59 research outputs found

    Reliable system design with a high degree of diagnostic procedures for embedded systems

    Get PDF
    Maintenance starts with reliable diagnostics. Programming Logic Controllers (PLCs) are often equipped with a high degree of diagnostic procedures in order to ensure that the processing unit is functioning correctly. It is vital to verify that the system with its programme is still within a 'healthy' state, otherwise a safety function is called and the system is brought into a safe state, or if possible, defect and malfunctioning components are exchanged during operation and the process can continue without shutting down the system. However, when it comes to smaller devices such as intelligent sensors, embedded controller devices with the functionality of an e.g. PID (Proportional-Integral-Derivative), predictive controller, filter or analytical algorithm, which is embedded into a FPGA or micro-controller then diagnostics and verification methods are often not considered in the way they should be. For example, if an intelligent sensor system is not able to diagnose that the sensor-head is malfunctioning, but the sensor-head still provides some data, then the smart algorithm bases its calculation on wrong data, which can cause a dangerous situation. This paper investigates and shows recent results to combine diagnostic methods for small scale devices. Several safety-related structures are considered with a high degree of diagnostic coverage. The paper presents relevant procedures and structures to increase the reliability of small devices without utilising a full scale microcontroller system

    A Beam Interlock System for CERN High Energy Accelerators

    Get PDF
    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero and there is a high chance of particle impacts causing a magnet to quench, where the magnet becomes normal conducting and has to be switched off before it destroys itself. Losing as little as 10eâ8 of the beam into the superconducting magnets will lead to a quench. A loss of 10eâ4 of the beam into any part of the machine will cause damage, such as rupturing the machine vacuum, which in the best case results in costly repairs and weeks of downtime, in a worse case the destruction of one or more dipole magnets would mean many weeks of repairs to return the machine to operation. Due to the unprecedented sensitivity of the machine to beam losses, and the high cost of failure, both financially and in terms of inefficiency, a complex Machine Protection System is envisaged, surveilling and diagnosing the operation of the CERN high energy accelerators, ensuring their safe operation. Machine Protection Systems are employed in the LHC, SPS and beam transfer lines, protecting all parts of the accelerator complex that handle beam above damage thresholds. At the heart of each Machine Protection System lies a Beam Interlock System, connecting the many components of the Machine Protection Systems which are located all around the accelerator complex. The LHC is the ultimate application of these protection systems, here the Beam Interlock System is responsible for relaying a command for controlled removal of the beam (Beam Dump) to the LHC Beam Dumping System. The Beam Dumping System is the only part of the accelerator that is capable of withstanding the impact of the full LHC beam without being damaged in the process. The time response of the LHC Beam nterlock System has to be around 100/mu/mus, to protect against the fastest events which lead to beam losses. Each Beam Interlock System is made from sixteen Beam Interlock Controllers. These are distributed around the 27km circumference of the machine, one at the left and one at the right of each Insertion Region, each Controller acts as a local concentrator, monitoring up to 14 User System inputs. Fibre optic links join the sixteen Controllers in so-called beam permit loops, making the high-speed, highly dependable backbone of the Beam Interlock System. This thesis is focussed on the conception, design and realisation of a generic Beam Interlock System used to protect the high energy accelerators at CERN. The Beam Interlock System has been designed to provide the LHC and its injector chain, as well as the SPS and its transfer lines, including the CERN Neutrinos to Gran Sasso project, with an unsurpassed level of protection. In every application the stored beam energy is orders of magnitude above the damage thresholds of the machines

    Design Tools for Submersible Converter

    Get PDF

    Contributions to the detection and diagnosis of soft errors in radiation environments

