
112
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

Architecture for Fault Tolerance in Mobile Cloud
Computing using Disease Resistance Approach

Dasari Naga Raju, Vankadara Saritha

SCOPE, VIT University, Vellore, Tamilnadu, India

raj2dasari@gmail.com, vsaritha@vit.ac.in

Abstract: The mobile cloud computing (MCC) is one of the
emerging fields in the distributed computing. MCC is an integration
of both mobile computing and cloud computing. The limitations of
the mobile devices are storage, battery and processing proficiency.
These sensitive characteristics of mobile devices can be effectively
handled with the introduction of cloud computing. The increasing
functionality of the cloud and complexity of the applications causes
resource failures in the cloud computing and it reduces the overall
performance of the MCC environment. On the other hand, the
existing approaches for resource scheduling in MCC proposed
several architectures and they are only concentrated on the
allocation of resources. The existing architectures are lack of fault
tolerance mechanism to handle the faulty resources. To overcome
the issues stated above, this paper proposes architecture for fault
tolerance in MCC using Disease Resistance approach (DRFT). The
main aim of the DRFT approach is to effectively handle the faulty
VMs in the MCC. This DRFT approach utilizes the human disease
resistance mechanism which is used as materials and methods in the
proposed model. The DRFT is capable of identifying the faulty
virtual machines and reschedules the tasks to the identified suitable
virtual machines. This procedure ultimately leads to the
minimization of makespan value and it improves the overall
performance of the scheduling process. To validate the
effectiveness of the proposed approach, a series of simulations has
been carried out using CloudSim simulator. The performance of the
proposed DRFT approach is compared with the Dynamic group
based fault tolerance approach (DGFT-a pproach). The make span
value of DRFT is reduced to 7% and the performance of DRFT is
increased when compare to the DGFT approach. The experimental
results show the effectiveness of the proposed approach.

Keywords: MCC, Resource, Fault tolerance, Virtual Machine,
Disease Resistance.

1. Introduction

The mobile devices are playing a prominent role in daily li fe.
However, the limitations of mobile devices such as limited
bandwidth, computation capacity and battery power restricts
them to execute the larger applications. To overcome this
issue, cloud computing is integrated with the mobile devices
to utilize the infrastructure of the cloud, which wil l be called
as mobile cloud computing (MCC) [28]. The MCC
environment requests the services from the cloud via
Infrastructure as a Service (IaaS).
The advantages of cloud computing such as high resource
availabil ity, low cost and minimum energy consumption wil l
favour the mobile device for offloading of the tasks and
increase computation speed. The task offloading is a major
process in mobile environment where it has to partition the
submitted job in to multiple tasks and each task has to be
executed separately with in the mobile environment or
outside the mobile environment. If the task is submitted
outside the mobile environment, i.e., the cloud, then there is

an issue called as resource scheduling.
In recent years, many researchers made a contribution for
efficient resource allocation strategies in the cloud [7-9].
Abolfazli et al. [1] made a survey on research challenges in
MCC. They made a comparison over dif ferent architectures
of MCC for resource scheduling. Aceto et al. [2] proposed an
optimal infinite scheduler which can manage the resource
scheduling by improving the energy consumption of the
mobile devices. They proposed cost and reward method for
MCC by using the MobiCa language. Molina et al. [3]
proposed a method to schedule the tasks form the mobile
devices to the cloud. This method utilizes the wireless
medium for handling the incoming tasks and to schedule
them in to the cloud. In this paper, architecture for fault
tolerance in MCC using disease resistance approach was
proposed. The proposed algorithm is inspired by the bio
approach called as disease resistance (DR) mechanism. This
DR- approach has the abil ity to handle the fault resources in
the MCC environment. The main aim of the DRFT approach
is to find the faulty virtual machines and reschedule the tasks
to the suitable virtual machines. This study also aims to
reduce the makespan of the tasks and improve the overall
performance of the scheduling process in MCC environment.
The rest of the paper is organized as follows. Section 2
explains about the related work regarding the scheduling of
tasks in MCC. Section 3 explains about the problem
statement. Section 4 deals with disease resistance approach.
Section 5 discusses about the task model for mobile
environment. Section 6 explains about the architecture for
fault tolerance in MCC. Section 7 explains the results and
performance evaluation of the DR-Approach. Finally, the
conclusion is drawn in Section 8.

