
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

6-17-2011

Multi-Robot Coalition Formation for Distributed
Area Coverage
Ke Cheng
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Cheng, Ke, "Multi-Robot Coalition Formation for Distributed Area Coverage" (2011). Student Work. 2862.
https://digitalcommons.unomaha.edu/studentwork/2862

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2862?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2862&utm_medium=PDF&utm_campaign=PDFCoverPages

Multi-Robot Coalition Formation for Distributed
Area Coverage

By

Ke Cheng

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska at Omaha

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Information Technology

Under the Supervision of Dr. Prithviraj (Raj) Dasgupta

Omaha, Nebraska

June 17, 2011

Supervisory Committee:

Dr. Prithviraj(Raj) Dasgupta

Dr. Qiuming Zhu

Dr. Zhengxin Chen

Dr. Zhenyuan Wang

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3461454

Copyright 2011 by ProQuest LLC.

UMI Number: 3461454

Multi-Robot Coalition Formation for Distributed Area

Coverage

Ke Cheng, Ph.D. in IT

University of Nebraska at Omaha

Advisors: Dr. Prithviraj(Raj) Dasgupta

The problem of distributed area coverage using multiple mobile robots is an important

problem in distributed multi-robot sytems. Multi-robot coverage is encountered in many

real world applications, including unmanned search & rescue, aerial reconnaissance,

robotic demining, inspection of engineering structures, and automatic lawn mowing. To

achieve optimal coverage, robots should move in an efficient manner and reduce repeated

coverage of the same region that optimizes a certain performance metric such as the

amount of time or energy expended by the robots. This dissertation especially focuses on

using mini-robots with limited capabilities, such as low speed of the CPU and limited

storage of the memory, to fulfill the efficient area coverage task. Previous research on

distributed area coverage use offline or online path planning algorithms to address this

problem. Some of the existing approaches use behavior-based algorithms where each

robot implements simple rules and the interaction between robots manifests in the global

objective of overall coverage of the environment. Our work extends this line of research

using an emergent, swarming based technique where robots use partial coverage histories

from themselves as well as other robots in their vicinity to make local decisions that

attempt to ensure overall efficient area coverage. We have then extended this technique in

two directions. First, we have integreated the individual-robot, swarming-based technique

for area coverage to teams of robots that move in formation to perform area coverage

more efficiently than robots that move individually. Then we have used a team formation

technique from coalition game theory, called Weighted Voting Game (WVG) to handle

situations where a team moving in formation while performing area coverage has to

dynamically reconfigure into sub-teams or merge with other teams, to continue the area

coverage efficiently. We have validated our techniques by testing them on accurate models

of e-puck robots in the Webots robot simulation platform, as well as on physical e-puck

robots.

Keywords: Multi-robot Area Coverage, Weighted Voting Games, Multi-robot Coalition

Formation

i

Dedication

To my darling wife, YAQI(LISA) ZHOU and my elfish son,

YIXUAN(DEVON) CHENG

ii

Acknowledgments

I would like to express my deepest gratitude to my advisors, Dr. Prithviraj(Raj) Dasgupta,

who has continuous supported me in the Ph.D. program in IT at College of Information

Science and Technology since 2006. It would have been next to impossible to write this

dissertation without his professional academic guidance and inspiring encouragement. I

also thank the other committee members, Dr. Zhenyuan Wang, Dr. Qiuming Zhu, and Dr.

Zhengxin Chen, who gave me valuable support and suggestions.

I also would like to thank all the faulty members and colleague students of College of

Information Science and Technology.

I am grateful to the C-MANTIC Research Lab directed by Dr. Dasgupta for providing me

with financial support for fulfilling this dissertation. In addition, during the course of this

work, I was involved in the COMRADES project: COoperative Multi-Robot Autonomous

DEtection System for Humanitarian Demining, Sponsor: Office of Naval Research (ONR)

iii

and the COMSTAR project: COoperative Multi-agent System for automatic TArget Recog-

nition (Phase II), STTR Grant awarded jointly with 21st Century Systems Inc. Sponsor:

DoD-NavAir.

Special thanks also go to my good friends: Dr. Nian Yan, Dr. Kun Hua, Dr. Honggang

Wang, Dr. Wei Wang, and others in Omaha for their continuous encouragement and friend-

ship.

Finally, I would like to give my greatest thanks and love to my most important family

members: my wife, Yaqi Zhou; my son, Yixuan(Devon) Cheng; my father, Binghuang

Cheng; my mother, Yafang Liu; and my parents in law, Shouxin Zhou and Yumei Li.

Without their unconditional support and love, this dissertation would never have been ac-

complished.

iv

Contents

1 INTRODUCTION 1

1.1 Area coverage . 2

1.2 Modeling Multi-Robot Systems . 3

1.3 Coalitional Game Theory for Multi-Robot Decision-Making 5

1.4 Research Objectives . 6

1.5 Organization of the Dissertation . 7

2 BACKGROUND 10

2.1 Multi-robot coverage . 10

2.1.1 Multi-robot coverage with individual robot coordination 10

2.1.2 Team based multi-robot coverage 14

2.2 Coalitional Games . 15

v

2.3 Solutions of Coalitional Games . 16

2.4 Voting Games . 18

2.5 Computational Complexity of Coalitional Games 20

3 E-PUCK ROBOT: DESCRIPTION AND LOCALIZATION 21

3.1 E-puck Robot . 22

3.2 Overhead Camera-based Localization . 24

3.3 Realistic Simulation . 26

4 MULTI-ROBOT COVERAGE: INDIVIDUALLY COORDINATED ROBOTS

USING SWARMING 28

4.1 Multi-Robot Distributed Coverage Problem 28

4.1.1 Distributed Coverage with Constrained Mini-robots 29

4.2 Area Coverage Algorithms . 33

4.2.1 Node Counting Strategies . 38

4.3 Agents with Communication Faults . 41

4.4 Experimental Results in Webots Simulator 43

4.5 Physical Robot Experimental Results . 55

vi

5 MULTI-ROBOT COVERAGE: TEAM-BASED ROBOTS USING FLOCK-

ING 60

5.1 Single Team Flocking . 61

5.2 Single-Team Coverage Technique . 62

5.2.1 Formation Maintenance . 63

5.2.2 Team Reconfiguration . 64

5.3 Experiment in Webots Simulator . 66

6 MULTI-ROBOT COVERAGE: COALITION GAME-BASED ROBOT TEAM

FORMATION 72

6.1 System Modeling . 72

6.1.1 Best Coalition Formation . 73

6.1.2 The other coalition formation algorithm 77

6.2 Dynamic Team Reconfiguration and Weighted Voting Games 83

6.3 Experimental Results in Simulator . 91

6.3.1 Team Reformation Experiments 93

6.4 Physical Experimental Results . 103

7 SUMMARY OF CONTRIBUTIONS AND FUTURE DIRECTIONS 109

vii

7.1 Summary of Contributions . 109

7.2 Future Directions . 111

A Refereed Publications by Ke Cheng 124

viii

List of Figures

3.1 The area coverage platform: Epuck robot [30]. 22

3.2 (a) an e-puck with a red marker, (b) 5 e-pucks moving in the ’V’ shape team. . . . 23

3.3 Screen shot of five e-pucks within our experiment arena in the image processing

software user console. 23

3.4 Screen shots of roborealm console: (a)the raw image with red triangle, (b) the

image after RGB filter processing, (c) the final analyzed image with a coordinate

location. 24

3.5 Screen shot of a geometric statistics window. 25

3.6 A epuck in Webots simulator. 26

ix

4.1 Different configurations of robots in the neighborhood of a robot r. The outer

circle represents robot r’s communication range ξ and the inner circle represents

robot r’s coverage map radius χ. (a) There are no other robots within robot r’s

communication and coverage maps; (b)There are some robots in robot r’s commu-

nication map, but no robot in its coverage map; (c) There are some robots within

robot r’s communication and coverage maps. 33

4.2 Algorithm used by a robot r to select its next action if there are some robots

within its communication map but no other robots in its coverage map. . . . 34

4.3 Algorithm used by a robot to select its next action when there are robots both in

its communication map and coverage map. 37

4.4 Selection condition for agent action for different pheromone update strategies. . . 42

4.5 Parameters used in the experimental settings for the simulations. 44

4.6 Percentage of area covered with 5 agents in a 100 × 100 square environment for

different coverage strategies. 45

4.7 Redundancy in area covered as the number of agents in the environment changes. 46

4.8 Redundancy in area covered as the coverage map radius MR of agents changes. . . 47

4.9 Percentage of the coverage with the communication range radius CR of agents

changes. 47

x

4.10 Redundancy in area covered as the communication range radius CR of agents

changes. 48

4.11 Percentage of the coverage with and without the GPS sensor noise. 48

4.12 Redundancy in area with and without the GPS sensor noise. 49

4.13 Percentage of the coverage with different size of mazes. 50

4.14 5, 10, 25 percentage of obstacles. 50

4.15 Percentage of the coverage with obstacles. 50

4.16 Redundancy in area with obstacles. 51

4.17 Percentage of the coverage with different weight values 52

4.18 Redundancy in area with different weight values. 52

4.19 Percentage of the coverage if agents malfunction with different recover probabilities. 53

4.20 Percentage of the coverage if agents malfunction with different failure probabilities. 54

5.1 Algorithm used by a robot to realize the leader-referenced formation control. 62

5.2 (a) The leader robot (id=0) in a team of five robots encounters an obstacle. (b)

A new leader is selected (id=3) and the old leader robot (id=0) calculates the po-

sitions for every robot in the new configuration under the new leader. (c) Each

robot assumes its new position and the new leader robot selects its heading from

randomly between −α± β. 64

xi

5.3 Four different environments of five robots with V shape in Webots simulation

platform: (a) a square, (b) a triangle, (c) a corridor, (d) two diamonds connected

by a corridor. 66

5.4 (a) Number of times an obstacle is encountered by the team, (b) Average time

required for team reconfiguration after encountering an obstacle, (c) Number of

times the team has to perform formation maintenance while not encountering an

obstacle, and, (d) Average time required for formation maintenance. 68

6.1 (a) 6 robots calculate two minimal winning coalitions in the communication range

, (b) 4 robots form a best minimal winning coalition and head to a new team direction. 73

6.2 Run time in millisecond (in the logarithm scale) with different number of robots

and Qf = 0.7 by using Vig’s Multi-Robot Coalition Formation Algorithm and

Team Formation using DYN-REFORM Algorithm. 79

6.3 Number of coalitions (in the logarithm scale) with different number of robots and

different values of Qf by using Vig’s Multi-Robot Coalition Formation Algorithm

and Team Formation using DYN-REFORM Algorithm. 79

6.4 Percentage of environment covered by different numbers of robot for using Dr.Vig’s

Multi-Robot Coalition Formation Algorithm and Team Formation using DYN-

REFORM Algorithm. within a 2× 2 m2 environment where 10% of the total area

of the environment space is occupied by obstacles. The run time is 30 minutes. . . 82

xii

6.5 (a) A robot team showing the position identifiers of each robot. The angular

separation in the team is u, the separation between adjacent robots is dsep

and α is the heading of the team. (b)-(c) A scenario where a single team

in formation encounters a T-shaped obstacle and needs to split. (d)-(e) A

scenario where two teams in close proximity of each other encounter each

other and need to merge. 83

6.6 (a) Algorithm to find veto players in a WVG. (b) Algorithm to find the best mini-

mum winning coalition (BMWC) from a set of MWCs. 86

6.7 State transition diagram for a robot participating in the dynamic reconfigu-

ration algorithm. 89

6.8 (a) Initial configuration of a team of 5 robots moving in a wedge-shaped

formation. (b) Reformed team moving in new direction after encountering

a flat wall obstacle. (c) Mean error in the desired position of the robot team

during the reconfiguration. 93

6.9 (a) Initial configuration of a team of 7 robots moving in a wedge-shaped

formation. (b) Reformed team moving in new direction after encountering

a non-uniform wall obstacle. (c) Mean error in the desired position of a

robot team during the reconfiguration. 95

xiii

6.10 (a) Initial configuration of a team of 7 robots moving in wedge-shaped

formation. (b) Reformed team moving in new direction after encountering

a narrow obstacle that causes the team to split. (c) Mean error in the desired

position of a robot team during the reconfiguration. 96

6.11 (a) Initial configuration of two teams of 3 and 4 robots moving in wedge-

shaped formations. (b) Reformed team moving in new direction after en-

countering each other and merging into a new team. (c) Mean error in the

desired position of a robot team during the reconfiguration. 97

6.12 (a) Time spent by the robots in the STOP AND WAIT state and CON-

TINUE PREVIOUS MOTION state of the DYN-REFORM algorithm for

the three different types of obstacles. (b) Percentage of the environment

covered by a set of 5 robots initially configured as a team without and with

DYN-REFORM algorithm. The environment is 2× 2 m2 with 0%, 10% or

20% of the area of the environment occupied by obstacles. Each experi-

ment was run for a period of 30 mins. Error bars were omitted for legibility. 99

6.13 Percentage of environment covered by different numbers of robot for dif-

ferent values of the quota for the WVG within a 2 × 2 m2 environment

where 10% of the total area of the env. space is occupied by obstacles. . . . 100

xiv

6.14 5 robots in a team visited in a 4× 4 m2 square environment. The region is colored

by light gray, gray, dark gray, and black representing revisited 2 to 5 times, 6 to 10

times, 11 to 15, and over 16 respectively. (a) Run time is 30 minutes (b) Run time

is 60 minutes.(c) Run time is 90 minutes. (d) Run time is 120 minutes. 102

6.15 (a) Initial configuration of a team of 5 robots moving in a wedge-shaped

formation. (b) Reformed team moving in new direction after encountering

a flat wall obstacle. (c) Average error in the position of the robot team

during reconfiguration in the scenario of encountering a flat wall obstacle. . 103

6.16 (a) Initial configuration of a team of 5 robots moving in a wedge-shaped

formation. (b) Reformed team moving in new direction after encounter-

ing a non-uniform wall obstacle. (c) Average error in the position of the

robot team during reconfiguration in the scenario of encountering a a non-

uniform wall obstacle. 104

6.17 (a) Initial configuration of a team of 5 robots moving in wedge-shaped

formation. (b) Reformed team moving in new direction after encountering

a narrow obstacle that causes the team to split. (c) Mean error in the desired

position of a robot team during the reconfiguration. 106

xv

6.18 (a) Initial configuration of two teams of 3 robots each moving in wedge-

shaped formations. (b) Reformed team moving in new direction after en-

countering each other and merging into a new team. (c) Mean error in the

desired position of a robot team during the reconfiguration. 107

xvi

List of Tables

2.1 An example of three player game. 17

3.1 Camera Parameters . 23

4.1 Physical experimental results showing percentage of coverage of the en-

vironment by different number of robots with and without obstacles in a

indoor lab environment. 55

4.2 The Kruskal-Wallis statistics tests of the percentage of environment covered with

5 robots in a 1000 × 1000 cm2 square environment for different node counting

strategies over 10,000 simulation time measured in ticks. 56

4.3 The Kruskal-Wallis statistics tests of the percentage of environment covered with

different number of robots in a 1000 × 1000 cm2 square environment for 2, 500

time steps. 57

xvii

4.4 The Kruskal-Wallis statistics tests of the number of time steps required to complete

the coverage of a 1000 × 1000 cm2 square environment for different numbers or

robots. 58

4.5 The Kruskal-Wallis statistics tests of the percentage of environment covered with

different coverage map radii of 5 robots after 10,000 time steps in 1000 × 1000

cm2 square environment. 58

4.6 The Kruskal-Wallis statistics tests of the percentage of environment covered after

2500 time steps when the communication range ξ of robots changes, χ=50 cm,

number of robots=5, and environment size=1000× 1000 cm2. 59

5.1 Percentage of of a 5× 5m2 environment covered for different environment

shapes and different coverage strategies. 67

6.1 Average and standard deviation number of coalitions with different number

of robots and different values of Qf by using Vig’s Multi-Robot Coalition

Formation Algorithm and Team Formation using DYN-REFORM Algorithm. 81

1

Chapter 1

INTRODUCTION

Multi-robot systems can be a competitive solution compared to single robot because they

create much more robustness due to their redundancy and in cooperation the individual sim-

plicity which is easy to achieve. Each autonomous robot can work in parallel for fast task

execution, e.g., in a coverage or search and rescue task. Especially, for the mini-robot, such

as the insect like mobile robot, the size constraints on the robotic platform make it different

for a single robot to accomplish the task within an acceptable time. However, besides the

mechanical and electronic design, such as small enough motors and wheels and the highly

integrated circuit module, there are plenty of challenges for high level algorithm design

including, limited peer-to-peer wireless communication, limited micro chip computation,

and limited energy budget. Moreover, to address the social behaviors, such as cooperation,

coordination, and negotiation in these multi-mini robot systems, is even harder. Also, as

these are online systems, the systems need to resist innately with the unexpected noise on

2

crude sensors and actuators. Thus, algorithmic design should not only consider the theo-

retical optimization of the performance of the whole swarm, but also take into account the

practical implementation feasibility.

1.1 Area coverage

Coverage robotics, or area coverage means moving a mobile platform in order to cover a

surface by a robot’s bottom or sensor range [42]. Terrain Coverage has a variety of in-

dustrial, academic, and military applications such as unmanned search & rescue, aerial

reconnaissance, robotic demining, automatic lawn mowing, and inspection of engineering

structure. In these, a robot is given abounded prior known or unknown working area, most

possibly containing obstacles. The robot is assumed that each time it can visit a point

within the working area. Distributed terrain coverage is focus on using multi-robot systems

to fulfill efficient coverage task. Algorithms of distributed terrain coverage can be imple-

mented on diversified mobile robotic platform ranging from unmanned ground vehicles to

unmanned underwater and aerial vehicles.

In recent years, there is increasing interest for multiple robots terrain coverage. Com-

paring with single robot, multiple robots have potentially better performance on four prop-

erties: completeness, efficiency, redundancy, and robustness. First completeness, the al-

3

gorithm for multiple robots can guarantee to completely visit every point in the working

area. Second efficiency, by increasing the number of robots, the time they take to cover

the area can be reduced efficiently. Third redundancy, any points of the working area is

visited more than once. Theoretically, the optimal algorithm should be non-redundant, in

that any portion of the working area is covered only once. Last not the least robustness,

the multi-robot algorithm can handle robot failures, which means the coverage task can be

fulfilled by part of the robots.

In multi-robot coverage, non-redundancy and efficiency are independent optimization

criteria: Non-backtracking algorithms may be inefficient, and efficient algorithms may use

backtracking [32]. In other words, the optimal single robot coverage algorithm cannot

simply be used or produced the same result in multiple robot cases. Moreover, the initial

position of robots in the working area and the different shapes of the same size of working

area affect the completion time of the coverage.

1.2 Modeling Multi-Robot Systems

In this thesis, I propose a two level hierarchal architecture to solve the area coverage prob-

lem. In the upper most layer, my approach focuses on how to building a robust and reli-

able multi-robot coordination system to accomplish these applications. Conventional ap-

4

proaches try to use off line or online path planning to solve this problem. Some of the

existing approaches use behavior-based algorithms, which are inspired by social insects in

nature such as bees and ants who can follow trails laid by homogeneous creatures. My

module is based on the weighted voting game theory. Each robot has its recent coverage

history, and can calculate its coverage capability by the its coverage history. By using the

coverage capability as the weight, robots can form a optimal coalition when they meet. In

the lower most layer, each robot can do individual and foundational decision making pro-

cesses such as obstacle avoidance or heading north.

I derive the minimal winning coalition of weighted voting game theory with the robot

domain knowledge to fulfill these advance decision making processes: leaving or joining

a team based on maximizing the worth of the whole system. Also, to achieve the efficient

coverage by a single team, I extend the Reyolds’ flocking model to dynamically change

the shape of the team. This is the first module combining the robot team formation with

coalitional game theory for the mobile mini-robot system.

5

1.3 Coalitional Game Theory for Multi-Robot Decision-

Making

Collaboration and cooperative decision-making are important issues in multi-robot system

design. Especially, robots dynamically form a team and fulfill a certain task, such as the

area coverage. In practical situations, robots take a joint decision leading to a certain out-

come, which may have a different impact on each of them. Also, as different robot has

unique capabilities, the achievement of the team is based on the contribution of each robot.

Weighted voting games, which provide a model of decision-making in many political vot-

ing procedures, can be applied in the multi-robot cases. In such a game, each player has a

weight, and a coalition of players wins the game if the sum of the weights of its participants

exceeds a certain threshold. As weights can affect the outcome, one of the key issues to use

this model in multi-robot area coverage is how to compute such weight of each robot, in-

stead of pre-given which is unreal in multi-robot systems. Meanwhile, finding a stable and

unique coalition which is the well-known problem of coalitional games, is another practical

challenge.

