Figure 65. The swarm successfully

navigated to the local maximum location, but, as expected, did not find the global maximum as

indicated in the sensor value history of Figure 65. The results achieved in the testbed

environment closely match those for local maximum finding shown in simulation in Figure 49.

Using the design guidelines above, robot speed and obstacle avoidance range were set at low

values for extrema finding applications. The experimental parameters are outlined in Table 21.

61

Table 21. Experimental Parameters for Extrema Finding using Decabot Indoor Testbed System.

Number of Robots Run Time(s) Avoidance Range Robot Speed Initial Conditions

3 25 0.4 m 0.2 m/s User-placed

Figure 65. Local Maxima Finding using Decabot Indoor Testbed System

The swarm was subsequently positioned in the right half of the field to allow it to reach the

global maximum. The swarm successfully travelled up-gradient to reach the location of the

global maximum, as shown in Figure 66.

Figure 66. Global Maximum Finding using Decabot Indoor Testbed System

The sensor value readings in Figure 66 show readings that are above the “known global max”

value. This is due to sensor noise as well as inconsistencies when calibrating the simulation

scalar field values, which range from -25 to 70, to the Decabot’s sensor range, which is ~5.5-8.3.

In particular, the grayscale sensors on the Decabots vary slightly from robot to robot, causing

imprecise calibration. The system response shown in the position history of the swarm indicates

that the robots successfully move up gradient to the location of the global maximum.

62

Figure 67 depicts the swarm in a minimum-finding behavior, starting from a position near the

global maximum. The robots move down gradient until they reach a trench, and then continue to

move down gradient to follow the trench down to the minimum. Figure 68 shows the swarm

starting from a different location and moving down gradient to the minimum.

Figure 67. Robot Global Minimum Finding using Decabot Indoor Testbed System

Figure 68. Part 2 of Global Minimum Finding using Decabot Indoor Testbed System.

In addition to extrema finding, contour finding and following was run on the indoor testbed

system. Because the scalar field used exhibits fairly steep gradients, a low obstacle avoidance,

robot speed, and contour buffer were used. The contour buffer had to still be sufficiently large to

allow for noise in the sensor value signal, and as such was selected to be at 0.2. The full

experimental parameters used are outlined in Table 22 below. The experimental results from this

run are shown in Figure 69.

Table 22. Experimental Parameters for Contour Finding and Following using Decabot Testbed System.

Number of

Robots

Run

Time(s)

Avoidance

Range(m)

Desired

Contour

Contour

Buffer

Robot

Speed

3 120 0.4 6.5 0.2 0.2

63

Figure 69. First run of Contour Following using Testbed

Figure 69 indicates the swarm’s ability to successfully follow a contour despite the contour’s

sharp “corner” located around (2.2, 2.2). However, observing the sensor value readings shows

that the swarm does not follow the contour very precisely, and also does not progress very far

along the contour given the length of the experimental run. As a result, the obstacle avoidance

range and robot speed were decreased to allow more precise tracking of the contour, as shown in

Table 23 below. The results of the experiment using the parameters in Table 23 are shown in

Figure 70.

Table 23. Revised Experimental Parameters for Contour Finding and Following, Decabot System.

Number of

Robots
Run Time

(s)
Avoidance Range

(m)
Desired

Contour
Contour

Buffer
Robot

Speed

3 90 0.3 6.5 0.2 0.15

Figure 70. Contour Following with Revised Parameters

64

While it should be noted that the initial conditions for Figure 70 and Figure 69 are not identical,

it is clear that even with a reduced robot speed the swarm is able to progress further along the

contour than in Figure 69, due the fact that the swarm more closely follows the contour and

therefore spends less time in the contour finding modes. This is supported by the fact the sensor

values are consistently closer to the contour buffer, and the fact that the swarm does not “cut the

corner” of the contour as Robot 2 does in Figure 69.