2. Related Work

There are a number of scheduling approaches to solve the
relatively routine problems in cloud computing [7-9]. The
algorithms have the capacity to solve the large problems and
converting them into manageable optimization problems
through linear programming [10], integer linear programming
[12], and integer programming [11]. Due to the increase in
functionali ty of the cloud services causes VM failures at the
time of service delivery [24]. This type of failure causes
performance degradation, task failures, data loss and loss in
the revenue of the organisation [14]. While dealing with the
workflow of the tasks, the task failures causes critical
problems. This is due to the execution of the workflow
depends on the predecessor task, so the input of the task was
depends on the output of some other task. In the recent years,

113
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

many researchers concentrated on this area [15, 16], but very
few are concentrated on the fault tolerance mechanism in the
MCC environment.
There are two major fault tolerance strategies are popular
under the cloud services are resource rescheduling and data
replication. The data replication process is mostly preferable
at the time of scheduling of VMs and the resource
rescheduling process is implemented at the time of task
execution [17]. In the past years, some techniques have been
proposed for resource rescheduling [18-21]. Plankersteiner et
al. [18] proposed a technique for resource rescheduling by
addressing the fault tolerance. They introduced the deadline
constraint for the task participated in the scheduling process.
Cao et al. [19] proposed three strategies for resource
rescheduling. If the VM is crashed at the time of task
execution, this model automatically stores the executing task
and waits for t seconds to repair of the VM. If the VM is not
repaired, the task migrates to the other VM, otherwise the
task will execute on the same VM. Park et al. [31] proposed
group based mechanism for fault tolerance to achieve reliable
resource management in MCC. This method considers the
availability of resource in the mobile devices and groups
them according to the resource availability. The resources of
mobile devices are not stable, so the dynamic nature of the
environment is considered for grouping of mobile devices.
They applied the fault tolerance techniques using the
replication or check points to the group. Choi et al. [4]
proposed fault tolerance scheduling approach called as
Content addressable network in MCC. This method
integrates the social computing based environment for MCC.
The fault tolerance scheduling is categorized with four sub
modules such as cloud service delivery, replication and load
balancing, QoS provisioning and malicious user filtering.
This method achieved good results for service execution time
and reliability. Wadhwa et al. [5] discussed various types of
faults and fault tolerance mechanisms in the cloud. The issues
of availability and reliability are solved by using the fault
tolerance mechanism. They used the Nagios monitoring tool
for identifying and analyzing various faults. Cheraghlou et al.
[6] attempted a survey on analysis of fault tolerance
architectures in cloud computing. The authors stated the
policies of the fault tolerance architectures and finally they
compare the fault tolerance approaches with fault detection
capacity and fault recovery.
Furthermore, many algorithms [20, 22, 23] are proposed for
fault tolerance in the distributed environment irrespective of
rescheduling and replication. Few academicians concentrated
on how to predict and manage the faults in the infrastructure
which is helpful to detect the causes for failures. In this
paper, the architecture for fault tolerance using DR-approach
was developed. The advancement in recent years related to
the bio inspired approaches drawn the attention of the world.

3. Problem Statement

The VMs are grouped under a server in a cloud system.
Whenever the task offloading process is done by the mobile
environment, the tasks are scheduled to the suitable VMs in
the cloud. The failure of the computational resources (i.e.

VMs) may occur at any time. The major reasons for the VM
failure are:

• Inadequate server resources
• Incompatible server hardware and
• Conflicting VM tasks.

For initializing a VM, the server needs computational
resources. Over committed or insufficient resources may
leads to the failure of VM. This type of issues is called as
inadequate server resources. As per the Virtualization
concept, the VM abstracts image from the server underlying
hardware. So, it is crucial to support the VM functionalities
by the hardware which was assigned. If the hardware doesn’t
support the VM functionalities, then it leads to the VM
failure and this type of failures is called as incompatible
server hardware. Finally, another issue which causes VM
failure is conflicting VM tasks. The scheduled tasks are
assigned to the VMs for the execution, but some tasks are
incompatible to the VMs and take a significant amount of
time to generate the time out error. Though, the tasks
generate the error, their execution process continuous to run
at the background. So, the new tasks will not be executed in
the VM and ultimately the VM failure occurs. To overcome
the VM failure, an efficient fault tolerance mechanism is
needed to handle the VM failures with in the servers. This
paper proposed architecture for fault tolerance using Disease
Resistance approach.