In this dissertation, I illustrate the method of calculating the coverage capability based

on revisited history of the robot to present the weight in multi-robot system design. Also, I

extend the weighted voting game module with robot domain knowledge to get the unique

coalition in the core, which I call best minimal winning coalition (BMWC). I theoretically

6

prove the feasibility of this model, and give algorithms to find veto players and the mini-

mal winning coalitions. Also I designed a greedy method and a heuristic method to find

BMWC in O(n log n) time and O(n2) time respectively.

1.4 Research Objectives

The previous researchers mainly focus on the path planing to solve terrain coverage prob-

lem or extend their algorithms from the single robot to multiple robots. The objective of

this dissertation is to research the terrain coverage problem with multiple mobile robots

based on the framework of weighted voting games. More specifically, the objectives of the

research dissertation are:

• To design a novel method of computing the weights with robot coverage capabilities.

• To get the unique coalition in the core by extending the weighted voting game module

with robot domain knowledge.

• To build a feasible and practical multi-robot system for distributed terrain coverage.

• To theoretically prove the module and analysis the related algorithms.

• To evaluate the system in the software simulator, as well as the physical robots.

7

1.5 Organization of the Dissertation

The organization of the dissertation can be briefly described as follows:

The research methodology and related work review are described in Chapter 2. First, the

literal reviews of area coverage approaches, as well as flocking robot team control meth-

ods are proposed. Next, I introduce the mathematical concepts in coalitional game theory,

including the core, Shapley value and the weighted voting games. Finally, I present the

computational complexity of coalitional games.

In Chapter 3, I propose a indoor scenario with e-puck robots. Also, I introduce a lo-

calization method by using over head camera to mimic the GPS. I use a computer vision

software called robotrealm as a tool to get the location of each robot by image reorganiza-

tion processing.

In Chapter 4, Initially, I concentrate on the problem of distributed coverage of an un-

known environment using a swarm of mobile robots in the presence of robot faults and

failures. Each robot is limited in its communication range and memory capacity. More-

over, the communication between robots is susceptible to sensor noise, and each robot can

fail transiently or permanently. The global objective in the system is to have every cell in

the grid-environment visited by at least one robot while doing two things: reducing the cov-

erage time, and reducing the redundancy in the area covered by the robots. Our analytical

8

and experimental results show that the local robot algorithms translate to efficient, scalable

and fault-tolerant coverage of the environment under different operational constraints, even

in the presence of robot faults and failures.

In Chapter 5, I investigate whether the coverage achieved by robots in the previously de-

scribed technique can be improved if robots can be coordinated to move together in small

teams while covering the environment. A popular nature-inspired, emergent technique for

controlling the movement of multiple robots organized as teams is provided by the flock-

ing or herding behavior of birds and animals. I described techniques that enable limited

capability mini-robots to cover an unknown environment in a distributed manner by form-

ing multiple small-sized teams and to dynamically adapt their formation within a team on

encountering an obstacle. I test our techniques on the Webots simulation platform using

accurate models of e-puck robots as well as on physical e-puck robots. Our experimental

results showed that our team-based coverage techniques for distributed area coverage can

perform comparably while lowering storage and communication overhead with respect to

coverage strategies where mini-robots are coordinated individually.

In Chapter 6, One of the problems that I encounter while implementing flocking on

robot teams, was that conventional flocking techniques did not provide any mechanism for

robots to dynamically change teams depending on the operational conditions. To solve

this problem I start investigating mechanisms from coalitional game theory that provide

9

techniques for a set of individuals to form stable teams. In this research, I use a technique

from coalitional game theory called a weighted voting game (WVG) that allows each robot

to dynamically identify other team members and form teams so that the efficiency of the

area coverage operation is improved. I propose and evaluate an initial technique and two

refinement of computing the weights of a weighted voting game based on each robot’s cov-

erage capability and finding the best minimal winning coalition(BMWC). I compare the

performance of the weighted voting game based team reformation strategy with the base-

line strategy (fixed team size) where teams are not dynamically reformed within the Webots

robot simulation platform using up to 40 robots. The results show that the weighted voting

game-based strategy yields better coverage than the baseline strategy with different types

of obstacles occupying the environment.

Finally, Chapter 7 provides a discussion on main contributions of this dissertation and

summarizes the future research directions.

10

Chapter 2

BACKGROUND

2.1 Multi-robot coverage

2.1.1 Multi-robot coverage with individual robot coordination

Area coverage using distributed multi-robot systems has been an active area of research

for over a decade and an excellent overview of this area is given in [16]. Several tech-

niques for multi-robot coverage such as using Boustrophedon decomposition [53], using

occupancy grid maps [9], using probabilistic Bayesian models of the coverage map, infor-

mation gain-based heuristics and graph segmentation techniques[62, 72], negotiation and

learning-based approaches[35, 1] have also been proposed. Here, we focus on the recent

work on distributed area coverage using limited capability mini-robots. Previous research

in the area of distributed area coverage by mini-robots can be divided into three major cat-

11

egories. In the first category, heuristics inspired by ant algorithms are used to guide the

motion for ant-like robots performing terrain coverage. In [70], Wagner et al. consider a

grid-based environment and describe virtual ant-like robots that deposit virtual pheromone

in the cells of the grid that they visit. Robots then decide on their next movement using a

hill-climbing approach (ANT-WALK-1) or a multi-level depth first search technique with

backtracking (ANT-WALK-2). Koenig et al.[37] also use a grid-based environment and

describe ant-inspired mechanisms such as node counting and LRTA* to enable robots se-

lect the next action. However, these approaches assume either that robots can leave behind

physical trails within the environment (e.g., with a marker pen attached to each robot for

tracing its path[63]) which can be sensed by other robots, or, that all robots deposit virtual

pheromone on a centralized pheromone map that is shared by all robots[37]. These mech-

anisms also do not consider limitations on the communication ranges of robots because

sharing the pheromone by depositing markers in the environment or via a central location

evidently obviates the need for direct robot-to-robot network communication. In [2, 68],

Altshuler et al. and Wagner et al., describe ant algorithms inspired by results from com-

putational geometry for robotic area coverage in a floor cleaning application, where the

contamination can spread dynamically. Each robot follows an outward spiral pattern and

ensures that its cleaning action does not disconnect the dirty subgraph in the environment.

However, these techniques have not been to reported to be implemented on physical robots

and they appear to have considerable memory requirements on each robot as each robot

has to maintain a local copy of the dirty subgraph of the entire environment so that it can

12

calculate the boundary of the subgraph while selecting a cell to clean.

In the second category, the environment is considered as a graph and the coverage prob-

lem is treated as constructing the least-cost spanning tree that traverses the graph using

either a single robot[27] or multiple robots [32, 74]. In each of these algorithms, the robots

need to store and work with a representation of the entire environment within their memory

so that they can determine if a graph vertex they just arrived at has been visited previously.

Recently, Rutishauser, Correll and Martinoli[56] have addressed this problem using a team

of networked mini-robots to cover the surface of a jet turbine where the blades are marked

with color markers to aid in inspection and robot localization. However, this algorithm also

requires a space complexity equal to the number of vertices plus the number of edges of

the graph into which the environment is decomposed.

The third category consists of dispersion-based mechanisms between robots to achieve

area coverage. Howard et al. [33] present a potential-field-based approach for distributed

deployment of mobile sensor nodes in an indoor hospital environment. Batalin and Sukhatme’s[5]

algorithms are based on local, mutually dispersive interaction between robots when they

were within sensing range of each other. Morlok and Gini[45] describe different simplistic

coverage strategies for mobile mini-robots that use line of sight communication to avoid

each other and obstacles. Experimental results with simulated robots in different environ-

ments show that robots perform best by combining a random walk strategy (called fiducial)

while avoiding each other. In an extension of this work by Ludwig and Gini[40] robots

use wireless intensity signals to infer the location of each other and move in a direction

13

to disperse away from each other and improve area coverage. O’Hara and Balch [46] use

sensor-less robots without localization and mapping but deploy specialized anchor nodes

called attractors at specific locations in the environment to guide the path of robots. In a

similar approach, Gasparri et al. [28] deploy sensor nodes that efficiently guide the path of

robots using a Hamiltonian path-based algorithm. Parker [48, 49, 50] has described several

distributed techniques for multi-robot task allocation for applications such as box pushing,

mobile target tracking, etc. where robots exert vector force fields to repel or attract each

other. Spears et al. [59] have applied techniques inspired by the motion of particles in

physics to robotic terrain coverage. Some researchers [29] describe theoretical analyzes of

the multi-robot terrain coverage problem but memory constraints or communication ranges

of robots are not considered as limitations in these techniques and no information about

these parameters is provided in these papers.

In contrast to these approaches, our paper targets the middle ground lying between pure

dispersion-based approaches, and, memory and computationally involved approaches that

work with or need to store a complete map or representation of the environment. Our

techniques use the limited on-board memory of the robots to store partial coverage maps

of the environment. The robots then intermittently communicate and fuse their coverage

maps with each other and use emergent techniques based on the information in the fused

maps to guide their motion and achieve complete coverage of the environment.

14

2.1.2 Team based multi-robot coverage

Most research on formation of robot-teams using distributed techniques has been inspired

by Reynolds’ seminal work on the mobility of flocks[52]. Reynolds prescribes three funda-

mental operations for each team member to realize distributed flocking - separation, align-

ment and cohesion. Following Reynolds’ model, in [10, 69] they describe mechanisms for

robot-team motion while maintaining specific formations where individual robots deter-

mine their motion strategies from the movement of a team leader or neighbor(s). Balch

describes three reactive behavior-based strategies for robot teams to move in formation,

viz., unit-center- referenced, neighbor-referenced, or leader-referenced [7]. In contrast to

these approaches, Fredslund describes techniques for robot team formation without using

global knowledge such as robot locations, or the positions/headings of other robots, while

using little communication between robots [24]. Hanada provides a model for dynamic

team formation in multi-robot swarms inspired by motion models of schools of tuna fish

[31]. However, robots in their system rely extensively on accurate visual sensing because

each robot is required to know the the dimensions of an obstacle(e.g., the width of a pas-

sage) to be able to separate into sub-teams. Turgut proposes a behavior-based robot swarm

that creates self-organized flocking by using heading alignment and proximal control with

on-board digital compass [65]. In most of these flocking-based approaches, achieving per-

formance efficiency is not a principal objective for robot motion, and consequently, none of

these flocking-based approaches enable robots in a team to dynamically select and change

teams to improve the system performance.

15

Therefore, we need to find a suitable solution to fulfill this decision making process

of robots. In this research, we have used coalitional game theory to mimic human group

decision-making for robot teams. The basic idea of coalitional games is to study how a

single agent or person can improve its benefit while the utility to the whole team can be

increased as well.

2.2 Coalitional Games

To make self-interested agents combine to form effective teams, there is a theoretical model

called coalitional game theory or cooperative game theory. A coalition game assigns to

each group of agents, called a coalition, a set of possible payoffs [34, 58]. Instead of consid-

ering choices of individual agents within a coalition, researchers study how they coordinate

and cooperate with each other to pursue a coalition or coalitional winning condition.

Definition 2.1. A coalition game (CG) with transferable utility is given by (N, v), where

N = {1, 2, . . . , n} is a set of agents or players; and v : 2N 7→ R is a utility function that

maps each group of agents S ⊆ N to a real-valued payoff. Intuitively, v(S) is the profit

that the members of coalition S can attain by working together [58].

The assumption of transferable utility is that the payoffs to a coalition may be freely

redistributed among its members. In other words, players are allowed to communicate

before or during the game. Each coalition can be assigned a single value as its payoff. The

grand coalition is the name given to the coalition of all the agents in N . There are several

16

important classes of coalitional games which include formal properties.

2.3 Solutions of Coalitional Games

The solution of coalitional game is how to find possible division of the payoff which the

benefit or money a agent can achieve when it joins the team, to the grand coalition among

the players. We will give some basic definitions about payoff division.

Definition 2.2. Feasible payoff: Given a coalitional game G = (N, v), the feasible payoff

set is defined as {x ∈ RN |
∑

i∈N xi ≤ v(N)} [58].

Definition 2.3. Efficient: We say that an payoff x is strongly efficient or efficient in a

feasible payoff set F iff x ∈ F and there is no other vector y ∈ F such that yi ≥ xi for every

i ∈ N and yj > xj for at least one j ∈ N [43].

Definition 2.4. Pre-imputation: Given a coalitional game G = (N, v), the pre-imputation

set, denoted ρ, is defined as {x ∈ RN |
∑

i∈N xi = v(N)} [58].

Pre-imputation is the efficient feasible payoff set.

Definition 2.5. Imputation: Given a coalitional game G = (N, v), the imputation set,

denoted ρ, is defined as {x ∈ ρ|∀i ∈ N, xi ≥ v(i)} [58].

As the payoff of each player in an imputation set is no less than the amount it can achieve

by forming a singleton coalition, each player is individually rational. Imputation sets are

payoff vectors that are not only efficient but also individually rational.

17

Table 2.1: An example of three player game.

S V (S)
{1} 1
{2} 2
{3} 2
{1, 2} 4
{1, 3} 3
{2, 3} 4
{1, 2, 3} 6

Definition 2.6. Core: A payoff vector x is in the core of a coalitional game (N,v) if and

only if ∀S ⊆ N,
∑

i∈S xi ≥ v(S) [58].

Based on the definition of core, the sum is over only those players in S, ignoring those

components of x belonging to players in N\S. If a payoff x is in the core, the sum of

payoffs in x to any group of players S ⊂ N is bigger than what they could share if they form

their own coalition. Since S covers singleton coalitions, this definition implies that payoff

vectors in the core are imputations. For example, a three player game with transferable

utility is in Table 2.1. The payoff vector {2, 2, 2} is in the core, for the total value is equal

to the value of the grand coaltion. On the contrary, the payoff vector {1, 2, 2} is not in

the core, because the value of coalition v({1, 2}) = 4 is bigger than the assigned payoff 3

which are the value summed by player 1 and player 2 in the payoff vector.

18

2.4 Voting Games

There is a set of players N in the voting or selection like situation. Each player has right to

vote based on his/her capability. We call this as the voting power, and generally it is called

weight. A quota is established as threshold to win the game. This kind of games are called

voting games. In this group decision-making process, if a bill or a candidate is passed, only

if there are enough representatives support for it or him. In other words, the sum of the

advocator’s weights are more than the quota.

Definition 2.7. Simple game: A coalition game G = (N, v) is simple if for all S ⊂

N, v(S) ∈ {0, 1} [58].

A simple game is a compact representation of a coalitional game.

Definition 2.8. Weighted Voting Game (WVG): In a simple game G = (N, v), weights

wi be assigned to each player i ∈ N . Let W =
∑

i∈N wi, and q ∈ [0,W]. The value of a

coalition is 1 if
∑

i∈N wi > q ; 0 otherwise.

A coalition S ⊆ N is called a winning coalition in a WVG G if v(S) = 1. The family

of all the winning coalitions is denoted by WIN(G) when there is no ambiguity [41].

Definition 2.9. Minimal winning coalition: A coalition S ⊆ N is a minimum winning

coalition iff v(S) = 1 and v(S \ {i}) = 0 : i ∈ S . In other words, a winning coalition

from which remaining any one player makes it into a losing coalition is called a minimal

winning coalition.

19

Definition 2.10. Dictator: A player is a dictator iff ∃i ∈ N v({i}) = 1. The dictator can

determine if a weighted voting game wins or not.

Definition 2.11. Veto player: A player is a veto player, iff ∃i ∈ S and ∀S ⊆ N , then

v({S}) = 1 and v(S \ {i}) = 0. A player that appears in all winning coalitions, without

him other players can not reach the quota.

Definition 2.12. Dummy player: A player is a veto player, iff v(S) = 1 and v(S \{i}) =

1 : i ∈ S. In other words, if we remove the dummy players from a winning coalition, the

winning coalition is still winning.

These terms can be given meaning within the framework of voting games. For example,

a dictator is a person who can ”win” without the assistance of other players. So if a voting

game has a minimal winning coalition with a single player, the player in that coalition is

a dictator. However, unless there is a rule preventing this, there may be more than one

dictator in a game. Several minimal winning coalitions might consist of a single player.

Veto players are the players include in all winning coalitions. Dummy players are those

players if they are removed from a winning coalition, it is still a winning coalition. I will

show an example to explain those terms. Let us consider the game G = (N, v), which has

three players N = {n1, n2, n3} with w1 = 6, w2 = 3, w3 = 2 respectively. If we set the

quota q at the ”majority” level, q = 6, then we have the following collection of minimal

winning coalitions: {n1}. So the dictator of the game is n1. Players n2 and n3 are dummies

in this game because they are not members of any minimal winning coalition. If we set

20

quota q less than ”majority” level, for example, q = 5, the minimal winning coalitions of

this weighted voting game are {n1} and {n2, n3}.

2.5 Computational Complexity of Coalitional Games

From a computational point of view, the key issues of coalitional games are how these

games could be concisely represented, and how to efficiently compute the solution con-

cepts. Weighted voting games are widely used representations of coalitional games in prac-

tice. For example, the voting system of the European Union is a combination of weighted

voting games [6]. With an exponentially large number of players, Deng and Papadimitriou

[21] show that the computational complexity of the core of coalitional game is infeasible.

In other words, it is a NP-hard problem. Also, it is NP-hard to compute the Shapley value

of a given player [21]. If the input size is polynomially large, we can check whether the

core is empty or not in polynomial time. In [4, 22], Elkind gives a dynamic programming

method to find if the core exits or not in a weighted threshold game in polynomial time. By

fixed the type of the player, Aziz gives a general algorithm to find the coalition structure in

polynomial time [3].

21

Chapter 3

E-PUCK ROBOT: DESCRIPTION

AND LOCALIZATION

This chapter describes the robots used for empirical evaluation in the rate of the thesis. The

experimental setup of the robots focuses on a robot’s localization and multi-robot coordina-

tion aspects. Particular emphasis of our experiments is put on sensor and actuator noise and

limited or unreliable communication, because the chosen platform e-puck provides only a

limited amount of computational power and memory , has limited ’range R’ proximity and

has a high wheel-slip.

22

Figure 3.1: The area coverage platform: Epuck robot [30].

3.1 E-puck Robot

The e-puck robot is developed by the Autonomous System Lab at EPFL, as shown in Figure

3.1. The e-puck robot has a diameter of 7 cm, each wheel has a diameter of 4.1 cm. The

epuck is operated by a dsPIC 30 microprocessor clocked at 30 MHz, and capable of 15

MIPS. It has 8 KB of on-board RAM, and 144 KB Flash memory. The sensors that are

available on the e-puck are: (1) Eight infra-red distance sensors to detect of obstacles in a

range of 7cm, (2) Bluetooth capability for wireless communication, (3) 8 LEDs arranged

in a ring around the robot, one body LED and one front LED, etc. The maximum speed

of the robot is 13 cm/s, and gets about 2 hours of running time in an environment with a

smooth floor.

23

Table 3.1: Camera Parameters

Details Value
Max Digital Video Resolution 1600 x 1200

Video Capture 1600 x 1200 @ 30 fps
Pixel 2.0 megapixels
Len Carl Zeiss optics color len

Connection USB

(a) (b)

Figure 3.2: (a) an e-puck with a red marker, (b) 5 e-pucks moving in the ’V’ shape team.

Figure 3.3: Screen shot of five e-pucks within our experiment arena in the image processing soft-
ware user console.

24

(a) (b) (c)

Figure 3.4: Screen shots of roborealm console: (a)the raw image with red triangle, (b) the image
after RGB filter processing, (c) the final analyzed image with a coordinate location.

3.2 Overhead Camera-based Localization

To realize the localization for the robots, we have tested our technique in an indoor lab

environment in a square shape measuring 2.5×2.5 m2 with 5 or 6 epuck robots. To improve

the recognition results and reduce noise, we use a floor with clean and smooth surface. We

can easily distinguish the color markers from white and black chessboard like floor which

are close to minimum and maximum RGB values: white is 255, and black is 0. Moreover,

we built a marker for each e-puck using a blue, red, green, yellow, cyan, or magenta triangle

marker to denote its location and heading clearly within the image captured by the overhead

camera. Figure 3.2 (a) shows an e-puck with a red marker on the top. A five e-puck ’V’

shape team is shown in Figure3.2(b).

We have used an overhead camera-based localization system that mimics the functional-

ity of a GPS. Our camera is a Logitech QuickCam Pro 9000, whose main factors are shown

in Table 3.1. The image of the environment captured by the camera measures 1273× 1059

pixels within the 1600 × 1200 total range. Therefore, the average size of each pixel is

25

Figure 3.5: Screen shot of a geometric statistics window.