4.4 Comparison to Cluster-Based techniques

As mentioned in Chapter 1, one of the main goals of this research was to re-produce the adaptive

navigation behaviors presented in [34] while utilizing a swarm-based architecture rather than a

cluster-based control architecture. This section will compare the results of the swarm-based

adaptive navigation primitives to the results of the cluster-based adaptive navigation primitives,

discuss issues that are common across both techniques, and finally discuss the advantages and

disadvantages of the respective techniques.

4.4.1 Comparison of Functionality

[34] presents adaptive navigation primitives for extrema finding, contour finding and following,

and ridge and trench following. This research has successfully recreated the extrema finding

behaviors presented in [34]. Figure 71 indicates the cluster performance for ascending to a local

maximum (path B), a global maximum (path A), and the global minimum (path C). The right

image in Figure 71 shows the same behaviors repeated using a swarm architecture and starting

from similar initial conditions. The swarm-based portion of Figure 71 was produced using a 3-

robot swarm, as extrema finding in [34] is accomplished using a 3-robot cluster.

Figure 71. Cluster-based (left) and swarm based (right) extrema finding

65

For the same scalar field, the swarm architecture successfully navigates to the expected extrema,

and follows roughly the same paths demonstrated by paths A, B, and C. One major difference

between the two system responses is the “smoothness” of the system response. This can be seen

in the swarm-based global maximum finding, as the swarm oscillates back and forth across the

ridge as it gradually works its way up to the global maximum, rather than going directly up as in

the cluster-based technique. One major reason for this is that the swarm-based architecture uses

an “implicit” gradient estimation that is a combination of local slopes to other robots, while the

cluster-based architecture employs an explicit feature estimation that utilizes that known relative

positions of other robots within the cluster and their sensor value readings. Another reason for

these oscillations is the formation control technique. The low degree of freedom formation

controller used in the swarm causes inter-robot oscillations, whereas the cluster formation

controller maintains fixed relative positions between robots.

In addition to extrema finding, the contour following results from [34] were successfully

reproduced. Figure 72 shows the cluster-based and swarm-based contour following for multiple

contours, with movement both up and down gradient to find the contours and counter-clockwise

and clockwise travel of the contours. In the cluster-based adaptive navigation, path A is up-

gradient and counter clockwise, path B is down gradient and counter-clockwise, and path C is up

gradient and clockwise.

Figure 72. Cluster-based Contour Following (Left) and Swarm-based Contour Following (Right)

In the swarm-based contour following of Figure 72, the top right path moves down gradient and

begins clockwise contour following, the middle path moves up gradient and begins clockwise

contour following, and the bottom path starts on the correct contour and remains on it by

traveling counterclockwise. In similar fashion to the extrema finding, the swarm-based contour

following exhibits the same capabilities as the cluster-based primitive but with less smooth

tracking, as the swarm will tend to oscillate about the desired contour while progressing along it.

66

The final capabilities of ridge and trench following have not yet been successfully implemented,

and are discussed further in Chapter 5.

4.4.2 Comparison of Design Considerations

The two main design considerations that are discussed in [34] are the size of the cluster and the

speed of the individual robots. The size of the cluster refers to the spacing of the robots within in

the cluster, and not the specific number of robots within the cluster. As such, these design

considerations can be compared to the swarm-based design considerations of obstacle avoidance

and individual robot speed. [34] draws similar conclusions to those reached in 4.3, and notes that

the size of the cluster must be sufficiently large to yield an accurate estimation, but that a cluster

that is too large may fail to sense rapid changes in the scalar field. Additionally, [34] notes that

robot speed is an important design consideration, especially when the feature to be mapped

requires rapid changes in robot bearing, such as the contours in 4.4.1.