4. Disease Resistance Approach

The human body can be protected by many viruses, bacteria
and foreign antigens by following an approach called as the
disease resistance approach. The disease resistance (DR)
approach is inspired by the biological model [29]. The
overview of the disease resistance approach of the human
body is shown in Figure 1.
In daily process, the human body is exposed to various
microorganisms and some of these microorganisms will
cause illness. To defend the microorganisms, the human body
has the monitoring module which identifies the antigens.
Whenever the antigens are identified, the response process is
initialized by activating the macrophages. These
macrophages will swallow the antigens and divide them into
small pieces. The small pieces of antigens are presented to
the T-cells. The T-cell examines the behaviour of the
antigens and generates the B-cell. The B-cell produces the
huge amount of antibodies for destroying microorganisms.
The behaviour of the antigens and the functionality of
antibodies are stored in the memory cell for further access.
Through this disease resistance approach our body is
shielded from different invaders.

Figure 1. Disease resistance approach in human bodies

114
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

5. Task Model for Mobile Environment

The mobile environment is a wireless device which is
connected to the cloud in ad-hoc manner. Whenever the user
submits the job to the mobile environment, the job is
partitioned into subtasks for parallel execution [32]. The
mobile environment has some limitations i.e., battery power,
computation capacity. The task offloading process is made
used to overcome these limitations. The mobile environment
follows the properties of directed acyclic graph for task
submission. The DAG is represented as G = { V, E} , where V
is the subtasks T = { T1, T2, …, Tn} and E is the connection
between the two subtasks. E is formulated as { (Ti, Tj, Wij)|
i≠j } , where Wij is the weight of the edge. i.e data transferred
from Ti to Tj. The example for the workflow of subtasks as
DAG is given in Figure 2.

Figure 2. Directed Acyclic Graph for 7 sub tasks

6. Architecture for Fault Tolerance using DR
approach (DRFT)

The symbols used in this paper are tabulated in Table 1.

Table 1. Nomenclature
Symbol Description

D Represents the data center
S Represents the server in the data center
SActive Represents the active servers
SSleep Represents the sleep servers
δ Represents the virtual machine with in the Server
αij Represents the computing capacity of CPU

corresponding to the virtual machine j with in the
server i.

βij Represents the memory corresponding to the virtual
machine j with in the server i.

γij Represents the storage corresponding to the virtual
machine j with in the server i.

εij Represents the execution time corresponding to the
virtual machine j with in the server i.

c
ijα

Represents the current computing capacity of CPU
corresponding to the virtual machine j with in the
server i.

W(trns) Represents the data transfer
ins(trns) Represents the total number of instructions.

ikijband →

Represents the network bandwidth between

ijδ and ikδ

αin,βin, γin Represents the computation capacity, memory
capacity and storage capacity of the nth virtual
machine in the server i, n is computed from 1 to k.

αmax, βmax,
γmax

Represents the maximum computation capacity,
maximum memory capacity and maximum storage
capacity of the overall VMs in the server.

This paper considers the conventional cloud offered by the
cloud service providers. The cloud contains the resources in
the form of servers and these servers are composed of a set of
VMs [33]. The mathematical representation of the cloud
model is given as follows.

},....,{ 21 nSSSD =
 (1)

},....,{ 21 mActive SSSS =
 (2)

ActiveSleep SSS −=
 (3)

The eq. (1) shows that the datacenter D contains n number of
servers and the cloud model assumes that all servers are in
active position at the time of initialization. The servers have
the capacity to dynamically switch their behaviour to active
state or sleep state. SActive is a set of active servers. The
number of active servers is denoted by |SActive| and the set of
sleep servers is denoted as SSleep and the number of sleep
servers is denoted by |SSleep|. Each server Si is served with
dif ferent Virtual machines δij, where ‘ i’ is the server and ‘ j’
indicates the corresponding virtual machine and each virtual
machine representation is denoted as follows.

niwhereS iniii ≤≤= 1},...,,{ 21 δδδ
 (4)

},,,{ ijijijijij εγβαδ =
 (5)

Where ijα the computation capacity of the virtual machine

is, ijβ is the memory corresponding to the virtual machine,

ijγ represents the storage of the virtual machine and

ijε represents the execution time.