0.249× 0.235 cm2. Also, the camera is capable of 24 frames/sec of RGB capture. We used

Roborealm [55] version 2.0.8 to perform image processing operations. The software ana-

lyzes the picture shot by the camera every second, as shown . First the color filter function

finds the specific colored marker from the background using three value readings of RGB.

Next, the erode function consolidates the boundary of the marker. Finally, the geometric

statistics function calculates the location of the centroid of the marker. Based on the trian-

gle shape of the marker, the heading of the marker is calculated as well. The screen shot in

the image processing software user console is shown in Figure 3.3. The Roborealm soft-

ware has built-in RGB functions to figure out the locations for each maker in the picture.

For example, Figure 3.4 (a) shows the e-puck robot under the red triangle marker. To detect

the triangle we use the RGBFilter module set to filter on red. To smooth out the triangle

border and remove some of the additional noise we add the Erode module to produce a

26

Figure 3.6: A epuck in Webots simulator.

cleaner image. We also add in the Blob Filter and set it to eliminate all but the largest

blob just in case some other red artifact remains after the erosion. The image completes

the red triangle (robot) extraction, shown in Figure 3.4 (b). Once the red triangle has been

segmented from the background we add the Geometric module to run an analysis against

the triangle. The value in particular that we are looking for is the ANGLE parameter which

gives an indication of orientation of the blob, as shown in Figure 3.5. Finally, the marker is

targeted in the Roborealm console, as shown in 3.4 (c). The solid circle shows the centroid

of the red triangle, and its location is [511, 452] in the pixel unit.

3.3 Realistic Simulation

The scenario described in the former section has been fully implemented in the realistic

robot simulator called Webots [47]. Webots is a powerful robotic simulation platform that

27

allows realistic modeling of robots and environments including the parameters of different

sensors on robots and the physics of the environment. Each robot in our simulated system

is modeled as an e-puck robot with accurate models of the features and characteristics of

the physical e-puck robot, as shown in Figure 3.6.

28

Chapter 4

MULTI-ROBOT COVERAGE:

INDIVIDUALLY COORDINATED

ROBOTS USING SWARMING

4.1 Multi-Robot Distributed Coverage Problem

We consider a scenario where R mobile robots are deployed into an initially unknown two-

dimensional environment.Without loss of generality we assume the environment to be a

square with each side being D units long. The area of the environment to be covered is

then D2 sq. units. Let O be the area within the environment that is occupied by obstacles.

Each robot is equipped with a square coverage tool with a width d << D. Let atr denote the

29

action performed by a robot r ∈ R during timestep t that results in the robot’s motion and

sweeps its coverage tool over an area ctr. Informally, we can denote a unit coverage function

f : atr → ctr, that transforms robot r’s action(motion) atr into the area ctr covered due to that

action. The objective of the distributed terrain coverage problem is to find a sequence of

actions for each robot that ensures the following criteria: a) Complete Coverage Criterion.

Every portion of the environment should pass under the coverage tool of at least one robot

b) No Overlap Criterion. There should be no overlap between the regions covered by

different robots c) Distributed Behavior Criterion. Each robot should determine its actions

autonomously, in a completely distributed manner, so that the system can be scalable and

robust. Formally, the multi-robot distributed terrain coverage problem can be defined as

the following:

Definition 4.1. Multi-robot Distributed Terrain Coverage Problem. Given a set of R robots

in an initially unknown environment find a set of actions a1r, a
2
r, ...a

T
r to be performed au-

tonomously by each robot r ∈ R such that ∪r∈R ∪t=1...T ctr = D2 −O (complete coverage

criterion) and ∩r∈R ∩t=1...T ctr = {ϕ} (no overlap criterion), where f(atr) = ctr gives the

unit coverage function that translates the action of robot r during timestep t into the corre-

sponding area ctr covered by that robot’s coverage tool.

4.1.1 Distributed Coverage with Constrained Mini-robots

To solve the constrained distributed multi-robot coverage problem, we have defined two

maps that are stored within the memory of each robot to record the coverage history and

30

locations of nearby robots, as described below:

1. Communication Map. The communication map ξtr for robot r at time t contains the

locations of other robots that are within the communication range ξ of robot r. That

is, ξtr = {ltr′}where, r′ ∈ R−{r} and ltr′ denotes the location of a robot that is within

communication range of robot r.

2. Coverage Map. The coverage map χt
r for robot r at time t contains locations extend-

ing over a radius χ from the robot’s current location. We assume that the coverage

map radius of a robot is smaller than its communication range, i.e., χ < ξ. Following

the node counting technique in [37], each location in a robot’s coverage map is asso-

ciated with a value that represents the number of times the location has been visited

by robots. To build/update its coverage map, when a robot r visits a location l at time

t it adds the location to its own coverage history covr. Because of the finite size, th,

of the coverage history, the robot has to discard the location it visited th − 1 time

steps before, to accommodate the new location within covr. The coverage history

update rule is then given by:

covr ← covr ∪ {ltcurrr } − {ltcurr−th−1
r }.

At each time step, each robot exchanges its own local coverage history with all other

robots within its coverage map χt
r. Each robot then fuses the information in its own

coverage history with the coverage information received from other robots to gener-

31

ate the coverage map for its immediate neighborhood. For fusing the coverage history

of multiple robots, each robot simply adds the node count value of overlapping cells

in the coverage map of the robots, similar to the node counting technique used in

[37]. The coverage map for a robot r at time step t is then given by: χt
r = {χt

l},

where χt
l =

∑
r′∈χt

r
ctl,r′ , and,

ctl,r′ =

1 if l ∈ covr′ ,

0 otherwise.

A possible source of inaccuracy in the node counting technique is that the same cell

could be counted multiple times when a pair of robots exchange coverage information

over successive time steps. To prevent this, each robot considers the current location

of other robots, sent as part of the communication map at each time step that are also

within its coverage map. It then considers the robot locations within its coverage

map it had obtained during the previous time step. For the current robot locations

that are among the 8-neighbor cells of any of the robot locations in the previous time

step, the robot infers that the robot at that current location was already within its

coverage map in the previous time step. In such a case, the robot does not fuse the

entire information from the other robot’s coverage map, but only updates the node

count for the current location of the other robot. On the other hand, if the other robot

was not within robot r’s coverage map in the previous time step, it fuses that robot’s

coverage map with its own using Equation 4.1 above.

32

The value associated with a location within a robot’s coverage map could be considered

similar to the cumulative deposit of a virtual chemical substance such as pheromone by dif-

ferent robots at that location. The combination of pheromone values in the coverage maps

across different robots enables each robot to maintain a consistent pheromone landscape

across robots which are within the coverage map/range of each other. The pheromone

landscape stored in the local coverage map of each robot can then be used by a robot to

select an action that enables it to move towards locations that have less pheromone within

its coverage map.

This pheromone-guided dispersion of robots is successful in preventing a robot from re-

visiting locations already visited by itself and in dispersing robots away from each other

to enable them cover disjoint regions. However, our simulation experiments show that

such a dispersion approach has two deficiencies that reduce the efficiency of the global

objective of achieving complete coverage of the environment. First, it ’pushes’ robots to-

wards the periphery of the environment and prevents any robot from covering the center

of the environment. Secondly, the technique of the fusing the coverage map information

from multiple robots relies on the presence of other robots within a robot’s communication

range. If robots continuously disperse away from each other, they would ultimately be be-

yond each others’ communication range and would not be able to exchange coverage maps

with each other to avoid redundant coverage. To address these deficiencies, we describe an

information gain based technique along with the pheromone-guided dispersion in the next

section.

33

Figure 4.1: Different configurations of robots in the neighborhood of a robot r. The outer circle
represents robot r’s communication range ξ and the inner circle represents robot r’s coverage map
radius χ. (a) There are no other robots within robot r’s communication and coverage maps; (b)There
are some robots in robot r’s communication map, but no robot in its coverage map; (c) There are
some robots within robot r’s communication and coverage maps.

4.2 Area Coverage Algorithms

Our multi-robot area coverage technique is based on the insight that memory constrained

robots can reduce the redundancy in the area covered by each other, if they selectively

move closer to each other to exchange their coverage information maps instead of always

moving away from each other. However, the coverage information for a robot can improve

after taking an action, only if that action brings the robot within communication range

of at least one more robot. On the other hand, always moving closer to other robots to

improve the coverage map can limit the dispersion of the robots across the environment

and adversely affect the coverage. Clearly, at each step a robot faces a tradeoff between

coverage redundancy (measured by the amount of local coverage information it can gain

by moving closer to other robots) and dispersion (measured by the amount of uncovered

34

function selectActionECM returns Action selectedAction {
inputs: Map ξtr;

Action lastAction;
Location ltr;

variables: Set Rξ;
Action[] ACi, ACj ;
Set¡Action[]¿ AC;
double[] fr, Fr; // Probability density and distribution

functions for selecting robot r’s action
1. Rξ ← Set of locations of robots

in ξtr including r;
2. if Rξ = {ϕ} doRandomWalk();
3. For every r ∈ Rξ, find the set of actions {acr} ⊂ Ac s. t.:
4. l← move(r, acr, l

t
r);

5. AC ← ×r∈Rξ
{acr}

6. For every ACi ∈ AC

7. fr[ac]← hMD(Aci)∑
Acj∈AC

hMD(Acj)
such that (acr) ∈ ACi;

//Calculate the distrib. function Fr from the p.d.f. fr
// and select an action probabilistically according to Fr.
8. Fr[ac]←

∑
i∈Ac fr[i];

9. if (rand() ≥ Fr[ac] | ∃ac ∈ Ac)
10 selectedAction← ac;
11. return selectedAction;
}
function hMD returns int cumManhattanDist{
inputs:inputs: JointAction Aci;
for every pair of (ri, acri), (rj , acrj) ∈ aci

(li)← move(ri, acri , l
t
ri);

(lj)← move(rj , acrj , l
t
rj);

cumManhattanDist← cumManhattanDist
+ dist((xi, yi), (xj , yj))

return cumManhattanDist;
}

Figure 4.2: Algorithm used by a robot r to select its next action if there are some robots
within its communication map but no other robots in its coverage map.

territory it can visit by moving away from other robots). Considering these issues, we

design three local movement (action selection) rules for each robot r based on the number

of other robots in its neighborhood, as described below:

1. No other robots within r’s communication map or coverage map. In this scenario

shown in Figure 4.1(a), robot r has no other robots either within its communication

map or within its coverage map. Robot r then performs a random walk realized by

35

moving in a straight line for a random number of time steps (between 30 and 100)

and then selecting one of its possible actions randomly to make a random turn. If the

robot encounters an obstacle, it makes a random turn and continues with its random

walk.

2. Some robots in r’s communication map, but no robots in r’s coverage map. This

scenario is shown in Figure 4.1(b). Because there are no other robots within the cov-

erage map of robot r, robot r cannot increment its coverage information by fusing

coverage information from other robots. In such a scenario, robot r selects an ac-

tion that makes it disperse away from the robots that are within its communication

map. The algorithm for acheiving this is described in the selectActionECM method

in Figure 4.2. First, robot r obtains the locations of robots that are within its com-

munication map in the set Rξ (line 1). If this set is empty, robot r infers that it is in

a scenario similar to case 1 above and performs a random walk (line2). Otherwise,

robot r determines the set of possible joint actions with other robots whose locations

are in Rξ (lines 3-5). Each robot then calculates the sum of the Manhattan distances

between itself and other robots for each joint action (lines 4-7). The move(r, acr, l
t
r)

method used in line 4 in Figure 4.2 gives the location that robot r would reach in

the next time step if it executed action acr ∈ Ac from its current location ltr at time

t. The normalized values of these combined Manhattan distances are then used to

probabilistically select the next possible action at each robot (lines 9-11).

Using this technique, the expected action of a robot r corresponds to the action with

36

the maximum value of the Manhattan distance heuristic and is given by: E(acr) =

argacir maxPAci | acir ∈ Aci. The Manhattan distance based heuristic therefore en-

sures that robots have the highest probability of selecting the joint action that max-

imizes their combined Manhattan distances with each other. This results in robots

dispersing away from each other in successive steps to explore the environment. In

certain scenarios, this algorithm can cause a robot to have the maximum heuristic

value for an action that takes it towards an obstacle. However, the robot does not

continuously reattempt the same action of moving towards the obstacle (i.e., does not

get perennially stuck trying to move into an obstacle) because the probabilistic nature

of the action selection ultimately allows thee robot to select an action that does not

correspond to the action giving the maximum combined Manhattan distances, with a

non-zero probability.

3. Some robots within robot r’s coverage map This scenario is illustrated in Figure

4.1(c). Evidently a robot r faces a tradeoff while selecting an action between moving

closer to some of the other robots to gain more coverage information (and attempt

to reduce redundant coverage) and moving away from some of the other robots to

achieve better dispersion in the environment. We include another factor in this deci-

sion, by considering the potential information gain from robots that would move into

the coverage range of robot r (from within its communication range) as result of each

of its possible actions/movements. The algorithm for achieving this functionality is

shown in the selectAction method in Figure 4.3. Robot r first determines the set of

37

function selectAction returns Action selectedAction{
inputs: Map χt

r, ξtr;
Action lastAction;
Location ltr;

variables: Set Rξ, Rχ,ac;
Action[] Aci;
double[] fr Fr; // Probability density and distribution

functions for selecting robot r’s action

Rξ ← Set of locations of robots in ξtr including self;
if Rξ = {ϕ} doRandomWalk();
Rχ,ac ← Set of robots in χt

r after taking action ac ∈ Ac
from loctr;

if (Rχ,ac = {ϕ} | ∀ac ∈ Ac− {lastAction})
selectActionECM(ξtr,lastAction,ltr);

else for every ac ∈ Ac
For every l ∈ 8− neighbor ofltr
χt
l =

χt
l∑

l∈8−neighbors of ltr
χt
l
;

Rdec,ac ← Set of robots in χr
t with which distance

decreases after taking action ac ∈ Ac;
Rinc,ac ← Set of robots in χr

t with which distance
increases after taking action ac ∈ Ac;

Rig,ac ← Set of new robots that enter into r’s coverage map
after taking action ac ∈ Ac;

// Function IE returns the information entropy in coverage maps of robots
fr[ac]←

λ1|Rdec,ac|+λ2|Rinc,ac|+λ3|Rig,ac|×IE(Rig,ac)
|Rdec,ac|+|Rinc,ac|+|Rig,ac| × (1− χt

l),
where l = move(r, ac, ltr);

//calculate the distribution function Fr from the p.d.f. fr
Fr[ac]←

∑
i∈Ac fr[i];

if (rand() ≥ Fr[ac] | ∃ac ∈ Ac)
selectedAction← ac;

return selectedAction;
}

Figure 4.3: Algorithm used by a robot to select its next action when there are robots both in its
communication map and coverage map.

other robots Rχ,ac, that would be within its coverage map by taking action ac ∈ Ac.

If the coverage map of robot r is empty for all possible actions, robot r cannot gain

any coverage information from other robots by taking any of its actions. It then infers

that it is in a scenario similar to case 2 above and uses the selectActionECM algorithm

given in Figure 4.2 to disperse away from other robots. On the other hand, if the set

Rχ,ac is non-empty for some subset of actions of robot r, robot r first calculates the

normalized pheromone or node count values for each of the 8-neighbors of its cur-

38

rent location ltr. Robot r then considers the number of robots with which its distance

decreases(Rdec,ac), the number of robots with which its distance increases(Rinc,ac),

and the number of robots that enter into r’s coverage map (Rig,ac) because of action

ac. The information gain associated with action ac is calculated as the information

entropy (IE) from the robots in the set Rig,ac. This information entropy from the set

of robots in Rig,ac is given by IE(Rig,ac) = −Pi × log2 Pi, where Pi = 1
χt
r
, and

χt
r is the size of the coverage map of a robot. Robot r then calculates the density

function for its different actions according to the product of the linear weighted sum

of the number of robots with which its distance increases, the number of robots with

which its distance decreases and the information entropy from the robots that move

into its coverage map, and, the inverse of the normalized pheromone value of the lo-

cation it would reach by taking the action ac. It then probabilistically selects one of

its possible actions using the distribution function calculated from the above density

function.

4.2.1 Node Counting Strategies

As mentioned in Section 4.1, we consider a node counting technique similar to [37] in our

algorithm. In [37], a robot associates an integer value called a cell’s count with every cell

in the map of the environment. A robot increments the count value of a cell every time it

visits that cell, to update its coverage information of the environment. However, this node

counting technique requires every robot to maintain the count value of every cell within the

39

map of the environment. While [37] uses a central location that has no memory limitations

to store and fuse the coverage information from all robots, we cannot use such a centralized

storage technique in our system because each robot stores the coverage information only

within its local memory. The limited storage available on each robot in our system can

lead to the following two problems when we use node counting techniques for recording

coverage information:

1. Finite History Sizes. Each robot has to discard a part of its coverage map contain-

ing its own coverage history as well as fused coverage information obtained from

other robots with every movement/action it makes, corresponding to the cells that

exit its coverage map. Discarding older coverage information by each robot could

potentially result in repeated coverage of the same region several times and could

adversely affect the efficiency of the area coverage.

2. Repeated, but not continuous encounters between the same pair of robots. As

mentioned in Section 4.1, robots prevent repeated fusion of the same coverage in-

formation by maintaining a history of robot locations from the last time step and

discarding duplicate coverage information sent by robots whose coverage informa-

tion had already been fused earlier. However, if a pair of robots intermittently leave

and re-enter the coverage map/range of each other, they are not able to remember

having encountered each other before, and, consequently fuse the duplicate cover-

age information in their coverage maps. Evidently, this results in inflated values of

the node count for the locations on the coverage maps of these robots and adversely

40

affects coverage.

We posit that the coverage related problems with the node counting technique due to

limited memory on-board the robots can be mitigated if the coverage information is made

volatile. We achieve this by using the concept of pheromone evaporation commonly used

in emergent systems[8]. To realize the pheromone evaporation, each robot r decrements

the pheromone values stored within its coverage map at each time step using the equation

χt
l → β × χt

l , where β is a constant. The pheromone decrement over time results in a

pheromone gradient along the trail or path followed by a robot with higher pheromone

values at locations recently visited by the robot and lower pheromone values at locations

visited earlier. This pheromone gradient information from the coverage history of a robot

is exchanged with other robots when the coverage maps of the robots are exchanged at

each time step. A robot could then use this pheromone gradient information from its fused

coverage map to infer the direction of movement of other robots in its vicinity and select an

action that balances the information gain and dispersion from other robots. We have used

four different strategies for pheromone deposit and update in the coverage map of robots to

observe the effect of different degrees of information volatility and pheromone gradient in

the coverage map of a robot. These strategies are summarized in Figure 4.4.

41

4.3 Agents with Communication Faults

The local heuristic hMD used by an agent in our algorithm relies extensively on the correct

location coordinates of other agents located within its coverage and communication maps.

However, most sensors, especially GPS sensors that are commonly used to obtain location

coordinates, are characterized by noisy readings. Therefore, it makes sense to analyze

the operation of the agents’ local algorithm as well as the global system behavior in the

presence of sensor noise. To model faulty communication of coordiniates in our system,

we assume that sensor noise is distributed as a uniform, zero mean distribution. Let δ

denote the maximum number of units of error along each coordinate that can be reported

in a sensor reading. As before, we consider | R | agents in a two-dimensional environment.

Because we consider the sensor noise as zero-mean, uniform distribution a mean value

analysis of the effect of the noise on hMD is likely to return a zero value. Therefore, we

quantify the effect of sensor noise in terms of the standard deviation in hMD.

Proposition. The standard deviation in hMD due to the presence of sensor noise with

a maximum of δ units in each dimension, distributed uniformly with a zero mean has an

upper bound of O(δ).

Proof. For simplifying our analysis, we assume that all agents are within communication

range of each other. Then, the number of possible sensor readings that can be received by

agent r ∈ R is given by (2δ+1)2|R|. Out of this set of readings, the ones that have the same

42

Pheromone Possible Agent Next action
Update Movement select criterion
Strategy
Increase To any adjacent cell except if (x, y)← move(r, ac, loctr)

only most recently visited, µt+1
x,y ← µt

x,y + 1;
increment visited count in Select ac corresponding
cell by 1 to minµt+1

x,y

Decrease Same as increase only, if (x, y)← move(r, ac, loctr)

but visited value in a cell µt+1
x,y ← µt

x,y + 1;

decreases(evaporates) Select ac corresponding
exponentially with time to minµt+1

x,y and
µt+1
x,y < VThr

Increase or Each agent considers {(x, y)r′} ← pher. gradient
Decrease pheromone gradient from from agent r′.
with trails other agents. Uses Select ac in direction of

gradient information to decreasing gradient
select next action

Figure 4.4: Selection condition for agent action for different pheromone update strategies.

amount of error with opposite signs along the x(latitude) and y(longitude) coordinates give

zero error in hMD, because the Manhattan distance heuristic adds the distances along the

two coordinate axes. Therefore, the total number of values of hMD that have zero error is

given by δ | R |. Correspondingly, the number of values with e units of error in hMD is

given by [(2δ + 1)− | e |]|R|, where 1 ≤ e ≤ 2δ. Since errors are distributed uniformly

with zero mean, the standard deviation in the error in calculating hMD is given by:

SDerr =

√√√√ 2

(2δ + 1)R

e=2δ∑
e=1

[((2δ + 1)− | e |)R × e]2

or, SDerr= = O(
√

2(2δ)2|R|

(2δ+1)|R|) = O(
√
δ2) = O(δ).