4.4.3 Disadvantages & Advantages of Swarm-Based Adaptive Navigation

The comparison of functionalities in section 4.4.1 highlights some of the main disadvantages of

swarm-based adaptive navigation, namely oscillations and reduced resolution of results. The

oscillations in extrema finding and contour finding and following do not dramatically influence

the system performance, as the swarm-based techniques were able to replicate the results of the

cluster-based techniques. However, the swarm oscillations may cause the swarm-based technique

to take longer to locate the extrema or map the contour. In real-world applications such as

disaster relief, where time is a crucial factor, this may make the swarm-based adaptive navigation

techniques less desirable. Another disadvantage of the swarm-based technique is that it offers

only implicit formation control and not explicit formation control. This is a disadvantage for

more complicated scalar field features, such as ridges, trenches, and fronts, which require precise

control of the location of robots in relation to each other to assure that the ridge, trench, or front

is maintained.

Despite these shortcomings, the swarm-based control architecture has some desirable advantages

for adaptive navigation, most importantly:

 Decentralized Architecture: In contrast to the centralized architectures, where a

centralized controller distributes control bearings to each robot within the MMS, each

individual robot in the swarm calculates its own command bearing based off local

communications. This offers advantages in situations where global communication may

be limited or unavailable.

67

 Robustness to Individual Robot Failures: 4.1 and 4.2 showed the increasing capability of

the swarm with increasing number of robots in the swarm, but also indicated that the

swarm can successfully complete adaptive navigation primitives for lower numbers of

robots. This indicates robustness to individual robot failures within the swarm without

altering control laws. In contrast, the cluster-based architecture utilizing 4 robots would

require a different cluster definition for 3 robots if an individual robot fails.

 Easily Scalable: As was shown in 4.1 and 4.2, the swarm behaviors can be scaled easily

without dramatically increasing required calculations or requiring new formation control

definitions. The cluster-based technique is not as easily scaled, as adding robots to the

cluster results in rapidly increasing numbers of cluster shape variables, and therefore of

control laws and calculations. This relates back to the fact that the cluster is a full degree-

of-freedom controller, while the implicit formation control for the swarm is a much lower

degree of freedom controller.

 Adaptable Size: 4.4.2 discussed the fact the cluster and swarm size is a large

consideration in adaptive navigation techniques. In the cluster formation, the “size” of the

cluster may actually be dependent on a variety of cluster variables, but the implicit

formation control of the swarm is dependent on obstacle avoidance range and attract gain

only. This simplified structure, while not offering the refined formation control of the

cluster technique, offers easy variation of the size of the swarm for different fields. This

will be further discussed in Chapter 5.

These advantages make the swarm-based adaptive navigation techniques desirable for

applications that may require decentralized control due to communication limitations. The

swarm-based techniques also reduce the impact of increasing numbers of individual agents on

the required number of calculations, as each agent calculates its own commanded bearing, rather

than relying on a centralized controller. For example, a larger swarm might consist of 50 robots,

but each individual robot would only communicate with its nearest neighbors. Therefore the

computational load for each robot would be equivalent of that of a much smaller swarm. While

cluster control offers more refined control through a full degree-of-freedom controller, the

swarm-based adaptive navigation techniques presented in Chapters 3 and 4 offer adaptive

navigation capabilities with a low degree of freedom controller at a reduced computational cost.

Therefore these techniques may be useful when computation cost is a large concern, or full

degree of freedom control is not required.

68

5. Conclusions and Future Work

This paper has presented a new approach to adaptive navigation primitives that reduces

calculation load without dramatically sacrificing system performance. A simulation environment

was developed that easily interfaces with the existing indoor testbed, allowing for rapid vetting

and validation of swarm primitive and composite behaviors. These swarm composite behaviors

were combined to yield Adaptive Navigation primitives such as extrema finding and contour

finding and following. In simulation and in experimentation, the effect of different design

parameters were shown, which yielded design guidelines to facilitate top-down specification of

swarm behaviors. Finally, the swarm-based adaptive navigation behaviors were compared to

existing cluster-based adaptive navigation techniques to show comparable system performance,

and to compare advantages and disadvantages of each technique. Future work in this area

includes the following:

1. Development of Additional Adaptive Navigation Primitives: As mentioned in Chapter 4,

it is desired to develop more adaptive navigation primitives to allow for ridge and trench

following, saddle point station keeping, and front detection and following.