The proposed architecture for fault tolerance in MCC based
on DR-Approach, DRFT for server ‘ i’ is shown in F igure 3.
The DRFT has task queue, resource manager, DR unit and
monitoring unit. The task queue is used to store the
scheduled tasks in the queue. The resource manager handles
the tasks from the task queue and assigns to the available
resources. The monitoring unit contains the monitoring
modules which are associated with each VM in the server.
DR unit contains memory module, knowledge module and
response module. The monitoring module is necessary for
identifying the faulty VMs, a knowledge module is required
to reschedule the tasks, the response module searches for the
closest match of faults in the memory module and the
memory module is used to store the strategies employed for
the faults for future purposes.
The cloud environment had great similarities with the DR
approach. The fault in VMs causes damage in the cloud
performance as similar to antigens cause damage to human
health [29]. Hence DR approach inspired to propose the
process of identifying the fault VMs and rescheduling the
task in the cloud environment.

115
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

1iδ

inδ

2iδ

Figure 3. Architecture for Fault tolerance in MCC

The memory module, the response module and the
knowledge module cooperate with each other for efficient
rescheduling of tasks to the available resources in the cloud
computing. The working process of DR unit is initiated
whenever the faults are identified in the scheduling process
otherwise the scheduling process wil l remain unchanged. For
the normal scheduling of tasks, the cloud adapts the genetic
algorithm (GA) [26] approach. Each module in the DR unit is
explained as follows.

6.1 The Monitoring Module

In the cloud environment, each server is associated with the
monitoring module, which identifies the fault in the VMs.
The monitoring module follows the acknowledgement
strategy for identifying the status of each VM. For every t
seconds, the monitoring module sends the status message to
all the active VMs. The VMs has to reply with ACK message
within the time interval. If any VM do not respond with ACK
then that VM is treated as crashed VM. The detail process of
the monitoring module is given in Algorithm 1. The current

computation capacity
c
ijα of the ijδ is compared with the

original computation capacity
o
ijα of the ijδ . If any

dif ference is identified, then the monitoring module collects

information from ijδ and sends to the response module.

Algorithm 1: Monitoring Module
Begin
Initialize the task scheduler
Initialize the monitoring module

Send Status message to the ijδ

Wait for t seconds

 if (ACK message is received from the ijδ)

 if (
c
ijα <

o
ijα)

 Collect the ijδ information from Si;

 Send the information to the response module;

if (ACK Message is not received by the ijδ)

 ijδ is marked as crash;

 Send the information to the Resource manager;
End

6.2 The Response Module

The response module is initiated to generate the rescheduling
strategy. It is similar to the production of antibodies in B-
cells. The B-cells generate the antibodies based on the
microorganisms’ behaviour and the strategy for the
generation of antibodies is stored in the memory cell . In the
same way, whenever the faulty VM is identified, the response
module searches for the closest match of faults in the

memory module. For instance, the virtual machine ijδ is

identified as a faulty machine, then the response module
searches for the similar faults in the memory module. Assume

that the rescheduling strategy for a faulty virtual machine ijδ

is to reschedule the task to the virtual machine ikδ and ikδ is

selected as an antibody to the ijδ . If there is more number of

similar antibodies (i.e common properties like ikδ in the

memory module) then the similarity between the antibodies is
measured as follows.

)))()((

))()(((
1

1

−

−

×
+×=

αtrnsins

bandtrnsWsimilarity

 (6)

Assume that the antibody for the ijδ is selected as ikδ , then

the similarity function is calculated as

)))()((

))()(((
1

1

−

−
→→

×

+×=

ik

ikijikij

trnsins

bandtrnsWsimilarity

α
 (7)

From the eq. 7, the closest similarity function (antibody) is
calculated for the fault VM (antigen). The suggested virtual
machine from the memory module is taken as equivalent
antibody (EA). If EA is not found in the memory module
then the knowledge module is initialized.