In our system, we have designed the agent rules at the local level, while the global

43

behavior of the system is manifest by the interactions between the agents. In the next

section, we analyze the global behavior of our system in terms of the two metrics coverage

time and coverage redundancy under different operational constraints, including faults and

failures of the agents.

4.4 Experimental Results in Webots Simulator

The different parameters used for the experimental setup are listed in Figure 4.5. Each sim-

ulation was allowed to run for 10000 simulator ticks. A simulator tick corresponds to the

time required to perform one execution step for each entity in the simulation environment.

In our first set of experiments shown in Figure 4.6, we observe the coverage of the

environment with different coverage strategies. Each agent has a coverage map radius of 5

meter (denoted by MR5 in the figure caption). One of the strategies tested allows agents

to select a random action at each step. For the strategy labeled Binary, the value in each

cell is considered as a binary number instead of a real value. In the strategies labeled Inc,

the pheromone (node count) information does not decrease over time. The caption Trail

denotes that the agents use trail gradient information in their coverage map to select their

next action, as described in Figure 4.4. As shown in Figure 4.6, the strategies that use

the trail information obtain the higest coverage because the agents decide their actions by

combining the coverage information from their own coverage maps, as well as the possible

44

Symbol Parameter Value
λ1 Weight of Decrease {-1, 0.5, 1 }

Manhattan Distance
λ2 Weight of Increase {-1, 0.5, 1 }

Manhattan Distance
λ3 Weight of Information Gain 0.05
ω Percentage of Obstacles {5, 10, 25 }

Size of the whole map {10× 10,
χ 40× 40,

70× 70,
100× 100 }

ξ Communication range {11, 21, 41 }
of an agent

µ Radius for coverage map {5, 7, 11}
of an agent

A Action of an agent {′u′,′ l′,′ d′,′ r′}
α Communication rate 8 ticks

of an agent
β Decay rate of pheromone 1

40 per tick
Pa Probability of the next action {0.8, 0.1}
Pf Failure probability constant {0.01− 0.1}

of an agent
Pr Recovery probability constant {0.01− 0.1}

of an agent
Nr Number of agents {5, 10, 15, 20}

Figure 4.5: Parameters used in the experimental settings for the simulations.

45

Figure 4.6: Percentage of area covered with 5 agents in a 100 × 100 square environment for
different coverage strategies.

directions of movement of nearby agents estimated from the pheromone gradient in their

coverage map. The strategies that use node counting without considering trail information

perform slightly worse because each agent does not consider the possible locations of other

agents while taking its action. The strategy with binary node counting performs poorly

because binary node counting can capture less coverage information than real valued node

counting. Finally, and quite expectedly, the random strategy performs very poorly because

of the total absence of coordination among the agents.

In our second set of experiments, we analyzed the effect of changing the number of

agents in the environment. Quite evidently, as the number of agents increases the coverage

quality improves as long as the environment does not change. To further quantify the effect

of the number of agents on the overall solution quality, we analyzed the redundancy in

coverage in the environment by observing the number of cells that were revisited a specific

number of times by agents. The results are shown in Figure 4.7. Quite interestingly, we

46

Figure 4.7: Redundancy in area covered as the number of agents in the environment changes.

observe that as the number of agents increases from 5 to 20, the peak of the redundacy

curve shifts rightwards. Although this result simply indicates that as the number of agents

increases while keeping the environment unchanged, the redundancy in coverage increases,

these curves offer the useful insight of determining the optimal number of agents that result

in the least redundancy for a given environment.

In our third set of experiments, we once again observe the variation in coverage redun-

dancy while changing the size of the coverage map radius of each agent from 5 meter to

11 meter.1 As shown in Figure 4.8, as the size of the coverage map increases, each agent

has more coverage information about its immediate neighorhood and is able to select its

actions more efficiently to reduce its coverage redundancy.

In our fourth set of experiments, we observe the variation in percentage of the coverage

while changing the size of the communication range from 11 meter to 41 meter. As shown

1At 11 meter, the coverage map and communication map radii of each agent are identical.

47

Figure 4.8: Redundancy in area covered as the coverage map radius MR of agents changes.

Figure 4.9: Percentage of the coverage with the communication range radius CR of agents changes.

48

Figure 4.10: Redundancy in area covered as the communication range radius CR of agents changes.

Figure 4.11: Percentage of the coverage with and without the GPS sensor noise.

in Figure 4.9, as the size of the communication range increases, each agent is in larger

range to exchange both location and coverage map with other agents. Quite interestingly,

we observe that as the CR increases from 11 to 41, the three redundancy curves nearly

overlap each other in Figure 4.10. Although larger CR should have better coverage rate, it

has no effect to the coverage redundancy with other parameter unchanged.

In our fifth set of experiments, we observe the variation in percentage of the coverage

49

Figure 4.12: Redundancy in area with and without the GPS sensor noise.

while changing the size of the maze (the simulation environment) from 10 meter2 to 100

meter2. Unsurprisingly, larger area of the searching map, worse percentage of the cover-

age, shown as Figure 4.13.

In our sixth set of experiments shown in Figure 4.14, we randomly designed the obstacles

with different shapes and locations from 5% to 25% in the simulator. As shown in Figure

4.15, as the maze size is unchanged, more obstacles got more percentage of the coverage.

Figure 4.16 illustrates the coverage redundancy in area, and the results rightly match the

results of the percentage of the coverage in Figure 4.15: more obstacles, less coverage

redundancy. Our algorithms are not influenced by the obstacles quite much.

In our seventh set of experiments, we did the simulation tests by changing the weights of

the information gain. The weights are used to tradeoff between the coverage information it

can gain from other robots and the quality of coverage achieved by the robots. As there are

5 robots in our test scenario, the value of the information gain from a robot is from 0 to 20.

50

100 400 700 800 900 1000
92

93

94

95

96

97

98

99

100

101

Length of a side of the square environment (cm)

P
er

ce
n

ta
g

e
o

f
en

vi
ro

n
m

en
t

co
ve

re
d

Figure 4.13: Percentage of the coverage with different size of mazes.

Figure 4.14: 5, 10, 25 percentage of obstacles.

Figure 4.15: Percentage of the coverage with obstacles.

51

Figure 4.16: Redundancy in area with obstacles.

The weights represent the reward of the distance vary between two robots by a negative or

positive number. Figure 4.17 illustrates percentage of the coverage with different weights of

the information gain. The curve which represents the weight value always the same as +20

whenever the two robots go close or far shows the worst percentage of the coverage, and

the other three curves show litter difference of the percentage of the coverage. Figure 4.18

illustrates the redundancy in area with different weights of the information gain. Except

the curve A20A20, the three curves of the redundancy are also very similar. Empirically,

we should use positive weight value to make the agents disburse and balance with the

information gain.

In our next set of experiments, we analyze the effect of agent communication faults

on the coverage time and coverage redundancy in the system. For the communication fault

model, we have followed the sensor noise model described in [71] which is given by y(n) =

x(n)+a(0.0015Ñ(0, 1)+0.0012cos(2πn/ru)+ϕ0). This models approximates sensor noise

52

Figure 4.17: Percentage of the coverage with different weight values

Figure 4.18: Redundancy in area with different weight values.

53

Figure 4.19: Percentage of the coverage if agents malfunction with different recover probabilities.

as a combination of a high frequency, zero mean, white Gaussian noise and a low frequency

cosine wave with random period and random intial phase. For our simulation purposes,

we have assumed, a = 100, ru = 1600 and ϕ0 = 0. Figure 4.11 shows the coverage

of the environment using with and without the sensor noise. In the presence of sensor

noise, agents obtain about 35% less coverage than with noiseless communication, over the

same number of timesteps. As observed in our mathematical analysis of the sensor noise

model, the effect of sensor noise decreases the coverage linearly. A possible explanation of

this behavior is offered by the coverage redundancy graphs with and without sensor noise

shown in Figure 4.12. With sensor noise, the redundancy in coverage decreases. Therefore,

although fewer cells get covered with sensor noise, many of the uncovered cells are those

that were being covered redundantly when there was no noise.

In our last set of experiments, we measured the robustness of our system when some

of agents failed and recovered at different time steps. During each time step, each agent

54

Figure 4.20: Percentage of the coverage if agents malfunction with different failure probabilities.

might fail with a given failure probability and subsequently recover with a given recovery

probability. Fig. 4.19 illustrates the percentage of the coverage with 5 agents while keep-

ing the failure probability constant at 0.01. The recovery probability of each agent is varied

between 0.01 and 0.10. With increased recovery probability, the percentage of the coverage

increased. Although some curves intersected possibly due to sensor noise, higher recovery

probabilities got better coverage. Fig. 4.20 illustrates the results of a similar experiment

where we kept the recovery probability constant at 0.10 and varied the failure probability

between 0.01 and 0.10. Interestingly, we observe that the agent failure probability has a

significantly more detrimental effect on the coverage than the agent recovery probability.

Also, in Figure 4.20, the two non-monotonically increasing curves near the failure probabil-

ity of 0.10 show that that a high agent failure probability not only results in worse coverage,

but fails to keep up with the volatality of coverage information (pheromone evaporation)

in the system, causing coverage to reduce over time and rendering the system unstable.

In both these cases, the redundancy in coverage decreased as the respective probabilites

55

Table 4.1: Physical experimental results showing percentage of coverage of the environ-
ment by different number of robots with and without obstacles in a indoor lab environment.

No obstacle
Number of robots Braitenberg Fiducial Transient Node Counting

3 40.3 43.7 44.5
4 45.6 49.2 50.2
5 47.7 56.5 58.3

4.5% obstacles
3 43.2 47.9 48.7
4 46.5 53.3 55.6
5 49.3 59.2 62.1

12% obstacles
3 44.7 52.7 56.4
4 48.5 58.7 60.1
5 53.2 65.2 68.7

increased, although a more distinct reduction in redundancy was obtained over the various

recovery probabilities. 2

4.5 Physical Robot Experimental Results

As we can not get signal intensity from physical epuck robots, we simulate the fiducial

algorithm by the distance of each pair of robots in the communication range. In other

words, when two or more epucks in the communication range, by using the dispersion

method each one can change its heading to a quadrant where less epucks plan to cover in

2Additional experiments of our system have shown that linearly increasing the size of the environment
while keeping other parameters fixed increases the coverage time linearly, and, introducing obstacles in the
environment improves coverage time and redundancy. Also, weights λ1 = 0.1, λ2 = −1.0 and λ3 = 1.0,
in algorithm selectAction (Figure 4.3) performs better than other weights in terms of coverage time and
redundancy.

56

Strategies Mean Rank
Braitenberg Motion 2.00
Binary Node Counting 7.60
Incremental Node Counting 11.60
Transient Node Counting 9.60
Incremental Node Counting with trail 12.00
Transient Note Counting with trail 14.00

Test Score
Chi-Square 9.561
df 5
p-value 0.089

Table 4.2: The Kruskal-Wallis statistics tests of the percentage of environment covered with 5

robots in a 1000× 1000 cm2 square environment for different node counting strategies over 10,000
simulation time measured in ticks.

that quadrant. We observe that our transient node counting algorithm performs a little bit

better by about 3-5 percent than the fiducial algorithm. Because with our algorithm epucks

consider and share local coverage maps of each other, as well as simply dispersion.

We analysis our test data by Kruskal-Wallis statistics tests in SPSS, as our experiments

were taken randomly and independently of each other. H0: There is no difference of the

percentage of the environment with different node counting strategies; Ha: on the contrary,

not all of the results are the same. In Table 4.2, since p-value = 0.089 ≤ 0.1 = α, we reject

the null hypothesis. Thus, at α = 0.1 level of significance, there exists enough evidence to

conclude that there is a difference among the six different node counting strategies based

on the test scores.

We analysis our test data by Kruskal-Wallis statistics tests in SPSS, as our experiments

were taken randomly and independently of each other. H0: There is no difference of the

57

Number of Robots Mean Rank
5 robots 2.00
10 robots 5.30
15 robots 8.00
20 robots 11.60
40 robots 15.00
60 robots 16.60
80 robots 18.30

Test Score
Chi-Square 17.535
df 6
p-value 0.008

Table 4.3: The Kruskal-Wallis statistics tests of the percentage of environment covered with dif-
ferent number of robots in a 1000 × 1000 cm2 square environment for 2, 500 time steps.

percentage of the environment when the number of robots changes; Ha: on the contrary, not

all of the results are the same. In Table 4.3, since p-value = 0.008 ≤ 0.01 = α, we reject

the null hypothesis. Thus, at α = 0.01 level of significance, there exists enough evidence to

conclude that there is a significant difference among the percentage of environment covered

with different number of robots based on the test scores.

We analysis our test data by Kruskal-Wallis statistics tests in SPSS, as our experiments

were taken randomly and independently of each other. H0: There is no difference of the

number of time steps required to complete the coverage of the environment when the num-

ber of robots changes; Ha: on the contrary, not all of the results are the same. In Table 4.4,

since p-value = 0.007 ≤ 0.01 = α, we reject the null hypothesis. Thus, at α = 0.01 level

of significance, there exists enough evidence to conclude that there is a significant differ-

ence among the number of time steps required to complete the coverage of the environment

58

Number of Robots Mean Rank
5 robots 19.60
10 robots 16.60
15 robots 14.00
20 robots 10.00
40 robots 8.00
60 robots 6.60
80 robots 2.00

Test Score
Chi-Square 17.610
df 6
p-value 0.007

Table 4.4: The Kruskal-Wallis statistics tests of the number of time steps required to complete the
coverage of a 1000 × 1000 cm2 square environment for different numbers or robots.

Coverage Map Radii Mean Rank
50 cm 2.00
70 cm 6.00
110 cm 7.00

Test Score
Chi-Square 5.600
df 2
p-value 0.061

Table 4.5: The Kruskal-Wallis statistics tests of the percentage of environment covered with differ-
ent coverage map radii of 5 robots after 10,000 time steps in 1000 × 1000 cm2 square environment.

with different number of robots based on the test scores.

We analysis our test data by Kruskal-Wallis statistics tests in SPSS, as our experiments

were taken randomly and independently of each other. H0: There is no difference of the

percentage of environment when the coverage map radii of robots changes; Ha: on the

contrary, not all of the results are the same. In Table 4.5, since p-value = 0.061 ≤ 0.1 = α,

we reject the null hypothesis. Thus, at α = 0.1 level of significance, there exists enough

59

Communication Range Mean Rank
110 cm 13.20
210 cm 14.70
410 cm 18.60

Test Score
Chi-Square 2.005
df 2
p-value 0.367

Table 4.6: The Kruskal-Wallis statistics tests of the percentage of environment covered after 2500
time steps when the communication range ξ of robots changes, χ=50 cm, number of robots=5, and
environment size=1000× 1000 cm2.

evidence to conclude that there is a difference among the three different coverage map radii

based on the test scores.

We analysis our test data by Kruskal-Wallis statistics tests in SPSS, as our experiments

were taken randomly and independently of each other. H0: There is no difference of the

percentage of environment when the communication range ξ of robots changes; Ha: on

the contrary, not all of the results are the same. In Table 4.6, since p-value = 0.367 >

0.1 = α, we accept the null hypothesis. Thus, at α = 0.1 level of significance, there exists

enough evidence to conclude that there is not much difference among the three different

communication ranges based on the test scores.

60

Chapter 5

MULTI-ROBOT COVERAGE:

TEAM-BASED ROBOTS USING

FLOCKING

In Chapter 4, we proposed a swarm based individual robot coordination for area coverage.

Although robots can share their recent coverage histories with each other, the information

from the environment is still very limited. In this chapter, we propose to organize robot into

small teams while performing coverage. The motivation behind our team-based coverage

algorithm is to improve the coverage of the environment in terms of time and redundancy

by using robot teams organized in a coverage-maximizing formation. We will introduce a

team flocking method for distributed area coverage in this chapter. We also quantify the

61

effect of various parameters of the system such as the size of the robot teams, as well as

environment related features like the size and shape of the environment and the presence of

obstacles and walls on the performance of the area coverage operation. Results show the

flocking based mechanism can improve the performance of the system.

5.1 Single Team Flocking

In our single-team flocking technique, the leader robot communicates the direction it is

moving as the prescribed direction of motion for each follower robot in the team. Each

follower robot then attempts to move in the prescribed direction. If any follower robot fails

to move in this direction, it stops and communicates to the leader robot that its motion

failed. Depending on the position of the follower robot in the team and its attempted direc-

tion of motion, the team leader then selects a new direction of motion that would possibly

allow the affected follower robot to avoid the obstruction in its path. The team leader then

broadcasts this newly selected direction as the prescribed direction for the next time step

to all the follower robots in the team. In some scenarios, due to communication noise, a

follower robot might fail to receive the communication containing the prescribed direction

of motion from the leader robot. Then the follower robot just continues to move in the

same direction it moved during its previous time step. The pseudo-code algorithm used by

a team of robots in the leader-referenced motion strategy is described in Figure 5.1.

62

function LeaderReferencedMotion {
act−1 ← action(movement direction) performed during

last time step t− 1;
if (I am not the leader)
Acleader ← movement direction received from leader;
if (Acleader ̸= NULL)
act ← Acleader;

else act ← act−1

execute act;
if (act fails)

execute STOP;
sendMessage (MotionFailed, leader);

else //I am the leader
act ← act−1

execute act;
if (act fails)

execute STOP;
broadcastMessage (electNewLeader);

if (received MotionFailed message from follower robot)
newAction← An new direction of motion that will

allow the follower robot to avoid the obstacle
in the next step

act ← newAction;
broadcastMessage(nextAction, act);

}

Figure 5.1: Algorithm used by a robot to realize the leader-referenced formation control.

5.2 Single-Team Coverage Technique

A robot team using the formation control mechanism described above uses a very simple,

memoryless technique to cover the environment. In this technique, each leader robot uses

a random-walk coverage strategy to cover the environment - the leader (and the following

team members) follows a linear motion until it encounters an obstacle on its forward-facing

distance sensors. The leader robot then uses the team reconfiguration mechanism to read-

just the formation of the team and a new leader is selected to continue the coverage. To

63

keep the coverage technique very simple, we have made it memoryless, that is, each robot

does not keep any record of the regions it has already covered.

5.2.1 Formation Maintenance

When a team of robots moves in formation, the noise in the wheel rotation and sensor

readings can cause one or more of the team members to lose their desired positions which

destroys the configuration in the team. To address this problem, we have used a formation

maintenance protocol that is invoved at intervals of tFM timesteps by a team to enable

each follower robot to retain its position in the team. In this protocol, the team leader first

calculates the desired positions (DPi) of every follower robot i relative to its own position.

Each follower robot also sends its actual relative position APi to the team leader. The

team leader then compares DPi with the actual position APi of each follower robot i. If

the distance between DPi and APi is greater than δ, for any follower robot i, the team

leader sends a message to robot i with its desired position DPi, and, sends a message to

all other team members to stop. After robot i has reached DPi, it sends a message to the

team leader. The team leader then sends a message to all the follower robots to continue

moving in the previous direction before the formation maintenance protocol was invoked.

The calculation of DPi for follower robot i is given below. In these formulae, the actual

position APi is represented by (x0, y0), the desired position DPi is represented by (xi, yi),

a is the direction of motion of the team, u is the angular separtion in the team and dsep is

the linear separation between adjacent robots in a team.

64

Figure 5.2: (a) The leader robot (id=0) in a team of five robots encounters an obstacle. (b) A new
leader is selected (id=3) and the old leader robot (id=0) calculates the positions for every robot in
the new configuration under the new leader. (c) Each robot assumes its new position and the new
leader robot selects its heading from randomly between −α± β.