2. Adaptive Sizing for Increased Performance: Currently, certain parameters such as

avoidance range and contour buffer range are set as constants by the designer. Future

development could yield adaptive sizing of the swarm that determines appropriate

avoidance ranges and contour buffer ranges based off local gradient estimation and scalar

field measurements.

3. Numerical Validation: Chapter 4 began to investigate the impact of different design

parameters on swarm performance, but a more thorough validation could be performed

using Monte Carlo simulations. Such validation could yield more precise information

about system convergence to desired behavior for variations in design parameters.

4. Adaptive Navigation Composites: The extrema finding and contour following behaviors

are presented as adaptive navigation primitives, with the understanding that these could

be combined with other behaviors for adaptive navigation composite behaviors.

Examples include maintaining a certain wireless connection (contour following) while

travelling across campus (Go-To), or mapping all maxima in a region (utilization of

extrema finding).

5. Increased Fidelity of Simulation: Running the vetted behaviors on the testbed revealed a

few possible additions to the simulation that would increase the fidelity of the simulation.

Possible additions include a white noise addition to the sensor signals, lag (or a “transport

delay” in Simulink terminology), and randomized robot failures within simulation.

6. Expanded Performance Metrics: Expanding performance metrics to compare the swarm

behavior to known gradient information may help further evaluate the swarm’s behavior.

For example, [34] presents a cluster-based metric that evaluates the cluster’s bearing in

comparison to the gradient bearing for contour following. Additional metrics could also

include expected computational load and how these compare to cluster-based techniques.

69

REFERENCES

1. Craig, J. Introduction to Robotics: Mechanics and Control. 4th Edition. Pearson, 2018.

2. Franka Emika. “The Franka Emika Panda Robot.” Franka Emika Site, 23 April 2019,

https://www.franka.de/panda.

3. Kitov Systems. “The Kitov Automated Inspection System.” Kitov System Site, 23 April 2019,

https://www.kitovsystems.com/.

4. Jazdi, N. Cyber physical systems in the context of Industry 4.0. 2014 IEEE International

Conference on Automation, Quality and Testing, Robotics, Cluj-Napcoa, 2014, pp 1-4.

5. Wise, M., Ferguson, M., King, D., Diehr, E., and Dymesich, D. Fetch and Freight: Standard

Platforms for Service Robot Applications. Fetch website, 23 April 2019,

https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/.

6. NASA JPL. “The Mars Rover – Exploration” NASA Site, 23 April 2019,

https://www.jpl.nasa.gov/missions/mars-exploration-rover-opportunity-mer/.

7. Harvard Robotics. “The Harvard Kilobot Swarm”, Harvard website, 23 April 2019,

https://wyss.harvard.edu/media-post/kilobots-a-thousand-robot-swarm/.

8. Tomer, S., Kitts, C., et al. A low-cost Indoor Testbed for Multirobot Adaptive Navigation

Research. 2018 IEEE Aerospace Conference, pp 1-12.

9. Bazoula, A., Djouadi, M.S., and Maaref, H. Formation Control of Multi-Robots via Fuzzy Logic

Technique. International Journal of Computers, Communication, and Control. May 2008.

10. Kitts, C. and Mas, I. Cluster Space Specification and Control of Mobile Multirobot Systems. 2009

IEEE/ASME Transactions on Mechatronics, Vol 14, Issue 2. April 2009.

11. Galvez, R., Faelden, G., Maningo, J., and Nakano, R. Obstacle Avoidance Algorithm for Swarm

of Quadrotor Unmanned Aerial Vehicle using Artificial Potential Fields. 2017 IEEE Region 10

Conference, November 2017.