6.3 The Knowledge Module

The functionali ty of the knowledge module is to find the
suitable EA for the antigens (i.e a faulty VM). If the suitable
EA is not identified in the memory module, then the
knowledge module request information of all the VMs in the
host from the resource manager. The similarity function is
calculated for each resource separately based on the eq. (8).
The closest similarity is taken as the suitable EA for the
faulty VM. This selected EA is stored in the memory module
for future reference. The similarity function for the selection
of EA in the knowledge module is given as follows.

)))()((

))()((

))()(((

1
max

1
max

1
max

−

−

−
→

×−

+×−

+×−=

γγγ

βββ

ααα

ijin

ijin

ijinijinsimilarity

(8)

Algorithm 2: Knowledge Module

Input: Number of servers, faulty VM ijδ

Output: Equivalent antibody ikδ

Begin
Select server Si as Sx

Initialize search process for EA in memory module of server
Sx

116
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

for l=1 to n do

Request the information of δil from Sx

Compute similarity from eq. (8).
end for
select closest similarity δik as the EA

if (generated EA →QoS)

select EA as the antibody for ijδ

 else
select another server
 goto step 2.

end if
End

In Algorithm 2, the virtual machine which has the closest
similarity will be chosen as an equivalent antibody for the
faulty VM. If the generated EA meets the requirements of the
user, then it is selected as the antibody for the antigen,
otherwise select the other server and repeat the EA
generation process.

6.4 The Memory Module

The memory module consists of memory cell which is used
for storing the rescheduling strategies. The memory cells are
responsible for storing the fault handling strategies for each
VM and rescheduling strategy under this process. The
memory module stores the maximum capacity of memory
cells up to the limit. If the limit of the memory module
exceeds, it discards the information of the strategy which is
having the less frequency.

7. Simulation Environment

To evaluate the performance of the proposed architecture
DRFT, the basic scheduling is done using three different
algorithms Genetic algorithm (GA) [26], heuristic earliest
time first (HEFT) [25] and Min-Min (MNMN) [24]
algorithm. The performance of the DRFT approach is tested
with the existing Dynamic group based fault tolerance
approach (DGFT) [31]. The extensive simulations had been
carried and the obtained results are presented. The
performance estimation of the proposed approach is carried
out in a well-known simulator called as CloudSim 3.0.3
toolkit [27]. The CloudSim simulator had a rich set of
facilities to develop scheduling strategies for diverse cloud
environments. The configuration for simulation setup is
shown in the Table 2.

Table 2. Pre-defined Parameters for Simulation
Parameter Value

Number of VMs 100-500

 Computation capacity(MIPS) 1000-3000

Memory(Mb) 256-1024

Storage(GB) 10-40

Bandwidth(Mbps) 0.1-100

Fault rate (%) 5-20

Number of Tasks 300

The cloud simulator works with three inputs: cloud settings,
workflow traces and task description. To create the network
between the servers, the network topology is implemented by
using the predefined network properties of CloudSim. This
network topology creates the random network model which is
analogous to the internet. The details of the job such as

number of tasks, the number of VMs and the computation
capacity are required to initialize the simulator. The
initialization of the properties of task and VMs were
randomly distributed among predefined set of VMs and task
parameters.
The parameters for the genetic algorithm are given in Table
3. The crossover process follows the procedure of
exchanging the genes between two chromosomes. The
popular method is a single point crossover between two
parent populations. The cross over rate lies in the range of
0.6 to 0.8. This mutation process is carried by randomly
changing the bit positions in the chromosomes. The
probability of the mutation rate must be low otherwise it
leads to the re-initialisation of the population. So, the
mutation value is taken as 0.1.