(a) Case 1: 0 ≤ a < π

xi =

x0 − i

2
× dsep × cos(a− u) if i is odd

x0 +
i
2
× dsep × cos(a− u) if i is even

yi = y0 − i
2
× dsep × sin(a− u)

(b) Case 2: π < a ≤ 2π

xi =

x0 +

i
2
× dsep × cos(a− u) if i is odd

x0 − i
2
× dsep × cos(a− u) if i is even

yi = y0 +
i
2
× dsep × sin(a− u)

5.2.2 Team Reconfiguration

A leader robot that encounters an obstacle ahead of it will fail to move in its direction of

motion. When the team leader encounters an obstacle it stops and communicates to the

65

follower robots to stop moving. Then, the leader robot selects a new leader and directs the

follower robots to change the configuration of the team to a new configuration so that the

team can continue covering the environment. To enable team reconfiguration, the leader

robot uses the team position identifiers. The positional adjustments of the robots after its

team leader encounters an obstacle is given by:

pi =

n if i = 0

n− i− 1 if i is odd number

n− i+ 1 if i is even number

where n is the number of robots in team minus 1, i is the old position in the team, and

pi is the new position identifier in the team. After getting in the new formation, the new

leader selects a new heading given by a random value in the range of ±β from the reverse

direction of the old heading. This results in the team performing a π ± β turn to avoid

the obstacle encountered during its movement. In general, if the obstacle is encountered

by the old leader using its forward-facing distance sensors on its righthand (lefthand) side

going clockwise from current heading, then the follower robot that is farthest from the

leader on its righthand (lefthand) side is selected as the new leader. If the old leader robot

approaches the obstacle orthogonally resulting in comparable readings on both pairs of the

forward-facing (left and right) distance sensors, then one of the two follower robots that

is farthest from the old leader robot is selected at random to become the new leader. A

scenario illustrating the team reconfiguration is shown in Figure 5.2.

66

(a) (b)

(c) (d)

Figure 5.3: Four different environments of five robots with V shape in Webots simulation platform:
(a) a square, (b) a triangle, (c) a corridor, (d) two diamonds connected by a corridor.

5.3 Experiment in Webots Simulator

To test the performance of our single team flocking technique, we used four different en-

vironments for our simulations - square, triangle, corridor, and two diamonds connected

with a narrow corridor, as shown in Figure 5.3 . All these environments have the same area

of 25 meter2. In each environment, we placed 3, 5 or 10 robots that were organized into

1 or 2 teams. By combining these parameters, we tested our coverage strategies in 16 dif-

ferent experiment scenarios. Each experiment scenario was allowed to run over a duration

of 2 hours. Each result was averaged over 10 simulation runs. For evaluating our results,

we have compared the performance of four different coverage strategies: (1) Individual

67

Table 5.1: Percentage of of a 5×5m2 environment covered for different environment shapes
and different coverage strategies.

3 robots in 1 team
Coverage Strategy Square Triangle Corridor Two diamonds

individual coor. 64.74 61.98 45.05 39.9
line flocking 51.05 48 45.76 45.88
’V’ flocking 40.33 41.92 46.06 31.33

hybrid flocking 42.96 42.48 47.45 41.46
5 robots in 1 team

individual coor. 83.36 78.85 55.16 52.05
line flocking 58.17 56.14 34.92 44.09
’V’ flocking 62.83 55.44 40.37 40.26

hybrid flocking 59.91 57.41 37.08 43.42
10 robots in 2 teams of 5 robots each)

individual coor. 93.27 84.53 73.37 75.88
line flocking 82.8 78.2 66.57 74.38
’V’ flocking 76.6 81.23 57.38 73.63

hybrid flocking 81.77 79.3 58.66 62.17

coordinated or formation-less strategy. This strategy is similar to the node counting and

pheromone-based coverage strategy described in [37]. The individually coordinated cover-

age strategy is used by independently moving robots (that is, robots not moving as a team

in formation). This coverage strategy involves storage and computation overhead as each

robot records a finite history of the region covered by it and exchanges and fuses this in-

formation with robots within its communication range. We have used a slightly modified

version of this algorithm suitable for e-puck robots described in [11]. (2) Line-shape For-

mation. In this coverage strategy, robots form teams with a straight line configuration. (3)

’V’ shape Formation. Here, robots form a V-shaped configuration using the techniques

described in Section 5.1, and, (4) Hybrid Formation. In this technique, robots dynami-

68

1 2 3 4
0

5

10

15

20

25

30

Type of environments

N
u

m
b

er
 o

f
o

b
st

ac
le

 a
vo

id
an

ce

Line Shape
V shape
Hybrid

1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

Type of environments

W
ai

t
ti

m
e

o
f

ea
ch

 o
b

st
ac

le
 a

vo
id

an
ce

(s
)

Line shape
V shape
Hybrid

(a) (b)

Square Triangle Corridor Diamonds
0

10

20

30

40

50

60

70

Type of environments

N
u

m
b

er
 o

f
re

fo
rm

at
io

n

Line shape
V shape
Hybrid

1 2 3 4
0

5

10

15

20

25

30

35

Type of environments

W
ai

t
ti

m
e

o
f

ea
ch

 r
ef

o
rm

(s
)

Line shape

V shape

Hybrid

(c) (d)

Figure 5.4: (a) Number of times an obstacle is encountered by the team, (b) Average time required
for team reconfiguration after encountering an obstacle, (c) Number of times the team has to per-
form formation maintenance while not encountering an obstacle, and, (d) Average time required for
formation maintenance.

cally alternate between the line formation and V-formation while regaining configuration

after the team’s shape transformation. To compare the relative performance of these strate-

gies for the different environments and different numbers of robots, each simulation was

allowed to run for a period of almost 2 hours that corresponds to the maximum battery

life of an e-puck robot. Our objective in the experiments we performed was to investigate

how much of the environment could be covered within the battery life of each robot-team.

Although not shown here, each environment was completely covered when the simulations

were allowed to run for 2.5 hours (with 10 robots) to 4 hours (with 3 robots). For each

simulation, all robots were deployed from the center of each environment.

69

The results of our simulations for the area coverage of the different scenarios is summa-

rized in Table 5.1. Each value in Table 5.1 represents the percentage of the environment

that was covered by the robots at the end of 2 hours of simulation time. We observe that the

three flocking-based techniques perform comparably with the individual coordinated strat-

egy. The extra overhead of the flocking-based techniques can be attributed to the extra time

required by the flocking-based methods for formation maintenance and for reconfiguring

the team after encountering an obstacle. However, as we increase the number of robots, the

coverage achieved using the three flocking-based techniques improves with respect to the

individually coordinated strategies. We also observe that for more complex environments

such as the corridor and the non-convex environment with two diamond-shapes connected

by a corridor, the line formation obtains the best coverage among the flocking-based cover-

age techniques, followed by the hybrid formation. This can be attributed to the fact that in a

line-formation, the robot teams are able to traverse narrow passages such as corridors more

efficiently. On the other hand, in a V-formation the angular dispersion of 2×u between the

two sets of follower robots impedes the movement of the team in narrow spaces. Finally,

because in the hybrid formation the robots alternate between a line and V-shape formation,

therefore, the hybrid formation achieves a coverage between the line and V-shape forma-

tions. We also observe that when we increase the number of teams from one team of 5

robots to two teams of five robots the coverage does not improve linearly. This is because

the robots cannot remember the regions covered by themselves or by other teams in the

past. Therefore, they end up re-covering regions already covered in the past.

70

To further analyze the performance of the flocking-based techniques we have compared

the average time spent by the different formations in the flocking-based techniques for re-

configuring after avoiding an obstacle and for performing formation maintenance. The re-

sults of these experiments are reported for one 5-robot team for the different environments

in Figures 5.4 (a)-(d). In Figure 5.4(a), we observe that the number of obstacles encoun-

tered by the robots using different formation control strategies depends on the shape of the

environment. However, as shown in Figure 5.4(b), the line-formation requires very little

time for reconfiguration because of its simpler configuration shape. On the other hand, the

V-shape requires the longest reconfiguration time to accurately determine the positions of

the different followers robots along the two arms of the V-shape. Finally, the hybrid forma-

tion requires slightly lesser reconfiguration time than the V-shape because sometimes the

obstacle might be encountered when the robots are in a line formation. Figures 5.4(c) and

(d), show the corresponding number of formation maintenance operations and the average

time required to perform a formation maintenance operation. The formation maintenance

operations reported here include both the selection of a new action by the leader to alleviate

a failed action by a follower robot as well as the position adjustment operations performed

by the follower robots described in Section 5.1. We observe in Figure 5.4(c) that the num-

ber of reformations for the square and triangle environments is larger. This can be attributed

to the fact that the free space in these two environments is larger and the robot team can

travel in the same direction without encountering any obstacle. During continuous motion

in the same direction, the follower robots get out of their desired positions required for

71

the configuration due to noise in the wheel motion. Therefore, more time the maintenance

formation is invoked more often in these two environments. However, in the corridor and

diamonds environment, the robots are in a narrow passage and they frequently encounter

obstacles which causes them to adjust their positions through team reconfiguration instead

of performing formation maintenance. The average time required by the line-shape forma-

tion for performing formation maintenance is also the highest, as shown in Figure 5.4(d).

This can be attributed to the fact that when robots use the line formation they are moving

in a single flank. Therefore, multiple robots are likely to require formation maintenance

when one of the follower robots fails to perform an action. Consequently, the leader robot

expends more time to find an action that will alleviate the failure to perform an action for

multiple follower robots.

72

Chapter 6

MULTI-ROBOT COVERAGE:

COALITION GAME-BASED ROBOT

TEAM FORMATION

6.1 System Modeling

A robot uses the coverage information from its coverage map to calculate its coverage

capability. The coverage capability of robot i is denoted as Ci = a×θi−b×ηi+C0. θi is the

coverage rate of robot i in recent time period T , and ηi is the redundancy rate. The coverage

rate is θi = Vcov

Vmap
, where Vcov is the area robot i covered in the last T timesteps, and Vmap

is the area of its whole coverage map. For example, if robot i can record a 100 × 100cm2

73

(a) (b)

Figure 6.1: (a) 6 robots calculate two minimal winning coalitions in the communication range , (b)
4 robots form a best minimal winning coalition and head to a new team direction.

local area in its coverage map, and in T timesteps it has covered a 50 × 50cm2 area, we

can calculate the value θi is 0.25. The redundancy rate is ηi = Vred

Vmap
, where Vred is the area

of the revisited region within the coverage map, and Vmap is the area of the whole coverage

map. a and b are normalizing constants, and C0 is the initial value of coverage ability.

Thus, we can get Ci in the range [0, 1.96], when a = 2, b = 1, C0 = −0.04. The coverage

capability Ci of robot i is upper and lower bounded.

6.1.1 Best Coalition Formation

Coalition structures represent the different combinations of teams which a robot can form

within other robots within its communication range. Every time, there are two or more

teams of robots in each other’s communication range, we can search the coalition structures

in the solution space. Our goal is to find an efficient partition, which increases the payoff

of the robot team without reducing the payoff of any single robot. For example, suppose

74

there are 4 robots that are within each other’s communication range. These robots can

form 24 = 16 possible coalitions. To get a winning coalition, we can set a robot’s own

weight as a linear function of the robot coverage capability defined by wi = α × Ci + β,

where Ci is the robot’s coverage capability introduced in former section, and α and β are

the adjustment constants to make wi remain within a certain interval. For example, wi ∈

[0,1] with α = 1
2

and β = 0.02. The weight wi associated with a robot gets updated

with its coverage map and coverage capability after every T timesteps. We set the winning

threshold of the WVG to q = c×n, where n is the number of robots and c is an adjustment

constant. In each round of the voting game, the weight wi of each robot and the quota q

are both fixed values. For example, we consider a weighted voting game with n = 4 robots

and individual robot weights at w1 = 1.3, w2 = 1.1, w3 = 1.2, w4 = 0.2, in a concise form

G = {3 : 1.3, 1.1, 1.2, 0.2}. We can get the minimal winning coalition {r1, r2, r3}, when

we set q = 3, with c = 0.75. A problem with applying the winning condition from general

WVGs to our context is that sometimes there could be more than one minimal winning

coalition. Suppose there are 6 robots with the weight set {1.1, 1.1, 1.1, 0.4, 0.4, 0.1}, and

quota q = 3.5, as shown in Figure 6.1 (a). We can get two winning coalition {r1, r2, r3, r4}

and {r1, r2, r3, r5}.

As the minimal winning coalition is not unique, we design a function ξ = argminS∈I(g×∏
k∈S xk +

∑
i,j∈S(e×di,j+f×φi,j)

|S|). We call the coalition which has the optimized value ξ the

best minimal winning coalition(BMWC). The value xk is a prime number, which can be a

unique number such as the robot’s ID. di,j is the distance between two robots i and j. φi,j

75

is the angle between the two robots i and j. e , f ,and g are adjustment constants, which

make g ×
∏

k∈S xk ≪
∑

i,j∈S(e×di,j+f×φi,j)

|S| . I is the set of minimal winning coalitions, and

S is a minimal winning coalition in I . The definition of ξ considers the angle and distance

between robots in the minimal winning coalitions as well as the intrinsic value of, such as

an id of each robot to come up with a unique value for each coalition. An example of deter-

mining the BMWC is shown in Figure 6.1 (b). If there is no winning coalition, we just keep

the status of each robot unchanged. As veto players are present in all winning coalitions,

we can check the exist of veto players of a voting game to determine the non-emptiness of

the core. Also we can find that BMWCs have the unique and stable properties of the voting

games.

As the theorem in Shoham’s book [58], ” In a simple game the core is empty iff there is

no veto player. If there are veto players, the core consists of all payoff vectors in which the

nonveto players get zero.”, we know that to determine the existence of the nonempty core

is based on the existence of the veto players in a simple game. A weighted voting game is

also a simple game. Thus, if we find a winning coalition with veto players in a weighted

voting game, we find a nonempty core. As the minimal winning coalitions are in the set

of all winning coalitions, if a minimal winning coalition is formed by veto players, it is in

the nonempty core. The best minimal winning coalition is in the nonempty core as well,

because it is one of the minimal winning coalitions with veto players.

However, we can not guarantee the core is always nonempty in a weighted voting game.

In other words, some times there does not exist veto players in a weighted voting game.

76

In such a case, the core of the game is empty, which means no new strategies for a robot

team or teams. This is also useful in the real multi-robot coverage case. For example, if

the weights of all the team members are the same (in the real cases, there is a bit difference

of each robot’s weight) and the quota value is less than 1, there are no veto players. The

leader robot does not need to calculate the best minimal winning coalition of the team.

To guarantee there exists veto players in a weighted voting game, the quota value need

to be set in a proper range. The upper bound of the quota value should be equal to the

sum of the weights W . The lower bound can be found, when there is only one player as

the veto player. Based on the definition of veto players, we get the lower bound of quota

greater than maxi∈N(wi). Thus, to guarantee there exists nonempty core of the weighted

voting game, the quote value should be set in the interval (W −maxi∈N(wi),W]. Also, if

q > (1− 1
|N |)W , then we are guarantee to find the veto player set, when all player weights

are equal.

Theorem 6.1. The best minimal winning coalition is unique.

Proof. di,j is less than the length L of the communication range and bigger than 0. φi,j is in

the interval [0, 2π].
∑

i,j∈S(e×di,j+f×φi,j)

|S| is in the interval (0, e×L+2π× f]. Suppose, two

winning coalitions S and S
′ have the same value ξ = ξ

′ , where exists one robot n ∈ S
′ and

n is not contained by S. As both coalitions are minimal winning coalitions, they have the

same number of elements |S| = |S ′ |. From the definition of ξ, we have
∑

i,j∈S(e×di,j+f×φi,j)

|S|)

=
∑

i,j∈S
′ (e×di,j+f×φi,j)

|S′ |), which means the geometric shape of the two coalitions are same.

77

In other words, they have the same perimeter and the sum of all angles. Thus, we know∏
k∈S xk ̸=

∏
k∈S′ xk. However, as |S| = |S ′|, if we get ξ = ξ

′ , xk can not be prime

numbers. It is contradictive for the define of the xk. Therefore, S and S
′ are the same

coalition, which infers that the best minimal winning coalition is unique.

Theorem 6.2. The ξb value of best minimal winning coalition is smaller than any ξ of

minimal winning coalitions.

Proof. Suppose, there exists a value ξsmall which is the minimal ξ of minimal winning

coalitions. There also exists a positive real number ε, where ε = ξb − ξsmall. Based on

the BMWC, ξb = argminS∈I(g ×
∏

k∈S xk +
∑

i,j∈S(e×di,j+f×φi,j)

|S|), there exists a distance

between two robots or the robot id that is a negative real number. However, it is not true for

physical robots. Thus, ξb is the smallest value of all ξ value of minimal winning coalitions.

6.1.2 The other coalition formation algorithm

Vig and Adams [66] have proposed a multi-robot coalition formation algorithm to deal with

actual multi-robot systems. He extended the Shehory and Kraus’ [57] algorithm which

is used for task allocation using software agent coalition formation. They declared that

agents could freely change combinations in different coalitions. However, it is infeasible

for physical robots. They represented this constraint as a Constraint Satisfaction Problem

(CSP). For example, the sensors and actuators must reside on the same robot or on different

78

robots. To check the feasibility of each coalition, they designed the constraint graph by

using arc-consistency. Moreover, they considered the balance property in the task format

and contrived a formula to calculate the Balance Coefficient (BC). Although their algorithm

does not improve the time complexity of Shehory and Kraus’ algorithm, it does give a real

and possible solution for the multi-robot task format.

As this paper focuses on the multi-robot coverage domain, we have fulfilled Vig and

Adams’s multi-robot coalition formation algorithm in Webots robot simulator which is the

same simulation platform for our DYN-REFORM Algorithm. The define of task here is

the coverage capability of the robot team, which can be set as a threshold. In stead of

multiple task allocation, this is a single task team formation problem. We have used single

robot coverage capability proposed in the former section as the inputs of both algorithms.

Most input coverage capabilities of robots have high values as moving in a field without

obstacles. For the sake of wheel slide noises, these values have 5 − 10% deviation. A

little portion of the input coverage capabilities of robots have low values, for they can be

stuck by walls or obstacles. Outputs are the coalitions of robots which have the coverage

capability to fulfill the team coverage task.

We ran the algorithms respectively 10 times using 5 to 30 robots and the value Qf from

0.5 to 0.9. As shown in Figure 6.2 with different number of robots and Qf = 0.7 (changing

the value of Qf , the result curves are almost the same) in the logarithm scale, the run time

of both algorithms are less than one millisecond and close to each other with number of

robot less than 10. However, as the number of robots increasing, the run time of multi-robot

79

0 5 10 15 20 25 30

10
−2

10
0

10
2

10
4

10
6

Number of Robots

R
un

 T
im

e
in

 M
ill

io
ns

ec
on

d

Vig’s algo.
WVG

Figure 6.2: Run time in millisecond (in the logarithm scale) with different number of robots and
Qf = 0.7 by using Vig’s Multi-Robot Coalition Formation Algorithm and Team Formation using
DYN-REFORM Algorithm.

0.5

0.6

0.7

0.8

0.9

5
10

15
20

25
30

10
0

10
2

10
4

10
6

10
8

Value of Qf
Number of Robots

N
um

be
r

of
 C

oa
lit

io
ns

Vig’s Algo.

WVG

Figure 6.3: Number of coalitions (in the logarithm scale) with different number of robots and
different values of Qf by using Vig’s Multi-Robot Coalition Formation Algorithm and Team For-
mation using DYN-REFORM Algorithm.

80

coalition formation algorithm increases from a couple of milliseconds to about 10 minutes.

Although we can put bounds to the task value and the number of robots, the multi-robot

coalition formation algorithm runs in exponential time. While, the time complexity of our

DYN-REFORM Algorithm is square complex of input number n. With less than 30 robots,

we can find the BMWC within 100 milliseconds as shown in Figure 6.2. Also, we found

that for both algorithms, we change the value of Qf , the run times are almost the same. In

other words, the run time of neither algorithm is related with the value of Qf , but related

with the number of robots.

As shown in Figure 6.3, the number of coalitions in the logarithm scale, the possible

coalitions of Vig’s multi-robot coalition formation algorithm increase exponentially in the

memory by raising the number of robots. Also, in Table 6.1, with the same number of

robots, by increasing the value of the Qf , the number of coalitions decreases for Vig’s

algorithm, because smaller value of quota or task value can achieve more coalitions in

the solution set. On the contrary, the number of minimal winning coalitions of DYN-

REFORM Algorithm increase slightly in the logarithm scale, as shown in Figure 6.3. Also,

as shown in Table 6.1, with the same number of robots, although we change the values of

Qf , the number of coalitions are changed very tiny for our Team Formation using DYN-

REFORM Algorithm. In stead of storing all the possible coalitions, our method firstly

finds the veto player set which includes most robots with normal coverage capabilities and

creates the MWC set based on the veto player set with small portion of the left robots.

For example, suppose there are three robots with resource set {3, 3, 5} for robot 1, robot

81

Table 6.1: Average and standard deviation number of coalitions with different number of
robots and different values of Qf by using Vig’s Multi-Robot Coalition Formation Algo-
rithm and Team Formation using DYN-REFORM Algorithm.

