3 research outputs found

    Architecture for Fault Tolerance in Mobile Cloud Computing using Disease Resistance Approach

    Get PDF
    The mobile cloud computing (MCC) is one of the emerging fields in the distributed computing. MCC is an integration of both mobile computing and cloud computing. The limitations of the mobile devices are storage, battery and processing proficiency.These sensitive characteristics of mobile devices can be effectively handled with the introduction of cloud computing. The increasing functionality of the cloud and complexity of the applications causes resource failures in the cloud computing and it reduces the overall performance of the MCC environment. On the other hand, the existing approaches for resource scheduling in MCC proposed several architectures and they are only concentrated on the allocation of resources. The existing architectures are lack of fault tolerance mechanism to handle the faulty resources. To overcome the issues stated above, this paper proposes architecture for fault tolerance in MCC using Disease Resistance approach (DRFT). The main aim of the DRFT approach is to effectively handle the faultyVMs in the MCC. This DRFT approach utilizes the human disease resistance mechanism which is used as materials and methods in the proposed model. The DRFT is capable of identifying the faulty virtual machines and reschedules the tasks to the identified suitable virtual machines. This procedure ultimately leads to minimization of makespan value and it improves the overall performance of the scheduling process. To validate the effectiveness of the proposed approach, a series of simulations has been carried out using CloudSim simulator. The performance of the proposed DRFT approach is compared with the Dynamic group based fault tolerance approach (DGFT-approach). The makespan value of DRFT is reduced to 7% and the performance of DRFT is increased when compare to the DGFT approach. The experimental results show the effectiveness of the proposed approach

    Analysis of Effective Load Balancing Techniques in Distributed Environment

    Get PDF
    Computational approaches contribute a significance role in various fields such as medical applications, astronomy, and weather science, to perform complex calculations in speedy manner. Today, personal computers are very powerful but underutilized. Most of the computer resources are idle; 75% of the time and server are often unproductive. This brings the sense of distributed computing, in which the idea is to use the geographically distributed resources to meet the demand of high-performance computing. The Internet facilitates users to access heterogeneous services and run applications over a distributed environment. Due to openness and heterogeneous nature of distributed computing, the developer must deal with several issues like load balancing, interoperability, fault occurrence, resource selection, and task scheduling. Load balancing is the mechanism to distribute the load among resources optimally. The objective of this chapter is to discuss need and issues of load balancing that evolves the research scope. Various load balancing algorithms and scheduling methods are analyzed that are used for performance optimization of web resources. A systematic literature with their solutions and limitations has been presented. The chapter provides a concise narrative of the problems encountered and dimensions for future extension

    Educating Sub-Saharan Africa:Assessing Mobile Application Use in a Higher Learning Engineering Programme

    Get PDF
    In the institution where I teach, insufficient laboratory equipment for engineering education pushed students to learn via mobile phones or devices. Using mobile technologies to learn and practice is not the issue, but the more important question lies in finding out where and how they use mobile tools for learning. Through the lens of Kearney et al.’s (2012) pedagogical model, using authenticity, personalisation, and collaboration as constructs, this case study adopts a mixed-method approach to investigate the mobile learning activities of students and find out their experiences of what works and what does not work. Four questions are borne out of the over-arching research question, ‘How do students studying at a University in Nigeria perceive mobile learning in electrical and electronic engineering education?’ The first three questions are answered from qualitative, interview data analysed using thematic analysis. The fourth question investigates their collaborations on two mobile social networks using social network and message analysis. The study found how students’ mobile learning relates to the real-world practice of engineering and explained ways of adapting and overcoming the mobile tools’ limitations, and the nature of the collaborations that the students adopted, naturally, when they learn in mobile social networks. It found that mobile engineering learning can be possibly located in an offline mobile zone. It also demonstrates that investigating the effectiveness of mobile learning in the mobile social environment is possible by examining users’ interactions. The study shows how mobile learning personalisation that leads to impactful engineering learning can be achieved. The study shows how to manage most interface and technical challenges associated with mobile engineering learning and provides a new guide for educators on where and how mobile learning can be harnessed. And it revealed how engineering education can be successfully implemented through mobile tools
    corecore