Table 3. Parameters for Genetic Algorithm
Parameter Value

Maximum iterations 500

Crossover rate 0.8

Mutation rate 0.1

Size of the population 300

Convergence criteria 20 generations

7.1 Results Evaluation

The simulation results presented in this paper are classified
under two fault rates, 10% and 20%. The performance factor
which is considered for evaluation of the proposed approach
is makespan. Makespan is defined as the total length of the
schedule, i.e., the overall completion time of the submitted
tasks. Figure 4 shows the simulation results of the HEFT,
MNMN and GA under no fault rate. The GA algorithm is an
optimizing algorithm which has the special mechanism to
schedule the tasks to the VMs. It follows the evaluation
procedure to find the best suitable pair of tasks and VMs
from the available options. The algorithms are tested with
three different conditions such as numerical analysis, without
rescheduling and with DR-approach. The numerical analysis
is made on the performance prediction of both VMs and
tasks. The task execution under VMs with a defined fault rate
without applying rescheduling comes under without
rescheduling condition. The performance of the algorithms is
enhanced with DR-approach and the performance evaluation
is calculated under the defined fault rate comes in to the
category of with DR-approach. In Figure 4 it is observed that
the makespan value of GA algorithm is reduced to 15% when
compared to the MNMN algorithm and 6% reduction when
compared to the HEFT algorithm
Figures 5 and 6 show the efficiency of DR-Approach. It
should be noted that the fault rate doesn’t significantly
hampers the performance of the DR-approach to maintain the
makespan. The simulations are conducted with three well-
known scheduling algorithms and with different fault rate
conditions. The purpose of conducting these simulations is to
demonstrate that how much makespan can be reduced with
the efficient use of VMs.
In Figure 5, fault rate of 10% is introduced in to the MCC
environment. The performance of the DR approach is
evaluated under different conditions. It is observed that the
GA algorithm with DR approach achieved better reduction in
makespan when compared to the MNMN and HEFT
algorithms. By the examining of experimental results, it is

117
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

clear that the GA achieved 12% reduction in makespan when
compared to the MNMN algorithm and 4% reduction when
compared to the HEFT algorithm.

Numerical Without Rescheduling With DR-Approach
0

20

40

60

80

100

120

140

M
a

ke
sp

an
 (

S
e

c)

 MNMN
 HEFT
 GA

Figure 4. Performance estimation without Fault rate

Numerical Without Rescheduling With DR-Approach
0

20

40

60

80

100

120

140

M
ak

e
sp

a
n

(S
e

c)

 MNMN
 HEFT
 GA

Figure 5. Makespan under the fault rate of 10%

In Figure 6, fault rate of 20% is introduced in to the MCC
environment. 300 tasks are assigned for task scheduling and
100 VMs are utilized for resource allocation. The GA is
employed with DR approach for fault tolerance mechanism.
i.e., there is a chance of allocating 20 faulty VMs to the tasks.
The simulations are carried with MNMN, HEFT and GA
algorithm. The experimental results proved that the GA had
achieved 8% reduction in makespan when compared to the
MNMN algorithm and 3% reduction when compared to the
HEFT algorithm.

Numerical Without Rescheduling With DR-Approach
0

20

40

60

80

100

120

140

M
ak

es
pa

n
(S

e
c)

 MNMN
 HEFT
 GA

Figure 6. Makespan under the Fault rate of 20%

The performance of the DRFT is compared with the existing
Dynamic group based fault tolerance approach (DGFT) [31].
Figure 7 shows the makespan of rescheduling approaches in
DRFT and DGFT approach. The experiment is carried out at
different levels of task assignment by applying the fault rate
of 20 % in both DRFT and DGFT approach. The make span
value of DRFT is reduced to 7% and the performance of
DRFT is increased when compared to the DGFT approach.

50 100 150 200 250 300
0

20

40

60

80

M
ak

es
pa

n
(S

ec
)

No. of Tasks

 DRFTApproach
 DGFT Approach

Figure 7. Performance evaluation of DRFT and DGFT
approach

8. Conclusion

In this paper, an architecture DRFT is proposed for handling
the fault VMs in the MCC environment. The mechanism is
inspired by the human disease resistance system called as
DR-Approach. Based on the human disease resistance
system, the approach was developed with four important
modules such as the monitoring module, response module,
knowledge module and memory module. These four modules
collaborate together to solve the resource rescheduling
problem in the MCC environment. This paper considers
three well-known algorithms for scheduling such as HEFT,
Min-Min and GA for the series of simulations and the
performance of DRFT approach is compared with the
dynamic group based fault tolerance (DGFT) approach. The
results proved that the DRFT had superior performance to
handle the fault VMs under different conditions.