Value of Qf

Vig’s Algo. DYN-REFORM Algo.
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

5 robots
Avg. 5.6 4.7 4.6 2.1 1 3.9 3.6 3.4 3.4 3.4

STDEV 2.2 1.1 0.47 0.63 0 0.57 0.52 0.52 0.69 0.69

10 robots
Avg. 124.7 106.4 59 22 4.9 6.7 6.6 6 5.9 5.5

STDEV 2.1 4.4 2.3 1.6 1.2 1.6 1.8 2.3 1.9 2.4

15 robots
Avg. 2844.5 2500.2 1326.7 230.7 15 10.2 9.7 9.5 7.6 8.3

STDEV 896 35.8 28.7 10.9 0 2.4 2.9 2.7 2.2 3.1

20 robots
Avg. 92361.7 62636.6 19439.4 2457.6 93.1 14.5 13.1 12.2 10.4 13.9

STDEV 949 563 308 49.9 8.5 4.5 4.7 5 4.7 4.5

25 robots
Avg. 4111592 1716496 479418 32851 307 13 9.6 13.1 15.3 17.2

STDEV 98424 29451 931 224 2.1 9 2.8 6 5.1 6.5

30 robots
Avg. 89210570 58273576 10860190 428995 2442 17.9 13.4 21.9 23.7 21.1

STDEV 1809877 858013 35727 4838 75 10.3 8.5 5.9 4.3 6.1

2, robot 3 respectively, and the value of task is 6. By using Vig’s multi-robot coalition

formation algorithm, there are 4 solution sets: {3, 3, 5}, {3, 3, ∅}, {3, ∅, 5}, {∅, 3, 5}. By

comparing with the value of the Balance Coefficient, the finial coalition is {3, 3, ∅} which

BC is 1 while others are less than 1. The MWC sets of the DYN-REFORM Algorithm are:

{3, ∅, 5}, {∅, 3, 5}. By comparing the intrinsic factors of each robot, such as location or

robot ID, the finial coalition is {3, ∅, 5}. Thus, this example shows the possible solution

sets of the DYN-REFORM Algorithm is half of the sets of multi-robot coalition formation

algorithm. As shown in Figure 6.3, by increasing the number of the robots, the solution

sets of the multi-robot coalition formation algorithm exponentially larger than the sets of

the DYN-REFORM Algorithm.

Finally, we quantify the performance of the two algorithms combined with the flocking

control model with 5, 10, 15 and 20 robots within a 2 × 2 m2 environment where 10%

of the total area of the environment is occupied by obstacles. Each experiment was run

82

5 10 15 20
20

30

40

50

60

70

80

90

100

Number of robots

P
er

ce
nt

ag
e

of
 e

nv
ir

on
m

en
t

co
ve

re
d

by
 r

ob
ot

s

Dr.Vig¡¯s Multi−Robot Coalition
Formation Algorithm

Team Formation using
DYN−REFORMAlgorithm

Figure 6.4: Percentage of environment covered by different numbers of robot for using Dr.Vig’s
Multi-Robot Coalition Formation Algorithm and Team Formation using DYN-REFORM Algo-
rithm. within a 2 × 2 m2 environment where 10% of the total area of the environment space is
occupied by obstacles. The run time is 30 minutes.

for a period of 30 minutes. We observe that The DYN-REFORM Algorithm gets more

percentage of coverage than the multi-robot coalition formation algorithm. By calculating

the value of balance coefficient, the multi-robot coalition formation algorithm generates

the grand coalition with the higher BC value than the other coalitions. In other words, each

time all the robots join into the same flocking team. Not surprisingly, the coverage of the

fixed size flocking team can be improved by using DYN-REFORM Algorithm. Also, it is

a shortcoming by using balance coefficient value to find the team with equal capability of

each member for the single task allocation.

83

Figure 6.5: (a) A robot team showing the position identifiers of each robot. The angular
separation in the team is u, the separation between adjacent robots is dsep and α is the
heading of the team. (b)-(c) A scenario where a single team in formation encounters a T-
shaped obstacle and needs to split. (d)-(e) A scenario where two teams in close proximity
of each other encounter each other and need to merge.

6.2 Dynamic Team Reconfiguration and Weighted Voting

Games

We have used a flocking-based, leader-referenced formation control algorithm[52], to main-

tain a specific formation among the robots in a team while in motion, as shown in Figure

6.5(a) and described in [13]. Each robot in a team is given a local identifier with ’0’ as

the leader robot’s identifier and odd and even numbered identifiers for the follower robots

on either side of the leader. The shape of the team can be controlled by varying the an-

gle u to transform it, for example, from a wedge shape to a line shape. Each robot has a

specified separation dsep that it must maintain from its neighbors. The leader robot has a

predetermined direction α that it wants to move the team in. At the end of each time step,

the leader robot determines the position that it should reach at the end of the next time step

84

so that it can continue its desired motion. The leader robot also calculates the positions for

each of the follower robots for the next time step relative to their current positions, so that

the formation of the team is maintained. The leader robot then communicates the desired

position information to each of the follower robots. Finally, the leader and follower robots

start moving towards their respective designated positions.

A principal problem with flocking-based formation control is that it can fail if the leader

or a follower robot encounters an obstacle that impedes its motion to the desired position

for the next time step. The problem of obstacle avoidance while moving in formation is

accentuated if robots are not be able to perceive the obstacle boundary before planning their

motion for the next time step, as shown in Figures 6.5(b) and (d). In such inefficient scenar-

ios, it would be beneficial to reform the members of a team into new teams by splitting the

original team, as shown in Figure 6.5(c), or, merge some or all of the members of two robot

teams into a single team, as shown in Figure 6.5(e). We approach this problem of merging

and splitting robot teams as the robot team reconfiguration problem. Reconfiguring a robot

team can be viewed as a problem of finding the partition that is the best for all the partici-

pating robots. A single, hard-coded splitting or merging rule cannot be guaranteed to be the

best partition in all scenarios, and, therefore, the partitioning of the robot teams has to be

done dynamically. We have used concepts from the branch of micro-economics that deals

with cooperative or coalitional games [43] to determine rules for solving the robot-team

partition problem. Coalition games are particularly attractive for our problem because they

can ensure that the solution is stable, or in other words, it is acceptable to all the partici-

85

pants. Additionally, the players, or robots in our case, do not have to be explicitly informed

if a split or a merge is the best thing to do as the rules of the coalition game calculate the set

of robots that are incentivized to remain together, based on the performance of each robot

in the recent past. For our problem, we have used a suitable and succinct representation of

a coalition game called a weighted voting game(WVG). The main parameters of a WVG

are the following:

R Set of players or robots interested in forming a coalition

R Set of possible partitions among the members of the set R,R = 2R. Each mem-

ber of the setR is called a coalition of robots and denoted by Cj : j = 1, . . . , | R |

wi weight of robot r ∈ R that is calculated from the past performance (e.g.,

distance and time over which a robot has not deviated from its designated

position in a formation over some finite time window in the recent past)

Q quota or threshold of the WVG. A coalition Cj of robots becomes a winning

coalition if the sum of the weights of the players exceeds the quota,

v value function that denotes whether a coalition C ∈ R is a winning coalition

or not, i.e., v(C) = 1 if
∑

i∈C wi ≥ Q, and v(C) = 0, otherwise.

A few additional concepts in WVGs are useful for the formulation of our problem. A

veto player is a player such that if the player is excluded from a coalition, that coalition

cannot be a winning coalition anymore. As an example. consider a WVG with 4 players

A,B,C and D with weights 4, 2, 1, and 1 respectively. For this WVG, let quota Q = 5, that

is, any coalition must have a combined weight of at least 5 to be a winning coalition. The set

86

function FindVetoPlayers returns set V
inputs: set R, double Q, wi ;
variables: double W , W−i;

V = {∅};
W =

∑
i∈R wi;

for each i ∈ R
W−i =

∑
j∈R\{i}wj ;

if (W−i < Q)
V = V ∪ {i};

return V ;

function BMWCHeuristics returns Set BMWC
inputs: Set V ; ArraySet MWC;
variables:Set S; double[] ξ;

centroid←
∑

v∈V (Location(Pv))

|V | ;

avgBearing ←
∑

v∈V (Angle(Pv))

|V | ;
for i = 1 to |MWC |
S = MWC[i]\V ;
for each robot r ∈MWC[i]
ξ[i] = (

∑
r Distance(r, centroid)+

Angle(r, avgBearing) + ID(r))/(| S |);
j = argmin

i
ξ[1.. |MWC |];

return MWCj ;

(a) (b)

Figure 6.6: (a) Algorithm to find veto players in a WVG. (b) Algorithm to find the best minimum
winning coalition (BMWC) from a set of MWCs.

of winning coalitions for this WVG are {A,B}, {A,C}, {A,D}, {A,B,C}, {A,B,D},

{A,C,D} and {A,B,C,D}. This makes A a veto player because it is present in all the

winning coalitions. WVGs can have more than one veto player or no veto players. For

example, if we change Q from 5 to 7 both A and B become veto players, while if we change

Q from 5 to 2, none of the players is a veto player anymore. We use the notation V to denote

the set of veto players. The minimum set of players that can get enough combined weight

among themselves to get to the quota is called the minimum winning coalition(MWC). In

the example above with Q = 5, there are three MWCs - {A,B}, {A,C}, {A,D}. MWCs

are important because they imply that players in a MWC will not deviate from the coalition

they are in because they cannot improve the benefit that they receive by forming a different

coalition or a sub-coalition. This makes MWCs stable coalitions which are guaranteed not

to break off after the coalition is formed.

87

The problem solved in a WVG is to identify a set of players that form a minimum win-

ning coalition. This can be achieved in three steps as given below:

1. Identify all the veto players in R, because the veto players, if any, must be there in

every winning coalition. The algorithm for identifying the veto players is based on the

definition of veto players as players whose exclusion causes any coalition of the remaining

players to lose. In other words, the combined weight of players excluding the veto player

would fall below the quota. Our FindVetoPlayers algorithm shown in Figure 6.6(a), uses

this concept to calculate set of veto players V . It has linear time complexity as it has to

inspect each player from the set of players R for checking if it is a veto player or not.

2. Identify all the MWCs, by adding the minimum number of non-veto players to each

set of veto players identified in step 1 above. Let wv denote the combined weight of the

veto players found in step 1. Then, Q′ = Q − wv, denotes the deficit in combined weight

that should come from the non-veto players to reach the quota and form an MWC. Our

objective then becomes to determine the set of players from the set R\V that can together

reach a combined weight of Q′. This problem is a simplified version of the subset sum

problem [17], with the relaxation that we need to find the smallest subset of players that

is able to reach a combined weight of at least Q′, (instead of exactly Q′ of the subset sum

problem). We have used a greedy method to solve this problem that has a quadratic time

complexity in the worst case. The output of this algorithm is the set of MWCs.

88

3. Select one MWC called the best minimum winning coalition (BMWC) from the set of

MWCs identified in step 2 above that appears to be most amenable to robot team formation.

We measure the eligibility of an MWC towards forming a robot team using a heuristic-

based fitness function ξ. For designing this heuristic function, we first consider the pose of

the veto players because the veto players must be included in the final winning coalition.

We calculate the centroid of the locations of the veto players and the average of the bearing

between them. Then, for each of the non-veto players in each MWC, we calculate the

distance and relative bearing with the centroid and average bearing of the veto players.

If there are still any ties remaining, we use a prime number calculated from the robot id

to make the value of ξ unique. The minimum of the ξ values for each MWC gives the

best MWC. This algorithm is shown in Figure 6.6(b) and it has polynomial running time

because it takes O(| R |2) steps in the worst case to calculate the value of ξ for each non-

veto robot in each MWC. Integrating all the three steps, the worst case time complexity

of running a WVG among R robots is O(| R |) +O(| R |2) +O(| R |2) = O(| R |2).

DYN-REFORM Algorithm. The DYN-REFORM algorithm realizes dynamic team re-

configuration by integrating the WVG algorithm and the flocking-based formation control

algorithm. This integration is important and challenging because the WVG works only

with a performance value or weight for each robot while the formation control algorithm

relies on operational conditions such as presence of obstacles, proximity of robots, etc.

Before running the WVG, the DYN-REFORM algorithm provides methods to determine

89

Figure 6.7: State transition diagram for a robot participating in the dynamic reconfiguration
algorithm.

the set or subset of robots from a team that will participate in the WVG. After a coalition

has been computed by the WVG, the DYN-REFORM algorithm provides mechanisms to

handle situations where the computed coalition might not be realizable by the formation

control algorithm (e.g., because of occlusions that prevent robots in a coalition from reach-

ing their designated positions in the new team). It also specifies the operation of the robots

that are excluded from the winning coalition after running the WVG.

The operation of the DYN-REFORM algorithm is summarized by the state transition

diagram of a robot shown in Figure 6.7. First, we consider the case when a team moving

in formation encounters an obstacle and could possibly have to split. When any member

of the team encounters an obstacle, it enters into a STOP AND WAIT state for a certain

time period given by the value of a timer called STOP-TIMER. When this timer expires,

the robot runs a WVG. Other team members that encountered an obstacle and stopped

before the STOP-TIMER expires, possibly in the vicinity of the robot that is running in

90

the WVG, are included as participants in the WVG. In certain scenarios, only some mem-

bers of a robot team might encounter an obstacle while other robots in the same team do

not. The team members that do not encounter the obstacle continue their previous motion

(CONTINUE PREVIOUS MOTION state) by moving in a straight line. Because the orig-

inal team has lost some of its members due to an obstacle, it would make sense for the

robots continuing their motion to try and reconfigure with other robots in the system. To

achieve this, these robots schedule to run a WVG at some time in the future by starting a

timer called the WVG-TIMER. When the WVG-TIMER expires on a robot, it runs a WVG

including the robots that are within its communication range.

After the WVG has determined the robots comprising the best minimum winning coali-

tion (BMWC), the robot that has the highest weight in the BMWC is selected as their leader

robot. The leader robot then selects a new position and heading, usually in the direction

opposite to which the obstacle that caused the reconfiguration was sensed. It then starts

running the flocking-based formation algorithm to get the follower robots in their desired

positions and start moving together as a team in formation. In certain cases, for example,

when the vicinity of the robots forming a coalition is occupied by obstacles, the coali-

tion of robots calculated by a WVG might not be amenable to get into formation and move

together as a team. When this happens the robots that are not able to get into the desired po-

sition reattempt to get into their desired positions for NUM-FORMATION-REATTEMPT

iterations. At the end of the reattempts, the robots that managed to get into their desired

position for the new team, exclude the unsuccessful robots from the team and continue

91

their motion. The unsuccessful robots attempt another WVG among themselves. If these

robots are unsuccessful to form a team after NUM-WVG-REATTEMPT successive WVGs

(and included formation reattempts), they continue to move individually using Braitenberg

motion. Also, after running a WVG, if there are some robots that are not included as part of

the best minimum winning coalition, they continue to move individually using Braitenberg

motion until they encounter another team and possibly get assimilated with that team after

running a WVG.

When a robot moving individually or a robot team gets within close proximity of another

robot team, they run a WVG with the combined team members as the participating robots.

Finally, to avoid identical yet repetitive calculation of the BMWC in a WVG by all the

participating robots, we have selected the robot with the lowest local identifier to run the

WVG. This robot receives the weights from all the participating robots and after running

the WVG reports the outcome of the WVG to all the participants.

6.3 Experimental Results in Simulator

The performance function used to compute the weight value for each robot for participating

in the WVG uses the mean error in the robot’s desired position and the area of previously

uncovered region covered by the robot, over the last 25 time steps. Based on this func-

tion, for the DYN-REFORM algorithm, the duration of the WVG-TIMER is set to 25 time

steps so that the robots do not continue in inefficient configurations for long durations. The

STOP-TIMER is set to 15 time steps so that robots that do not encounter an obstacle and

92

do not need to stop get a sufficient time window to move away from the stopped robots

and possibly form a new team. The number of reattempts by a newly formed team to get

into formation after running a WVG (NUM-FORMATION-REATTEMPT) was set to 5 to

balance between splitting teams very frequently and inefficiently trying to form a team be-

tween robots when it is physically not possible (e.g., due to an obstacle between two sets

of robots trying to form a single team). To prevent the formation of excessively large teams

that have a high communication and computation overhead in the DYN-REFORM algo-

rithm, we took two steps. First, we set the quota for a WVG at qw× (sum of the weights of

participating robots), where qw ∈ [0, 1] is a real number called the quota ratio. The quota

ratio determines the size of the partitions or teams that are formed after running the WVG

and a larger value of qw gives preference to larger teams. For most of our experiments, we

set qw = 0.9, which guarantees that robots with very poor performance, and, consequently

low weights get excluded from the new team after reconfiguration. Secondly, we limited

the maximum team size in our experiments to 7 robots. If the winning coalition calculated

by the WVG has more than 7 robots, the excess robots that have the lowest weights in the

coalition are removed from the team and move individually without forming a team, until

they merge with another team at a later stage. For quantifying the efficacy of team for-

mation, we used the deviation in positions of the team members from a perfect formation.

To measure this, we calculated the mean error in the positions of the follower robots at

intervals of 10 sec. over the duration of the experiment. All results were averaged over 10

simulation runs.

93

0 5 0 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Time [s]

M
ea

n
er

ro
r

in
 d

es
ir

ed
 p

os
it

io
n

[c
m

] Initial team
moving in
formation

First robot
stops after
encountering
obstacle

Other robots
also stop at
obstacle

WVG
calculates new
team which is
still out of
formation

New team gets
into formation
within NUM−FORM
ATION−REATTEMPT
tries

(a) (b) (c)

Figure 6.8: (a) Initial configuration of a team of 5 robots moving in a wedge-shaped for-
mation. (b) Reformed team moving in new direction after encountering a flat wall obstacle.
(c) Mean error in the desired position of the robot team during the reconfiguration.

6.3.1 Team Reformation Experiments

For our first set of experiments, we verified the performance of the DYN-REFORM algo-

rithm. We considered three types of obstacles - a flat wall obstacle, a non-uniform wall

obstacle and a perpendicular, narrow wall obstacle, as shown in Figures 6.8(a), 6.9(a) and

6.10(a). For this set of experiments, we have traced the trail of the robots within Webots to

show their motion before, during and after reconfiguration. For the flat wall obstacle, the

leader robot encounters the wall first, enters into the STOP AND WAIT state and starts the

STOP-TIMER, according to the DYN-REFORM algorithm. The follower robots succes-

sively encounter the wall and also enter the STOP AND WAIT state and start their indi-

vidual STOP-TIMERs. The leader robot’s STOP-TIMER expires first and it runs the WVG

including the other robots that are stopped in its vicinity as the WVG’s participants. As an

example of the weight and quota values used in this WVG, one of the reported runs for this

experiment had weights of the five robots as 0.72, 1.0, 0.96, 1.16 and 1.24 respectively and

quota Q = 0.9 ×
∑

i wi = 4.57. The leader robot of the team had the worst performance

94

recently because it encountered the obstacle first and stopped, giving it a weight 0.72 in

the WVG. The fringe robots that stopped last have the highest weights of 1.16 and 1.24

respectively. The BMWC contains all the five robots in this scenario. which means that

all the robots should stay together in the new team. The new leader robot then selects a

position in a direction opposite to the direction in which it encountered the wall, a pose or

heading for the new team, and communicates the desired position of the follower robots to

get in formation in the new team. After the formation succeeds, the new team starts moving

as shown in Figure 6.8(b). Figure 6.8(c) shows the mean error in the position of the robots

during the entire reconfiguration process. Initially, between 0 − 50 seconds, the team is

moving in formation before encountering the obstacle, and this is shown by a low mean

error of about 3 cm in the position of the robots. When the robots successively start en-

countering the obstacle, between 50−100 seconds, the error between their actual positions

and their desired positions to remain in formation increases. This happens because when

the robots successively stop at the obstacle they form straight line along the boundary of

the wall, while their current formation, in which they had been before encountering the ob-

stacle, requires them to form a wedge shape. While the WVG runs, the robots are stopped

and their mean error in position remains unchanged, as seen between 100 − 125 seconds.

After determining the best minimum winning coalition, the robots get a new formation and

the mean error in the position of the robots decreases back to the low value of around 3− 4

cm over 125 − 250 seconds. We notice that the mean error suddenly spikes to about 60

cm around 150 seconds when the new team calculated by the WVG attempts reformation.

95

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Time [s]

M
ea

n
er

ro
r

in
 d

es
ir

ed
 p

os
it

io
n

[c
m

] Initial team
moving in
formation

First robot
stops after
encountering
obstacle

Other robots
successively
stop after
encountering
obstacle

WVG
calculates new
team which is
still out of
formation

New team gets
into formation

(a) (b) (c)

Figure 6.9: (a) Initial configuration of a team of 7 robots moving in a wedge-shaped forma-
tion. (b) Reformed team moving in new direction after encountering a non-uniform wall
obstacle. (c) Mean error in the desired position of a robot team during the reconfiguration.