12. Safadi, H. Local Path Planning using Virtual Potential Field. COMP 765 Lecture Notes, April

2007.

13. Senanyake, M., Barca, J., Senthooran, I., and Chung, H. Search and Tracking Algorithms for

Swarms of Robots: A Survey. Robotics and Autonomous Systems 75, Part B. pp 422-434, January

2016.

14. Mohan, Y. and Ponnambalam, S.G. An extensive Review of Research in Swarm Robotics. In

IEEE Conference on Nature and Biologically Inspired Computing. January 2010.

15. Boston Dynamics. “The Atlas Robot” Boston Dynamics website, 23 April 2019.

https://www.bostondynamics.com/atlas.

16. Festo Robotics. “Festo bio-inspired actuation systems.” Festo website. 23 April 2019.

https://www.festo.com/group/en/cms/10157.htm ,

17. Sharkey, J.C.A. Robots, Insects and Swarm Intelligence. Artificial Intelligence Review, vol. 26,

pp. 255-268. 2006.

https://www.franka.de/
https://www.kitovsystems.com/
https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/
https://www.jpl.nasa.gov/missions/mars-exploration-rover-opportunity-mer/
https://wyss.harvard.edu/media-post/kilobots-a-thousand-robot-swarm/
https://www.bostondynamics.com/atlas
https://www.festo.com/group/en/cms/10157.htm

70

18. Labella T.H. , Dorigo M. and Deneubourg, J.L. Division of Labor in a Group of Robots Inspired

by Ants’ Foraging Behavior. in ACM Transactions on Autonomous and Adaptive Systems, vol. 1,

no. 1, September 2006, pp. 4-25.

19. Tomlinson B. and Blumberg, B. Using Emotional Memories to Form Synthetic Social

Relationships, Proceedings of AAMAS 02, Bologna, Italy, July 15, 2002.

20. Payton, D., Daily, M., Hoff, B., Howard, M. and Lee, C. Pheromone Robotics. in Autonomous

Robots, vol.11, no. 3, pp 319-324, 2001.

21. Parker, L. Multiple Mobile Robot Systems. http://faculty.engineering.asu.edu/acs/wp-

content/uploads/2016/08/Multiple-Mobile-Robot-Systems-2008.pdf .

22. Pugh, J. and Martinoli, A. “Multi-robot Learning with Particle Swarm Optimization”, AAMAS,

Hakodate, Hokkaido, Japan, May 8-12, 2006, pp. 441-448.

23. Sedighizadeh, D. and Mazaheripour, H. Optimization of multi-objective vehicle routing problem

using a new hybrid algorithm based on particle swarm optimization. Alexandria Engineering

Journal, Vol 57, Issue 4. December 2018.

24. Quinlan, J. R., Induction of Decision Trees. Machine Learning, Boston: Kluwer Academic

Publishers, 1986, vol. 1, pp. 81-106.

25. Pomerleau, D. Neural Network Based Autonomous Navigation. In C. Thorpe, Vision and

Navigation: The CMU Navlab. Kluwer Academic Publishers, 1990.

26. Khashayar R. , Baghaei, K.P. and Agah A. Task Allocation Methodologies for Multi-Robot

Systems, Technical Report Information and Telecommunication Technology Center, The

University of Kansas, Lawrence, Kansas 66045, November 2002.

27. Dias, M.B. , Zlot, R.M. , Kalra N. , and Stentz A. “Market-Based Multirobot Coordination: A

Survey and Analysis,” Tech. report CMU-RI-TR-05-13, Robotics Institute, Carnegie Mellon

University, 2005.

28. Bertsekas, D.P. “Auction Algorithms for Network Flow Problems: A Tutorial Introduction”,

Computational Optimization and Applications, 1992, pp. 7-66.