References

[1] Abolfazli, S. A. E. I. D., Sanaei, Z., Sanaei, M., Shojafar, M.,
& Gani. “Mobile cloud computing: The-state-of-the-art,
challenges, and future research.” Encyclopedia of Cloud
Computing, Wiley, USA. 2015.

[2] Aceto, L., Larsen, K.G., Morichetta, A. and Tiezzi, F. “ A
cost/reward method for optimal infinite scheduling in Mobile
Cloud Computing.” In International Workshop on Formal
Aspects of Component Software. pp. 66-85, 2015.

[3] Molina, M., Muñoz, O., Pascual-Iserte, A. and Vidal, J. “Joint
scheduling of communication and computation resources in
multiuser wireless application offloading.” In 2014 IEEE 25th
Annual International Symposium on Personal, Indoor, and
Mobile Radio Communication (PIMRC), pp. 1093-1098,
2014.

[4] Choi, S., Chung, K., & Yu, H. “Fault tolerance and QoS
scheduling using CAN in mobile social cloud
computing.” Cluster Computing, 17(3), pp. 911-926, 2014.

[5] Wadhwa, A., & Bala, A. “Preventing Faults: Fault Monitoring
and Proactive Fault Tolerance in Cloud Computing.”

118
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 8, No. 2, August 2016

In Proceedings of International Conference on ICT for
Sustainable Development, pp. 665-673, 2016

[6] Cheraghlou, M. N., Khadem-Zadeh, A., & Haghparast, M. “A
survey of fault tolerance architecture in cloud
computing.” Journal of Network and Computer
Applications, vol. 61, pp. 81-92, 2016.

[7] El Zant, Bassem, Isabel Amigo, and Maurice Gagnaire.
“Federation and revenue sharing in cloud computing
environment.” In Proceedings of the IEEE International
Conference on Cloud Engineering. pp. 446–451, 2014

[8] Chen Shi, J. Wu, and Z. H. Lu. “A cloud computing resource
scheduling policy based on genetic algorithm with multiple
fitness.” In Proceedings of the IEEE 12th International
Conference on Computer and Information Technology. pp.
177–184, 2012.

[9] Chen, N., Chen, W.N., Gong, Y.J., Zhan, Z.H., Zhang, J., Li,
Y. and Tan, Y.S. "An evolutionary algorithm with double-
level archives for multiobjective optimization.” IEEE
transactions on cybernetics, vol. 45, No.9, pp.1851-1863,
2015.

[10] Kumar, Senthil SK, and P. Balasubramanie. “Dynamic
scheduling for cloud reliability using transportation problem.”
Journal of Computer Science vol. 8, No. 10 pp. 1615–1626,
2012.

[11] Li, Qiang, and Yike Guo. “Optimization of resource
scheduling in cloud computing.” In Proceedings of the 12th
International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing. pp. 315–320, 2010.

[12] Genez, Thiago AL, Luiz F. Bittencourt, and Edmundo RM
Madeira. “Workflow scheduling for SaaS/PaaS cloud
providers considering two SLA levels.” In Proceedings of the
IEEE Network Operations and Management Symposium, pp.
906–912, 2012.

[13] Javadi, Bahman, Jemal Abawajy, and Rajkumar Buyya
“Failure-aware resource provisioning for hybrid Cloud
infrastructure.” J. Parallel Distrib. Comput. Vol. 72, No. 10,
pp. 1318–1331, 2012.

[14] Smanchat, Sucha, and Kanchana Viriyapant. “Taxonomies of
workflow scheduling problem and techniques in the cloud.”
Future Gener. Comput. Syst. Vol. 52, pp.1–12, 2015.

[15] Lee, Young Choon, Hyuck Han, Albert Y. Zomaya, and Mazin
Yousif. “Resource-efficient workflow scheduling in clouds.”
Knowl.-Based Syst. Vol. 80, pp. 153–162, 2015.