This happened because all the robots stopped at the flat wall forming a horizontal line and

they are in close proximity of each other. The robots themselves occlude each others paths

when they try to get into a new formation. However, within 20 seconds, which was within

NUM-FORMATION-REATTEMPT= 5 iterations, the formation control algorithm is able

to resolve this problem and the robots are able to regain formation.

The scenario with robots encountering the non-uniform wall obstacle, shown in Figures

6.9(a) and (b), is very similar to the flat wall case. The main difference is that because

of the non-uniform surface of the wall, the robots along the fringes of the former team

persist longer in the CONTINUE PREVIOUS MOTION state than in the flat wall case.

This behavior is also seen in the mean error of the robots during reconfiguration, shown

in Figure 6.9(c). The mean error in the position of the robots w.r.t. their positions in the

previous formation becomes larger than the flat wall case because the robots move farther

from their erstwhile desired positions in formation into the clefts of the wall. However, in

this case, we do not see any significant spikes during after the WVG when the new team is

96

0 100 200 300 400 500 600
0

20

40

60

80

100

Time [s]

M
ea

n
E

rr
or

 in
 D

es
ir

ed
 P

os
it

io
n

[c
m

] Initial team
moving in
formation

First robot
perceives
obstacle
and stops

First team
forms (with
stopped
robots)

Non−stopped robots
run
WVG, which fails to get
a team in formation

Third
team
forms

Second
team gets in
formation

Non−stopped
robots
continue
moving

(a) (b) (c)

Figure 6.10: (a) Initial configuration of a team of 7 robots moving in wedge-shaped forma-
tion. (b) Reformed team moving in new direction after encountering a narrow obstacle that
causes the team to split. (c) Mean error in the desired position of a robot team during the
reconfiguration.

getting into its formation because the robots have dispersed further from each other because

of the non-uniform surface of the wall. Therefore, they do not occlude each other’s path

while getting into formation.

Figures 6.10(a) and (b) show a scenario where a robot-team encounters a wall perpendic-

ular to its heading that obstructs the team partially. In this scenario, only two robots at the

center of the 7 robot team encounter the obstacle, enter into the STOP AND WAIT state

and start their STOP-TIMERs. The rest of the team members do not encounter the obsta-

cle and enter into the CONTINUE PREVIOUS MOTION state while starting the WVG-

TIMER. We notice that the obstacle forces two sets of team members to continue their

motion along the two sides - above and below the obstacle. When the STOP-TIMER ex-

pires for the two stopped robots, they run a WVG. Since there are no other stopped robots

in their vicinity, the stopped robots form a new team among themselves and continue mov-

ing in a new direction. When the WVG-TIMER expires for the robots that continued their

97

0 5 0 100 150 200 250 300
0

10

20

30

40

50

60

Time [s]

M
ea

n
E

rr
or

 in
 d

es
ir

ed
 p

os
it

io
n

[c
m

] Two teams
start off
initally out
of formation

Both teams
moving in
of formation

New, combined
team forms (still
out of formation)

New team
manages to
get into
formation

(a) (b) (c)

Figure 6.11: (a) Initial configuration of two teams of 3 and 4 robots moving in wedge-
shaped formations. (b) Reformed team moving in new direction after encountering each
other and merging into a new team. (c) Mean error in the desired position of a robot team
during the reconfiguration.

motion, they run a WVG. These robots are in the vicinity of each other and the BMWC

contains all these robots. However, the BMWC contains two sets of robots that are lo-

cated on opposite sides of the obstacle and can never get into a single formation. There-

fore, although the WVG succeeds, the new team fails to form within NUM-FORMATION-

REATTEMPT(= 5) reattempts. The DYN-REFORM algorithm then causes the robots that

were unable to get in formation to to run another WVG and form a new team. Each team

gets into its desired formation and continues its movement. The graphs in Figure 6.10(c)

show that the mean error in the desired position of the robots from their erstwhile team

keeps increasing because some of the robots do not encounter the obstacle and therefore,

do not stop. When the WVGs run, three teams are formed at different times based on the

STOP-TIMER expiry (first team) and WVG-TIMER expiry followed by WVG reattempt

(second and third team), as shown in Figure 6.10(c).

Figure 6.11(a)-(c) show the scenario of two robot teams moving towards each other and

merging using a WVG, and the mean error in robot positions during the reconfiguration

98

process for this scenario. Before encountering each other, the two teams are moving in

formation and consequently, the mean error in the desired position of the robots is low.

When the teams encounter each other (team leaders separated by a distance of 70 cm or

less) they stop and run a WVG. Examples of quota and weight values from one experiment

run show that the weights of the robots in the two teams are {1.28, 1.2, 1.2, 1.2, } and

{1.32, 1.12, 1.16} respectively, while the quota Q = 0.9×
∑

i wi = 7.6. The WVG outputs

the combined set of all robots in both teams as the BMWC, implying that the two teams

have to merge into a new team. As in the case of reformation with the flat wall obstacle, we

notice a large spike in the mean error of the positions of the robots around 120 seconds in

Figure 6.11(c) because the robots from the combined teams get in each others’ way while

forming the new team. However, finally, they manage to get into their desired position

before NUM-FORMATION-REATTEMPTS and move together as one team.

Figure 6.12(a) shows the mean times spent by the robots in the STOP AND WAIT state

and the CONTINUE PREVIOUS MOTION state for the three different obstacle types.

The time in the STOP AND WAIT state is the highest for the flat wall because all robots

stop at the flat wall, while it is the lowest for the perpendicular wall where only two robots

stop and the rest of the team continues its motion. A complementary trend happens for

the time spent in the CONTINUE PREVIOUS MOTION state with a very low value when

all team members stop at the flat wall, and a higher value in the perpendicular wall case

when some team members never encounter the wall and continue moving until their WVG-

TIMER expires and they run a WVG.

99

Flat Non−uniform Perp. Flat Non−uniform Perp.
0

20

40

60

80

100

120

140

160

180

T
im

e
[s

]

Wall

Continue Previous MotionStop and Wait

WallWall Wall Wall Wall 0 5 10 15 20
30

40

50

60

70

80

90

100

No of. robots

P
er

ce
nt

ag
e

of
 e

nv
ir

on
m

en
t

co
ve

re
d

by
 r

ob
ot

s

No obstacles
No obstacles

20% obstacles

10% obstacles

10% obstacles

20% obstacles

Team formation without
Dynamic Split−Merge
Team Formation using
DYN−REFORM algorithm

(a) (b)

Figure 6.12: (a) Time spent by the robots in the STOP AND WAIT state and CON-
TINUE PREVIOUS MOTION state of the DYN-REFORM algorithm for the three dif-
ferent types of obstacles. (b) Percentage of the environment covered by a set of 5 robots
initially configured as a team without and with DYN-REFORM algorithm. The environ-
ment is 2×2 m2 with 0%, 10% or 20% of the area of the environment occupied by obstacles.
Each experiment was run for a period of 30 mins. Error bars were omitted for legibility.

Figure 6.12(b) shows the improvement in coverage achieved using the DYN-REFORM

algorithm by a set of 5 robots, initially configured as a team. The robots are placed within

a 2 × 2 m2 walled environment with 0%, 10% or 20% of the total area of the environment

occupied by obstacles. The coverage algorithm used by a robot in a team maintains only the

recent coverage information (over the last 25 time steps) and passes it to the team leader.

A leader robot exchanges this recent coverage history of its team with other leader robots

within its communication range to avoid covering regions that have been recently covered

by other robot teams. We observe that the robots using the DYN-REFORM, because of

their capability to dynamically reconfigure at obstacles and avoid inefficient configurations,

are able to improve coverage by about 5% when there are no obstacles, and about 7− 10%

when there are obstacles in the environment. 1

1To determine the effect of changing the amount of historical coverage information stored in the memory
of a robot (which determines the robot’s ’weight’ in the WVG), on the coverage performance, we considered

100

5 10 15 20
40

50

60

70

80

90

100

No. of Robots

P
er

ce
n

ta
g

e
o

f
en

vi
ro

n
m

en
t

 c
o

ve
re

d
 b

y
ro

b
o

ts

ratio value of quota =0.3
ratio value of quota =0.6
ratio value of quota =0.9

Figure 6.13: Percentage of environment covered by different numbers of robot for different
values of the quota for the WVG within a 2 × 2 m2 environment where 10% of the total
area of the env. space is occupied by obstacles.

Next, we quantify the effect of varying the quota parameter, Q, that determines the size

of the partitions or teams formed by the WVG. Recall that for a WVG, Q = qw×
∑

i∈R′ wi

where R′ is the set of players or robots participating in the WVG, wi is the weight of the

i-th robot in this set and qw ∈ [0, 1] is the quota ratio. In our experiments for observing

the effect of various quota values, we vary the value of qw. A large value of qw closer

to 1 will enable the formation of larger teams, while smaller values of qw closer to 0 will

enable the formation of smaller teams or no teams at all (robots move individually). We

report results from experiments with 5, 10, 15 and 20 robots within a 2× 2 m2 environment

where 10% of the total area of the environment is occupied by obstacles. Each experiment

was run for a period of 30 mins. We observe that as the value of qw increases towards

1.0, the performance of the coverage improves. This indicates that higher quota values,

different coverage history sizes corresponding to storing the coordinates of the last 10, 15, 25, 50 and 100
locations. Based on the setting that gave the best coverage performance, we used a coverage history size of
storing the last 25 locations.

101

which results in larger partitions or larger teams among robots that are participating in

the WVG result in improved coverage. Similar effect of varying the value of qw were

obtained when there were no obstacles in the environment or 20% of the environment was

occupied by obstacles. Overall, the results of this experiment suggest that robots that are

in proximity of each other and running a WVG among themselves produce better results

for coverage if they remain together as a single team instead of fracturing into smaller

teams or moving individually. In other words, for the scenarios tested in our experiments,

dynamically forming teams of robots results in improved area coverage, as compared to a

setting where the robots cover the environment individually.

Finally, we exported the region visited data from Webots and drew the coverage map in

gray scale as shown in Figure 6.14 (a) - (d). There are 5 robots in a team in a 4 × 4 m2

square environment. If the robots visited the regions more times, they are colored darker.

Figure 6.14(a), (b), (c) and (d) show the coverage map in every 30 minute within 2 hours.

We observe the wedged trail of the robot team. There are some sparse white cells in the

path, because the balance distance between two adjacent robots in team is larger than the

diameter of the coverage area per robot, as well as the robots have wheel slide noises. Also

we observe that most cells are covered in Figure 6.14(d) (93.5% coverage rate), and a few

of them are colored in black which means revisited over 15 times.

102

(a) (b)

(c) (d)

Figure 6.14: 5 robots in a team visited in a 4 × 4 m2 square environment. The region is colored
by light gray, gray, dark gray, and black representing revisited 2 to 5 times, 6 to 10 times, 11 to 15,
and over 16 respectively. (a) Run time is 30 minutes (b) Run time is 60 minutes.(c) Run time is 90
minutes. (d) Run time is 120 minutes.

103

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Time [minute]

M
ea

n
er

ro
r

in
 d

es
ir

ed
 p

os
it

io
n

[c
m

] Initial
team
move in
formation

WVG
calculates
new team
which is still
out of
formation

First robot
stops after
encoutering
obstacle

New team gets
into formation

(a) (b) (c)

Figure 6.15: (a) Initial configuration of a team of 5 robots moving in a wedge-shaped for-
mation. (b) Reformed team moving in new direction after encountering a flat wall obstacle.
(c) Average error in the position of the robot team during reconfiguration in the scenario of
encountering a flat wall obstacle.

6.4 Physical Experimental Results

For the first set of experiment, we deployed five e-puck robots in a wedged shape initially,

and moved from right to left as shown in Figure 6.15 (a). After a minute, the leader robot

in the middle first encountered the flat wall and stopped. After that, the other four robots

found the wall in front of them and stopped respectively. As we mentioned in the former

section, the leader robot triggered the STOP-TIMER. In the physical robot, the stop time is

longer than the time set in the simulator. When the leader robot’s STOP-TIMER, it ran the

WVG including the other robots that were stopped in its vicinity as the WVG’s participants.

First, it went backward about 30 seconds. Then, it turned to the new direction opposite to

the wall and stopped. Third, it sent reform team request to the team member in the range.

When the other robot received the request and the desired position in the team, they turned

to go from current location to the desired location asynchronously. As there are noises

from the picture catched by the camera and the wheel slip of the robot, each robot would

104

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

Time [minute]

M
ea

n
er

ro
r

in
 d

es
ir

ed
 p

os
it

io
n

[c
m

]

Initial team
moving in
formation

First robot
stops after
encountering
obstacle

WVG
calculates
new team
which is still
out of
formation

New team
gets into
formation

(a) (b) (c)

Figure 6.16: (a) Initial configuration of a team of 5 robots moving in a wedge-shaped
formation. (b) Reformed team moving in new direction after encountering a non-uniform
wall obstacle. (c) Average error in the position of the robot team during reconfiguration in
the scenario of encountering a a non-uniform wall obstacle.

try several times to reach to the desired location. Figure 6.15 (b) shows after running 8

minutes, the 5 e-puck robots reformed the wedged shape and headed to the up right region

of the environment. We collected the data of the mean error from current location to the

desired position of each robot in the team by every 20 seconds as shown in Figure 6.15 (c).

Within the first minute, as the team moved in a wedged shape, the mean error in the desired

position is roughly 5 cm. For the leader robot encountered the wall and stopped, the mean

error of the desired position increased sharply to about 30 cm. As the leader robot went

back to reform the team shape, the mean error in the desired position keeps going to 55-58

cm as a peak area from 4 to 5 minutes. After that, the mean error in the desired position

goes back to approximately 5 cm. This means the team have finished reforming the shape

and heading to a new direction after 8 minutes run time.

For the next set of experiment, we deployed five e-puck robots in a wedged shape initially

as the former experiment while there was a non-uniform wall in their way, as shown in

105

Figure 6.16 (a). After a minute, the leader robot in the middle first encountered the flat

wall and stopped. After that, the other four robots found different walls in front of them

and stopped respectively. Also, the leader robot triggered the STOP-TIMER. When the

leader robot’s STOP-TIMER, it ran the WVG including the other robots that were stopped

in its vicinity as the WVG’s participants. First, it went backward about 30 seconds. Then,

it turned to the new direction opposite to the wall and stopped. Third, it sent reform team

request to the team member in the range. When the other robot received the request and the

desired position in the team, they turned to go from current location to the desired location

asynchronously. As there are noise from the picture catched by the camera, the wheel slip

of the robot and even the other side of the wall , each robot would tried more time than the

former experiment to reach to the desired location. Figure 6.16 (b) shows after running 10

minutes, the 5 e-puck robots reformed the wedged shape and headed to the up right of the

environment. We observed the mean error from current location to the desired position of

each robot in the team by every 20 seconds as shown in Figure 6.16 (c). Within the first

minute, as the team moved in a wedged shape, the mean error in the desired position is

roughly 5 cm. For the leader robot encountered the wall and stopped, the mean error of

the desired position increased sharply to about 40 cm, for the robots were not in a vertical

line. As the leader robot went back to reform the team shape, the mean error in the desired

position keeps going to 80-85 cm as a peak area from 5 to 7 minutes. After that, the mean

error in the desired position goes back to approximately 5 cm. This means the team have

finished reforming the shape and heading to a new direction after 10 minutes.

106

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Time [minute]

M
ea

n
er

ro
r

in
 d

es
ir

ed
 p

os
it

io
n

[c
m

] Initial team
moving
 in formation

First robot
perceives
obstacle and
stops

Second team
gets in
formation

First team
forms (with
stopped
robots)

(a) (b) (c)

Figure 6.17: (a) Initial configuration of a team of 5 robots moving in wedge-shaped forma-
tion. (b) Reformed team moving in new direction after encountering a narrow obstacle that
causes the team to split. (c) Mean error in the desired position of a robot team during the
reconfiguration.

For the third set of experiment, Figures 6.17(a) and (b) show a scenario where a robot-

team encounters a wall perpendicular to its heading that obstructs the team partially. In this

scenario, only three robots at the bottom of the 5 robot team encounter the obstacle, enter

into the STOP AND WAIT state and start their STOP-TIMERs. The rest two of the team

members do not encounter the obstacle and enter into the CONTINUE PREVIOUS MOTION

state while starting the WVG-TIMER. Since there are no other stopped robots in their vicin-

ity, the stopped robots form a new team among themselves and continue moving in a new

direction. When the WVG-TIMER expires for the robots that continued their motion, they

run a WVG. These robots are in the vicinity of each other and the BMWC contains all

these robots. The graphs in Figure 6.17(c) show that the mean error in the desired position

of the robots from their erstwhile team keeps increasing because some of the robots do

not encounter the obstacle and therefore, do not stop. When the WVGs run, two teams are

formed at different times based on the STOP-TIMER expiry (first team) and WVG-TIMER

107

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Time [minute]

M
ea

n
E

rr
or

 in
 d

es
ir

ed
 p

os
it

io
n

[c
m

]

Two teams
move
in formation

New
combined
team forms
(still
out of
formation)

New team manages
to get into foramtion

(a) (b) (c)

Figure 6.18: (a) Initial configuration of two teams of 3 robots each moving in wedge-shaped
formations. (b) Reformed team moving in new direction after encountering each other and
merging into a new team. (c) Mean error in the desired position of a robot team during the
reconfiguration.

expiry followed by WVG reattempt (second team), as shown in Figure 6.10(c).

For the last set of experiment, figure 6.18(a)-(c) show the scenario of two robot teams

moving towards each other and merging using a WVG, and the mean error in robot posi-

tions during the reconfiguration process for this scenario. Before encountering each other,

the two teams are moving in formation and consequently, the mean error in the desired po-

sition of the robots is as low as 3 cm. When the teams encounter each other (team leaders

separated by a distance approximately the same as the simulator) they stop and run a WVG.

The WVG outputs the combined set of all robots in both teams as the BMWC, implying

that the two teams have to merge into a new team. As in the case of reformation with the

flat wall obstacle, we notice a large spike in the mean error of the positions of the robots

around 3 minutes in Figure 6.18(c) because the robots from the combined teams get in each

others’ way while forming the new team. The peak point of the mean error in the physical

experiment is 10 − 15 cm larger than the one in the simulation. However, finally, they

manage to get into their desired position before NUM-FORMATION-REATTEMPTS and

108

move together as one team.

109

Chapter 7

SUMMARY OF CONTRIBUTIONS

AND FUTURE DIRECTIONS

This chapter summarizes the work presented in previous chapters and shows this disserta-

tion’s contributions to mobile robotics field. This chapter also outlines potential avenues

for future research.

7.1 Summary of Contributions

The main contribution of this research to multi-robot area coverage domain:

(1) This dissertation introduces a swarm based multi-robot individual coordination ap-

110

proach. Robots are also susceptible to sensor noise while communicating with other robots,

and can be subject to transient or permanent failures. The objective of the robots is to cover

the entire environment while reducing the coverage time and the redundancy in the area

covered by different robots. First, we describe our distributed coverage algorithm where

each robot uses a local heuristic based on Manhattan distances and the information gained

from other robots at each step to decide on its next action(movement). We then describe

and analyze the fault model of our robots and show that the local heuristic used by the

robots deteriorates linearly as the communication noise increases. We observe that the sys-

tem is robust against inaccurate localization due to noisy sensor data and failures of a few

robots in the system

(2) Our terrain coverage algorithm is inspired by the flocking behavior of birds and ani-

mals observed in nature. We identify certain deficits with the basic model of flocking and

propose techniques that allow robots to dynamically form teams and adapt the team’s con-

figuration and size based on the operational conditions in the environment. The robot team

can adaptively change the shape of the team in the complex environment.

(3) A heuristic-based coalition formation algorithm is proposed. To model the decision

process as voting game, we simplify the issue of multi-robot team formation. Instead of

exponentially calculating all possible coalitions, this square algorithm significantly reduces

the solution space based on veto player set. We propose and evaluate this technique of com-

111

puting the weights of a weighted voting game based on each robots coverage capability and

finding the best minimal winning coalition(BMWC). We theoretically prove the feasibility

of our model, and give algorithms to find the BMWC as well.

This dissertation is on developing a distributed multi-robot system to perform complete

coverage of an initially unknown environment in an efficient manner. I have conducted

research in the design, analysis, evaluation, and testing of a multi-robot coalition formation

system performing area coverage both on the Webots robotic simulation platform, as well

as with e-puck mini robots.