29. Oritz, C., Vincent, R. and Morriset, B. “Task Inference and Distributed Task Management in the

Centibots Robotic System,” Proceedings of the 4th Joint International Conference on

Autonomous Agents and Multi-Agent Systems, Utrecht, The Netherlands, 2005, pp. 870-877.

30. Parker, L.E. “ALLIANCE: An Architecture for Fault Tolerant MultiRobot Cooperation”, IEEE

Transactions on Robotics and Automation, vol. 14, no. 2, 1998, pp. 220-240.

31. Gross, R., Mondada, F. and Dorigo, M. “Transport of an Object by Six Pre-attached Robots

Interacting via Physical Links”, Proceedings 2006 IEEE International Conference on Robotics

and Automation, 15-19 May 2006, pp. 1317 – 1323.

32. Miyata N., Ota J., Aiyama, Y., Sasaki J. and Arai T. Cooperative Transport System with

Regrasping Car-like Mobile Robots, Proceedings of the 1997 IEEE/RSJ International Conference

on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. Sept. 1997.

http://faculty.engineering.asu.edu/acs/wp-content/uploads/2016/08/Multiple-Mobile-Robot-Systems-2008.pdf
http://faculty.engineering.asu.edu/acs/wp-content/uploads/2016/08/Multiple-Mobile-Robot-Systems-2008.pdf

71

33. Wang, Z.D., Hirata, Y. and Kosuge. K. Control of a Rigid Caging Formation for Cooperative

Object Transportation by Multiple Mobile Robots. in Proceedings of the 2004 IEEE International

Conference on Robotics & Automation, New Orleans, LA. April, 2004. pp. 1580-1585.

34. Kitts, C., McDonald, R., and Neumann, M. Adaptive Navigation Control Primitives for

Multirobot Clusters: Extrema Finding, Contour Following, Ridge/Trench Following, and Saddle

Point Station Keeping. 2018 IEEE Access. Volume 6, pp 17625-17642.

35. Tomer, S., Kitts, C., Neumann, M. , McDonald, R., Bertram, S., Cooper, R. , Demeter, M. ,

Guthrie, E. , Head, E. , Kashikar, A. , Kitts, J. , London, M. , Mahacek, A. , Rasay, R. ,

Rajabhandharaks, D. , and Yeh, T. A low-cost Indoor Testbed for Multirobot Adaptive

Navigation Research. 2018 IEEE Aerospace Conference, pp 1-12.

36. Eu, K.S., and Yap, K.M. Chemical plume tracing: A three-dimensional technique for quadrotors

by considering the altitude control of the robot in the casting stage. February 2018.

37. Cheng, Z. and Wang, G. Real-time RGB-D SLAM with Points and Lines. 2018 2nd IEEE

Advanced Automation, Management, Communicates, Electronic and Automation Control

Conference.

38. Li, W., Farrell, J.A., Pang, S. and Arrieta, R.M. Moth-inspired chemical plume tracing on an

autonomous underwater vehicle. 2006 IEEE Transactions on Robotics, Vol 22, No 2, pp 292-

307.

39. Kang, X. and Li, W. Moth-inspired plume tracing via multiple autonomous vehicles under

formation control. Journal on Adaptive Behavior. Vol 20, no 2, pp 131-142, Apr 2012.

40. Marjovi, A. and Marques, L. Swarm Robotic Plume Tracking for Intermittent and Time-Variant

Odor Dispersion. Institute of Systems and Robotics, University of Comibra, Portugal.

41. Khan, A., Mishra, V., and Zhang, F. Bio Inspired Source Seeking: A Hybrid Speeding up and

Slowing Down Algorithm. 2016 IEEE 55th Conference on Decision and Control.

42. Wu, W. and Zhang, F. A gradient-free 3-dimensional Source Seeking Strategy with Robustness

Analysis. 2018 IEEE Transactions on Automatic Control.

43. Pugh, J and Martinoli, A. Inspiring and Modeling Multi Robot Search with Particle Swarm

Optimization. Proceedings of 2007 IEEE Swarm Intelligence Symposium. Pp 332-339.