[16] Ramezani F., Lu J., Taheri J. “Evolutionary algorithm-based
multi-objective task scheduling optimization model in cloud
environments.” World Wide Web: pp.1–21, 2015.

[17] Zhu, Xiaomin, Chuan He, Rong Ge, and Peizhong Lu.
“Boosting adaptivity of fault-tolerant scheduling for real-time
tasks with service requirements on clusters.” J. Syst. Softw,
pp.1708–1716, 2011.

[18] Plankensteiner, Kassian, and Radu Prodan. “Meeting soft
deadlines in scientific workflows using resubmission impact”.
IEEE Trans. Parallel Distrib. Syst. pp. 890–901, 2011.

[19] Cao, Yang, CheulWoo Ro, and JianWei Yin. “Scheduling
Analysis of failure-aware VM in cloud system.” Int. J.
Control Autom. Vol. 7, No.1, pp. 243–250, 2014.

[20] Chen, Wei, Young Choon Lee, Alan Fekete, and Albert Y.
Zomaya. “Adaptive multiple-workflow scheduling with task
rearrangement.” J. Supercomput. pp. 1–21, 2015.

[21] Olteanu, Alexandra, Florin Pop, Ciprian Dobre, and Valentin
Cristea. “A dynamic rescheduling algorithm for resource
management in large scale dependable distributed systems.”
Comput. Math. Appl. pp. 1409–1423, 2012.

[22] Guan, Qiang, Ziming Zhang, and Song Fu. “Ensemble of
bayesian predictors and decision trees for proactive failure
management in cloud computing systems.” J. Commun. pp.
52–61, 2012.

[23] Rood, Brent, and Michael J. Lewis. “Grid resource availability
prediction-based scheduling and task replication.” J. Grid
Comput. pp. 479–500, 2009.

[24] Javadi, Bahman, Daishi Kondo, Jean-Marc Vincent, and David
P. “Discovering statistical models of availability in large
distributed systems: An empirical study of seti@ home.”
IEEE Trans. Parallel Distrib. Syst. pp.1896–1903, 2009.

[25] Ibarra, Oscar H., and Chul E. Kim. “Heuristic algorithms for
scheduling independent tasks on non-identical processors.”
Journal of the ACM. pp.280-289, 1977.

[26] Gu, Jianhua, Jinhua Hu, Tianhai Zhao, and Guofei Sun. "A
new resource scheduling strategy based on genetic algorithm
in cloud computing environment." Journal of Computers, vol.
7, no. 1, pp. 42-52, 2012.

[27] Calheiros, Rodrigo N., Rajiv Ranjan, Anton Beloglazov, César
AF De Rose, and Rajkumar Buyya . “CloudSim: a toolkit for
modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms.”
Software: Practice and Experience, Vol. 41, pp. 23-50, 2011.

[28] Rahimi MR, Ren J, Liu CH, Vasilakos AV,
Venkatasubramanian N. “Mobile cloud computing: A survey,
state of art and future directions.” Mobile Networks and
Applications. pp. 133-143, 2014.

[29] Dasgupta, Dipankar. Advances in artificial immune systems.”
IEEE Comput. Intell. Mag. Vol. 1 No. 4, pp. 40–49, 2006.

[30] Chen, Wei, Sam Toueg, and Marcos Kawazoe Aguilera. “On
the quality of service of failure detectors.” IEEE Trans.
Comput. pp. 561–580, 2002.

[31] Park, J., Yu, H., Kim, H., & Lee, E. “Dynamic group‐based
fault tolerance technique for reliable resource management in
mobile cloud computing.” Concurrency and Computation:
Practice and Experience, 2014.

[32] Ayad, Soheyb, et al. "Cross-Layer Routing Based on Semantic
Web Services Discovery with Energy Evaluation and
Optimization in MANET." International Journal of
Communication Networks and Information Security, Vol. 8,
No.1, pp. 47, 2016.

[33] Toumi, H., Talea, A., Marzak, B., Eddaoui, A. and Talea, M.
“Cooperative trust framework for cloud computing based on
mobile agents.” International Journal of Communication
Networks and Information Security, Vol. 7, No. 2, p.106,
2015.

