809 research outputs found

    Review of selection criteria for sensor and actuator configurations suitable for internal combustion engines

    Get PDF
    This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited. Simple control metrics such as conditioning number are popular, mostly because they need fewer assumptions than closed-loop metrics, which require a full plant, disturbance and goal model. Overall, no clear consensus can be found on the choice of metrics to define optimal control configurations, with physical measures, linear algebra metrics and modern control metrics all being used. Genetic algorithms and multi-criterial optimisation were identified as the most widely used methods for optimal sensor selection, although addressing the dimensionality and complexity of formulating the problem remains a challenge. This review does present a number of different successful approaches for specific applications domains, some of which may be applicable to diesel engines and other automotive applications. For a thorough treatment, non-linear dynamics and uncertainties need to be considered together, which requires sophisticated (non-Gaussian) stochastic models to establish the value of a control architecture

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 206)

    Get PDF
    This bibliography lists 422 reports, articles and other documents introduced into the NASA scientific and technical information system in October 1986

    The simulation and analysis of fault diagnosis and isolation for gas turbine control system

    Get PDF
    The gas turbine engines are vital elements of modern aviation and mechanical industry. However, due to complexity in nature and operation, they require a complete monitoring to avoid unforeseen damages and faults in routine operation. This study involves the development of some suitable strategies for diagnosis and isolation of certain faults in a simulated gas turbine engine and to recommend corresponding recovery measures. In order to proceed with study of fault diagnosis and isolation, mathematical model of the gas turbine engine is required because mathematical models are best source for analysis of different dynamic aspects of a system. The models not only depict a picture of system operation at different instants of time but also provide framework for design of their control systems. In the present research study, the gas turbine engine is modelled in Simulink /MATLAB using mathematical equations regarding flow in different parts of the engine. The model is then simulated, tested and validated against published results of a physical gas turbine system by using analogue matching procedure. The model validation confirms its suitability and reliability for further work of the research study. After studying behavior of this mathematical model, a fuel flow controller is designed using Proportional-Integral (PI) controller. This fuel flow controller intends to control number of revolutions per second and hence thrust of the engine. The controller is tuned to get desired spool speed from the engine by controlling fuel flow rate in combustion chamber of the engine. After controlling the fuel flow, the modelled system is tested for fault detection and isolation (FDI). The deviation of parameters of faulty plants from those of healthy model are recorded as residuals. Residual analysis using model based methodology is adopted to carryout fault diagnostic studies. The analysis of these residuals provides us detailed knowledge of the faults based on their nature and location in the gas turbine system. This study deals with mainly three types of faults namely the sensor, actuator and component faults. The faults are implanted in the gas turbine model and simulations are run to collect data about the faults. The data obtained through comprehensive simulations and numerical results is used to differentiate among sensor, actuator and component faults in gas turbine engine. After having detailed knowledge about faults in the gas turbine system, suitable recommendations have been made to recover the system from these faults

    Fault Diagnosis and Fault Handling for Autonomous Aircraft

    Get PDF

    Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Get PDF
    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized

    Fault Diagnosis Techniques for Linear Sampled Data Systems and a Class of Nonlinear Systems

    Get PDF
    This thesis deals with the fault diagnosis design problem both for dynamical continuous time systems whose output signal are affected by fixed point quantization,\ud referred as sampled-data systems, and for two different applications whose dynamics are inherent high nonlinear: a remotely operated underwater vehicle and a scramjet-powered hypersonic vehicle.\ud Robustness is a crucial issue. In sampled-data systems, full decoupling of disturbance terms from faulty signals becomes more difficult after discretization.\ud In nonlinear processes, due to hard nonlinearity or the inefficiency of linearization, the “classical” linear fault detection and isolation and fault tolerant control methods may not be applied.\ud Some observer-based fault detection and fault tolerant control techniques are studied throughout the thesis, and the effectiveness of such methods are validated with simulations. The most challenging trade-off is to increase sensitivity to faults and robustness to other unknown inputs, like disturbances. Broadly speaking, fault detection filters are designed in order to generate analytical diagnosis functions, called residuals, which should be independent with respect to the system operating state and should be decoupled from disturbances. Decisions on the occurrence of a possible fault are therefore taken on the basis such residual signals

    Proceedings of the 1st Virtual Control Conference VCC 2010

    Get PDF

    Aeronautical engineering: A continuing bibliography with indexes (supplement 247)

    Get PDF
    This bibliography lists 437 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft
    corecore