44. Gainer J, et al. Persistent Target Detection and Tracking by an Autonomous Swarm. ASME 2018

International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference.

45. Koohifar, F., Guvenc, I., and Sichitiu, M.L. Autonomous Tracking of Intermittent RF Source

using a UAV Swarm. IEEE Access, Special Section on Networks of Unmanned Aerial Vehicles.

April 2018.

46. Fabbiano, R. and Garin, F. Source Localization by Gradient Estimation Based Poisson Integral.

Elsevier automatica. 2014.

47. Xue, S. and Zeng, J. Target Search using Swarm Robots with Kinematic Constraints. 2009

Chinese Control and Decision Conference. pp 1-8.

48. Khatib, O. Real-time Obstacle Avoidance for Manipulators and Mobile Robots. In Proceedings of

the IEEE Conference on Robotics and Automation, pages 500-505, 1985.

72

49. Kitts, Christopher, Hart, Shae, Reese, Maximilian, and Metzger, Nathan. Robotics Simulator for

Top-Down Development and Verification of Swarm Behaviors. Submitted to Proceedings of

ASME 2019 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference.

73

Appendix A

Table A1. Simulation Parameters for Produced Figures in Chapter 1

Figure

Behaviors N Tsim

SVrnge

Avoid SVdes SVbuff I.C. Speed Field

32 FMin 3 50 150 1 -- -- Rand 6 Sink

33 FMax 3 50 150 1 -- -- Rand 6 Source

36 FContour 3 40 150 1 5.5 0.2 Rand 5 Testbed

The figures referenced in Chapter 4 are included below:

Figure A1. Max Finding, N=4 Robots

74

Figure A2. Max Finding, N=5 Robots

Figure A3. Max Finding, N=6 Robots

Figure A4. Max Finding, N=7 Robots

75

Figure A5. Min Finding, N=4 Robots

Figure A6. Min Finding, N=5 Robots

Figure A7. Min Finding, N=6 Robots

76

Figure A8. Min Finding, N=7 Robots

Figure A9. Max Finding, Obst. Avoid = 5m

Figure A10. Max Finding, Obst. Avoid = 10m

77

Figure A11. Max Finding, Obst. Avoid = 15m

Figure A12. Min Finding, Obst. Avoid = 5m

Figure A13. Min Finding, Obst. Avoid = 10m

78

Figure A14. Min Finding, Obst. Avoid = 15m

Figure A15. Contour Following, N=4 Robots

Figure A16. Contour Following, N=5 Robots

79

Figure A17. Contour Following, N=6 Robots

Figure A18. Contour Following, N=7 Robots

Figure A19. Contour Following, Obst. Avoid = 5m

80

Figure A20. Contour Following, Obst. Avoid = 10 m

Figure A21. Contour Following, Obst. Avoid = 15m

Figure A22. Contour Following, Buffer=1

81

Figure A23. Contour Following, Buffer = 2

Figure A24. Contour Following, Buffer = 3.5

Figure A25. Contour Following, Speed = 30

82

Figure A26. Contour Following, Speed = 45

Figure A27. Position History for Extrema Finding for Initial Conditions (100, 5, 5)

Figure A28. Position History for Extrema Finding for Initial Conditions (100, 350, 350)

83

Figure A29. Position History for Extrema Finding for Random I.C.’s, Trial 2

Figure A30. Position History for Extrema Finding for Random I.C.’s, Trial 3

Figure A31. Position History for Extrema Finding for Random I.C.’s, Trial 4

84

Figure A32. Position History for Extrema Finding for Random I.C.’s, Trial 5

	Santa Clara University
	Scholar Commons
	5-28-2019

	Swarm-Based Techniques for Adaptive Navigation Primitives
	Nathan Metzger
	Recommended Citation

	20190702132354349