7.2 Future Directions

This dissertation provides swarm based multi-robot coordination combined with coalitional

team formation which uses weighted voting game mechanism. However, much work needs

to be done to improve this WVG based multi-robot system for area coverage. A future

problem we are investigating is to dynamically adapt the value of the threshold in setting

the WVGs, so that the team size can be automatically changed in for cluttered or open

environments perceived by robots. We plan to use a Q-learning algorithm to learn the

value of the quota parameter and a policy reuse mechanism to adapt the learning process to

changes in the underlying environment.

We envisage that this technique also supports heterogeneous robots with different mem-

112

ory and communication limitations as well. we are investigating to use teams of heteroge-

neous robots with diverse sensor capabilities and how to integrate the robot heterogeneity

into the WVG framework. For example, team leader can be the robot with high computa-

tion capability. Some of the team members have detection sensor, and some of the team

members have localization sensor. How to represent different types of these capability as

weights is the next topic in this field.

As we fulfilled our system in the indoor lab environment, we use a over-head camera

to mimic the satellite and color marks to identify each robot. We also use a commercial

computer vision software to process the image and calculate the location for each robot.

However, the localization for our system is still a little bit ideal. Instead of global localiza-

tion, a further direction can be a technique combining the global localization with local po-

sition. Although the algorithms presented in this dissertation have been fulfilled on e-puck

robots, theoretically they can be used in other type of robots such Corobot: a four-wheeled

robot that has an on board mini-ITX computer, Explorer: designed for outdoor application

with GPS, laser, and an optional 4 DOF arm, and Seekur: the first commercially available

robot to demonstrate MDARS-like capabilities for general use by airports, utility plants,

corrections facilities and Homeland Security which need more efforts in implementation.

These high capability robots are design for outdoor applications.

Another potential area of research is the handling of localization and communication

failures by the multi-robot coalition formation systems and the formulation of techniques

to make the robot team formation process more robust to these failures. Currently, the

113

parameters for these systems were adjusted based on trial in Webots simulator and e-puck

physical robots. Future work involves dynamically adjusting these parameters with other

robot models and experience.

114

Bibliography

[1] M. Ahmadi and P. Stone. “A multi robot system for continuous area sweeping tasks”,

Proc. Intl. Conf. on Robotics and Automation, 2006, pp. 1724-1729.

[2] Y. Altshuler, A.M. Bruckstein and I.A. Wagner. “Swarm Robotics for a Dynamic

Cleaning Problem”, Proc. IEEE Swarm Intelligence Symposium, 2005, pp. 209-216.

[3] H. Aziz and B. de Keijzer. “Complexity of coalition structure generation.”, AAMAS

2011, The Tenth International Conference on Autonomous Agents and Multiagent

Systems, 2011, Taiwan, pp. 191-198.

[4] Yoram Bachrach, Edith Elkind. “Divide and Conquer: False-Name Manipulations

in Weighted Voting Games”, The Seventh International Joint Conference on Au-

tonomous Agents and Multiagent Systems, 2008, pp. 409-416.

[5] YM. Batalin and G. Sukhatme. “A local approach to multi-robot coverage”, the 6th

International Symposium on Distributed Autonomous Robotic Systems, 2002, pp.

373-382.

[6] J. M. Bilbao, J. R. Fernandez, N. Jiminez, and J. J. Lopez. “Voting power in the

115

European Union enlargement”, European Journal of Operational Research, 2002, pp.

181-196.

[7] T. Balch and R. Arkin. “Behavior-based formation control of multi-robot teams”,

IEEE Transactions on Robotics and Automation, 1998, Vol 14, No. 6, pp. 926-939.

[8] E. Bonabeau, M. Dorigo and G. Theraulaz, ”Swarm Intelligence: From Natural to

Artificial Systems,” Oxford University Press, New York, 1999.

[9] W. Burgard, M. Moors, D. Fox, R. Simmons and S. Thrun. “Collaborative multi-robot

exploration”, IEEE Transaction on Robotics, 2005, Vol 143, No. 3, pp. 376- 386.

[10] Q. Chen and J. Luh. “Coordination and control of a group of small mobile robots”,

Proc. Intl. Conf. on Robotics and Automation, 1994, pp. 2315-2320.

[11] K. Cheng, and P. Dasgupta. “Dynamic Area Coverage using Faulty Multi-agent

Swarms”, Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Tech-

nology, 2007, pp. 17-23.

[12] K. Cheng and P. Dasgupta. “coalition game based distributed coverage of unknown

environments using robot swarms”, (short paper) AAMAS 2008, 2008, pp. 1191-

1194.

[13] K. Cheng, P. Dasgupta, and Y. Wang. “Distributed Area Coverage Using Robot

Flocks”, World Congress on Nature and Biologically Inspired Computing, 2009, pp.

678-683.

116

[14] K. Cheng, and P. Dasgupta. “Weighted Voting Game Based Multi-robot Team For-

mation for Distributed Area Coverage”, 3rd International Symposium on Practical

Cognitive Agents and Robots, 2010, pp. 9-15.

[15] K. Cheng, and P. Dasgupta. “Multi-Agent Coalition Formation for Distributed Area

Coverage: Analysis and Evaluation”, Second International Workshop on Collabora-

tive Agents – REsearch and Developmen, 2010, pp. 334-337.

[16] H. Choset. “Coverage of robotics - A survey of recent results”, Annals of Mathematics

and Arrifical Intelligence, 2001, Vol 31 pp. 113-126.

[17] T. Cormen, C. Leiseron, R. Rivest and C. Stein. “Intro. to Algorithms”, McGraw Hill,

2001.

[18] N. Correll and A. Martinoli. “Robust Distributed Coverage using a Swarm of Minia-

ture Robots”, Proc. Intl. Conf. on Robotics and Automation, 2007, pp. 379-384.

[19] P. Dasgupta, and K. Cheng. “Robust Multi-robot Team Formations using Weighted

Voting Games”, 10th International Symposium on Distributed Autonomous Robotics

Systems, 2010, pp. 334-337.

[20] P. Dasgupta, K. Cheng, and L. Fan. “Flocking-based Distributed Terrain Coverage

with Mobile Mini-robots”, Swarm Intelligence Symposium, 2009, pp. 96-103.

[21] X. Deng and C. H. Papadimitriou. “On the complexity of cooperative solution con-

cepts”, Math. of Oper. Res., 1994, Vol 19, No. 2 pp. 257-266.

117

[22] E.Elkind, L.A.Goldberg, P.W.Goldberg, and M. Wooldridge. “Comutational Com-

plexity of Weighted Threshold Games”, In Proc. of AAAI, 2007, pp. 718-723.

[23] E.Elkind, L.A.Goldberg, P.W.Goldberg, and M. Wooldridge. “On the Dimensionality

of Voting Games”, In Proc. of AAAI, 2008, pp. 69-74.

[24] J. Fredslund and M. Mataric. “A general algorithm for robot formations using local

sensing and minimal communication”, IEEE Trans. on Robotics and Automation,

2002, Vol 18, No. 5, pp. 837-846.

[25] R. Falconi, S. Gowal, A. Martinoli. “Graph Based Distributed Control of Non-

Holonomic Vehicles Endowed with Local Positioning Information Engaged in Escort-

ing Missions”, Proc. Intl. Conf. on Robotics and Automation, 2010, pp. 3207-3214.

[26] Michael R. Garey, David S. Johnson. “Computers and Intractability A Guide to the

Theory of NP-Completeness”, W.H. Freeman and Company, 1997, pp. 3207-3214.

[27] Y. Gabriely and E. Rimon. “Spanning tree based coverage of continuous areas by a

mobile robots”, Annals of Mathematics and Artificial Intelligence, 2001, Vol 31, pp.

77-98.

[28] A. Gasparri, B. Krishnamachari and G. Sukhatme. “A framework for multi-robot node

coverage in sensor networks”, Annals of Math and AI, 2008, Vol 52, pp. 281-305.

[29] S. Ge and C. Fua. “On Redundancy, Efficiency, and Robustness in Coverage for Mul-

tiple Robots”, Proc. Intl. Conf. on Robotics and Automation, 2005, pp. 727-732.

118

[30] Generation Robots web site, online document, accessed at 2011:

http://www.generationrobots.com/e-puck-programmable-robot-with-battery,us,4,E-

puck-robot.cfm

[31] Y. Hanada, G. Lee and N. Chong. “Adaptive flocking of a swarm of robots based on

local interactions”, Proc. of 2007 Swarm Intelligence Symposium, 2007, pp. 340-347.

[32] N. Hazon, G. Kaminka. “A framework for multi-robot node coverage in sensor net-

works”, Robotics and Autonomous Systems, 2008, Vol 56, No.12 pp. 1102-1114.

[33] A. Howard, M. Mataric, and G. Sukhatme. “Mobile sensor network deployment using

potential fields: A distributed, scalable solution to the area coverage problem”, Proc.

Intl. Symp. on Distributed Autonomous Robotic Systemss, 2002, pp. 299-308.

[34] S.Ieong, Y.Shoham. “Bayesian Coalitional Games”, In Proc. of AAAI, 2008, pp. 95-

100.

[35] M. Jager and B. Nebel. “Dynamic decentralized area partitioning for cooperating

cleaning robots”, Proc. Intl. Conf. on Robotics and Automation, 2002, pp. 3577-3582.

[36] M. Ji and M. Egerstedt. “A Graph-Theoretic Characterization of Controllability for

Multi-Agent Systems”, Proc. American Control Conference, 2007, pp. 4588-4593.

[37] S. Koenig, B, Szymanski and Y. Liu. “Efficient and inefficient ant coverage methods”,

Annals of Mathematics and Artificial Intelligence, 2001, Vol 31, No. 1-4 pp. 41-76.

119

[38] G. Kaminka, R. Schechter, and V. Sadov. “Using Sensor Morphology for Multirobot

Formations”, IEEE Transactions on Robotics, 2008, Vol 24, No. 2, pp. 271-282.

[39] J. Malkevitch. “Voting Games”, Providence, RI: American Mathmatic Society, 2010,

accessed at:http://www.ams.org/featurecolumn/archive/weighted1.html.

[40] L. Ludwig and M. Gini. “Robotic swarm dispersion using wireless intensity signals”,

Proc. 8th Intl. Symp. on Distributed Autonomous Robotic Systems, 2006, pp. 135-

144.

[41] T.Matsui, Y.Matsui. “A Survey of Algorithms for Calculating Power Indices of

Weighted Majority Games”, Journal of the Operations Research Society of Japan,

2000, Vol 43, No. 1, pp. 71-86.

[42] M. Mazo Jr., K. H. Johansson. “Path-Planning for Robust Area Coverage: Evalua-

tion of Five Coordination Strategies”, AUCLA Electrical Engineering, 2010, accessed

at:http://www.ee.ucla.edu/ mmazo/docs/PathPlanCov.pdf.

[43] R. B. Myerson. “Game Theory”, Harvard Universiy Press, 1997.

[44] O. Michel. “Webots TM: Professional mobile robot simulation”, International Journal

of Advanced Robotics Systems, 2004, Vol 1, No. 1, pp. 39-42.

[45] R. Morlok and M. Gini. “Dispersing robots in an unknown environment”, Proc. 7th

Intl. Symp. on Distributed Autonomous Robotic Systems, 2004, pp. 291-301.

120

[46] K. O’Hara and T. Balch. “Pervasive sensor-less networks for cooperative multi-robot

tasks”, Proc. 7th International Symposium on Distributed Autonomous Robotic Sys-

tems, 2004, pp. 192-201.

[47] M. Oliver. “Professional Mobile Robot Simulation”, International Journal of Ad-

vanced Robotic Systems, 2004, pp. 39-42.

[48] L. Parker. “ALLIANCE: An architecture for fault tolerant multi-robot cooperation”,

IEEE Transactions on Robotics and Automation, 1998, Vol 14, No.2, pp. 220-240.

[49] L. Parker. “Adaptive heterogeneous multi-robot teams”, Neurocomputing, 1999, Vol

28, pp. 75-92.

[50] L. Parker. “Distributed algorithms for multi-robot observation of multiple moving

targets”, Autonomous Robots, 1999, Vol 12, No. 3, pp. 231-255.

[51] L. Parker. “J. Pearce, B. Powers, C. Hess, P. Rybski, S. Stoeter, and N. Papanikolopou-

los”, Robotics and Autonomous Systems, 2006, Vol 45, No. 4, pp. 307-321.

[52] C. W. Reynolds. “Flocks, Herds, and Schools: A Distributed Behavioral Model”,

Computer Graphics, 1987, Vol 21, No. 4, pp. 25-34.

[53] I. Rekleitis, A. New, E. Rankin and H. Choset. “Efficient Boustrophedon Multi-Robot

Coverage: an algorithmic approach”, Annals of Mathematics and Artificial Intelli-

gence, 1987, Vol 52, No. 2-4, pp. 109-142.

121

[54] I. Rekleitis, V. Lee-Shue, A. New and H. Choset. “Limited communication, multi-

robot team based coverage”, Proc. Intl. Conf. on Robotics and Automation, 2004, pp.

3462-3468.

[55] roborealm. “Online document”, roborealm, 2010, accessed at:

http://www.roborealm.com

[56] S. Rutishauser, N. Correll, and A. Martinoli. “Collaborative Coverage using a Swarm

of Networked Miniature Robots”, Robotics and Autonomous Systems, 2009, Vol 57,

No. 5, pp. 517-525.

[57] O. Shehory, and S. Kraus. “Methods for task allocation via agent coalition formation”,

Artif. Intell. J., 1998, Vol 101, No. 1-2, pp. 165-200.

[58] Y. Shoham and K. Leyton-Brown. “Multiagent Systems: Algorithmic, Game Theo-

retic and Logical Foundations”, Cambridge University Press, 2009.

[59] D. Spears, W. Kerr, and W. Spears. “Physics-based Robot Swarms for Coverage Prob-

lems”, Proc Intl. Journal on Intelligent Control and Systems, 2006, Vol 11, No. 3, pp.

124-140.

[60] B. Smith, M. Egerstedt, and A. Howard. “Automatic Generation of Persistent For-

mations for Multi-Agent Networks Under Range Constraints”, Mobile Networks and

Applications Journal, 2009, Vol 14, pp. 114-127.

122

[61] J. Svennebring, S. Koening. “Building Terrain Covering Ant Robots: A Feasibility

Study”, Autonomous Robots, 2004, Vol 16, pp. 313-332.

[62] C. Stachniss and W. Burgard. “”, Proc. Intl. Joint Conf. on Artificial Intelligence,

2003, pp. 1127-1134.

[63] J. Svennebring and S. Koenig. “Trail-laying robots for robust terrain coverage”, Proc.

Intl. Conf. on Robotics and Automation, 2003, pp. 75-82.

[64] A. Taylor, W. Zwicker. “Simple Game: Desirablility Relations, Trading, Pseudo

weightings”, Princeton Univerity Press, 1999.

[65] A. Turgut, H. Celikkanat, F. Gokce, E. Sahin. “Self-organized Flocking with a Mobile

Robot Swarm”, Proc. International Conference on Autonomous Agents and Multi-

Agent Systems, 2008, pp. 39-46.

[66] L. Vig, and J. Adams. “Multi-Robot Coalition Formation”, IEEE Transactions on

Robotics, 2006, Vol 22, No. 4, pp. 637-649.

[67] I. Wagner, M. Lindenbaum and A. Bruckstein. “Distributed covering by ant-robots

using evaporating traces”, IEEE Transactions of Robotics and Automation, 1999, Vol

15, No. 5, pp. 918-933.

[68] I. Wagner, M. Lindenbaum and A. Bruckstein. “Cooperative Cleaners: A Study in Ant

Robotics”, International Journal of Robotics Research, 2008, Vol 27, pp. 127-151.

123

[69] P. Wang. “Navigation strategies for multiple autonomous mobile robots moving in

formation”, IEEE/RSJ Intl. Workshop on IROS, 1989, pp. 486-493.

[70] I. Wagner, M. Lindenbaum and A. Bruckstein, ”Distributed covering by ant-robots

using evaporating traces,” IEEE Transactions of Robotics and Automation, Vol. 15,

no. 5, IEEE Press, Piscataway, NJ, USA, 1999, pp. 918-933.

[71] J. Wang, S. Chao, and A. Agogino,“Sensor noise model development of a longitudi-

nal positioning system for AVCS,” Proc. American Control Conference, IEEE Press,

Piscataway, NJ, USA, 1999, pp.3760-3764

[72] K. Wurm, C. Stachniss and W. Burgard. “Coordinated multi-robot exploration using

a segmentation of the environment”, Proceedings of IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, 2008, pp. 1160-1165.

[73] B. Yamayuchi. “Frotier based exploration using multiple robots”, Proc. 2nd Intl. Conf.

on Autonomous Agents, 1998, pp. 47-53.

[74] X. Zheng, S. Jain, S. Koenig and D. Kempe. “Multi-robot forest coverage”, Proc. of

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2005, pp. 3852-3857.

124

Appendix A

Refereed Publications by Ke Cheng

1. K. Cheng, and P. Dasgupta, “Multi-Agent Coalition Formation for Distributed Area

Coverage”, (accepted) Lecture Notes in Computer Science series, volume 6066,

2011, pp. 1-13.

2. K. Cheng, P. Dasgupta, and B. Banerjee “Adaptive Multi-Robot Team Reconfigu-

ration using a Policy-Reuse Reinforcement Learning Approach”, The Autonomous

Robots and Multi-Robot Systems workshop (ARMS 2011), Taibei, Taiwan, 2011.

3. P. Dasgupta, T. Whipple, and K. Cheng,“Distributed Area Coverage of Unknown

Environments Using Mini-robots”, International Journal of Swarm Intelligence Re-

search (IJSIR), 2011, Vol. 2(1), pp. 45-70.

4. P. Dasgupta, and K. Cheng, “Robust Multi-robot Team Formations using Weighted

Voting Games”, 10th International Symposium on Distributed Autonomous Robotics

125

Systems (DARS 2010), EPFL, Switzerland, 2010.

5. K. Cheng, and P. Dasgupta, “Multi-Agent Coalition Formation for Distributed Area

Coverage: Analysis and Evaluation”, the Second Collaborative Agents: Research

and Development (CARE Workshop 2010), Toronto, Canada, 2010.

6. K. Cheng, and P. Dasgupta, “Weighted Voting Game Based Multi-robot Team For-

mation for Distributed Area Coverage”, 3rd Practical and Cognitive Agents and

Robots (PCAR) Workshop, (co-located with AAMAS 2010), Toronto, Canada, 2010.

7. K. Cheng, S. Srinivasan, and A Tripathi, “Adaptive ARQ in Wireless Sensor Net-

works”, 3rd IEEE International Conference on Computer Science and Information

Technology (ICCSIT 2010), Chengdu, China, 2010.

8. K. Cheng, P. Dasgupta, and Y. Wang, “Distributed Area Coverage Using Robot

Flocks,” World Congress on Nature and Biologically Inspired Computing (NaBIC’09),

2009.

9. P. Dasgupta, and K. Cheng, “Distributed Coverage of Unknown Environments us-

ing Multi-robot Swarms with Memory and Communication Constraints,” UNO Tech

Report (cst-2009-1), 2009.

10. P. Dasgupta, K. Cheng, and L. Fan, “Flocking-based Distributed Terrain Coverage

with Mobile Mini-robots,” Proc. IEEE Swarm Intelligence Symposium (SIS’09),

Nasville, TN, March 2009, pp. 96-103.

126

11. L. Fan, P. Dasgupta and Ke Cheng, “Swarming-based Mobile Target Following Us-

ing Limited-Capability Mobile Mini-robots,” Proc. IEEE Swarm Intelligence Sym-

posium (SIS’09), Nashville, TN, March 2009, pp. 168-175.

12. K. Cheng, and P. Dasgupta, “Coalition game based distributed coverage of unknown

environments using robot swarms,” International Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS’08), Estoril, Portugal, 2008.

13. J. Murphy, S. Petter, K. Cheng, and R. Briggs, “Hitting the Collaboration Target:

Computer- Guided thinklet Selection”, Proc. International Conference on Design

Science Research in Information Systems and Technology, Atlanta, Georgia, 2008.

14. K. Cheng, and P. Dasgupta, “Dynamic Area Coverage using Faulty Multi-agent

Swarms” Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Tech-

nology (IAT 2007), Fremont, CA, 2007.

15. P. Dasgupta, M. Hoeing, K. Cheng, et al., “Dynamic Pricing Algorithms for Task

Allocation in Multi-agent Swarms,” Proc. First International Workshop on Coordi-

nation and Control in Massively Multi-agent Systems (CCMMS’07), Honolulu, HI,

May 2007, pp. 1-15.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	6-17-2011

	Multi-Robot Coalition Formation for Distributed Area Coverage
	Ke Cheng
	Recommended Citation

	tmp.1561126174.pdf.4ULi7