    Get PDF
    Texto completo descargado desde Teseo1. Introducción Los efectos de la radiación ionizante sobre dispositivos semiconductores es objeto de estudio desde la invención del transistor bipolar en 1947. El espacio es un entorno de alta radiación, como pusieron de manifiesto los primeros satélites puestos en órbita, y fue durante la carrera espacial de los años 50 cuando se impulsó el estudio de errores generados en componentes electrónicos críticos a bordo de las primeras misiones espaciales. La necesidad de robustecer la electrónica frente a la radiación ha estado siempre presente en el sector aeroespacial, además, el progresivo escalado de las tecnologías microelectrónicas, hace que el problema sea cada vez más acuciante, afectando incluso a dispositivos que operan a nivel del mar. El advenimiento de tecnologías nanométricas augura que serán necesarias nuevas y más eficaces técnicas de robustecimiento que garanticen la fiabilidad de equipos electrónicos críticos en sectores tan importantes como la aviación, automoción o energía nuclear. Existen dos métodos de robustecimiento para los dispositivos electrónicos, por proceso y por diseño. En el primer caso, el circuito integrado es fabricado en una tecnología que presenta baja sensibilidad a los efectos de la radiación, como la ampliamente utilizada SOI (Silicon On Insulator). En el segundo caso, el circuito presenta topologías en su diseño que mitigan en mayor o menor grado el daño por radiación. La efectividad de cualquier medida de protección debe ser validada en el correspondiente ensayo de radiación de acuerdo a los estándares vigentes (ESA, NASA, JEDEC, AEC,...). Existen varios tipos de daño por radiación, asociados a dosis acumulada (TID) y a eventos únicos (SEE), fundamentalmente. Estos últimos están asociados al paso de una única partícula energética a través del dispositivo, que genera una estela de carga y puede dar lugar a respuestas eléctricas no deseadas, como conmutación 2 2 Antecedentes de biestables, enclavamiento de un bit o excursiones de voltaje transitorias. A su vez, dentro de los errores asociados a eventos únicos se puede distinguir entre daños físicos, que pueden destruir el dispositivo de manera irreversible, y errores lógicos o soft errors que conllevan la corrupción del estado de un circuito digital, por ejemplo por la conmutación del valor lógico de un biestable. Los tests en aceleradores de partículas o con fuentes radiactivas, se consideran los ensayos más representativos para conocer la inmunidad de un componente frente al daño de tipo SEE. Sin embargo, la complejidad de estos ensayos dificulta la observabilidad experimental y la interpretación de los resultados obtenidos. En particular los tests dinámicos, que implican que el chip esté operando durante la irradiacón, comportan una dificultad añadida a la hora de interpretar los errores observados en las salidas del circuito. El test dinámico de radiación es el más realista, ya que introduce la variable temporal en el experimento y da lugar a efectos reales que no son reproducibles en condiciones estáticas, como el evento único transitorio (SET). El trabajo a realizar durante esta tesis pretende aportar una metodología de test que mejore la observabilidad de errores lógicos en un test dinámico de radiación de circuitos digitales mediante detección y diagnóstico en tiempo real. 2. Antecedentes La experiencia investigadora del grupo al que pertenece el autor de esta tesis en el campo de los efectos de la radiación sobre dispositivos electrónicos, ha puesto de manifiesto la necesidad de establecer una metodología que permita el diagnóstico de los errores observados en un componente electrónico sometido a radiación ionizante. Generalmente, no es posible correlacionar con certeza el efecto (anomalía detectada en los puertos de salida) con la causa del mismo. La complejidad inherente a la instrumentación de un ensayo de radiación en un acelerador 3 3 Hipótesis y Objetivos de partículas, así como la propia comlejidad del circuito bajo estudio, requieren algún criterio de clasificación de los errores observados que pueden ser de muy diversa naturaleza. Algunos autores han aportado técnicas que combinan inyección de fallos dinámica con test en acelerador estáticos para estimar la probabilidad de fallo real del circuito, salvando la complejidad del test de radiación dinámico. La protección selectiva, consistente en adoptar topologías de diseño robustas en ¿puntos calientes¿ o críticos del circuito, requiere técnicas de ensayo que permita el diagnóstico y localización del daño por radiación. El uso de microsondas nucleares permite la focalización de un haz de iones en una región relativamente pequeña, facilitando el diagnóstico. La disponibilidad de uso de la microsonda nuclear en el Centro Nacional de Aceleradores puede contribuir al desarrollo de la técnica de detección y diagnóstico que es objeto de esta tesis. La curva de sección eficaz de fallo SEE es la forma más extendida de representación de resultados de experimentación. Estas curvas representan una colección de datos experimentales que deben ser minuciosamente clasificados. Lo mismo ocurre en los tests destinados a evaluar la tasa de errores lógicos en tiempo real (RTSER). En este sentido, la norma JEDEC JESD89-1A recomienda que se sigan ¿criterios de fallo¿ para la correcta identificación de los errores detectados a la salida de un circuito en tests de radiación. 3. Hipótesis y Objetivos El grupo de investigación al que pertenece el doctorando, posee una contrastada experiencia en el uso de emuladores hardware para la evaluación temprana de la robustez de diseños digitales ante errores lógicos. Estos emuladores inyectan fallos en la netlist de un diseño digital y estudian la evolución del estado del circuito durante la ejecución de un conjunto de estímulos. La principal ventaja de estas herramientas frente a la simulación, radica en la aceleración hardware de los 4 3 Hipótesis y Objetivos tests que permite la finalización de campañas de inyección masivas en un tiempo relativamente corto. Las campañas masivas o sistemáticas de inyección de fallos permiten comprobar de forma exhaustiva la respuesta de un diseño digital a un entorno de alta radiación. Estas campañas arrojan una ingente cantidad de información acerca de las vulnerabilidades del diseño que debe ser procesada generalmente de forma estadística. La correlación entre el instante y lugar de inyección del fallo emulado y la respuesta del mismo, sería una información que permitiría establecer la causa de un error (comportamiento anómalo) observado durante un test de radiación, donde generalmente sólo están accesibles las salidas del dispositivo. Los resultados de una campaña de inyección dependen, además del diseño bajo test, del conjunto de estímulos aplicado (workload). A partir de los resultados de la campaña de inyección masiva, se puede realizar un estudio estadístico que determine la calidad de los vectores de test desde el punto de vista del diagnóstico. Es de esperar que diferentes fallos inyectados compartan la misma firma, de manera que en caso de obtener dicha firma en un test de radiación, sea imposible determinar exactamente el punto de inyección del fallo. A la hora de preparar un test de radiación, es recomendable emplear vectores de test que garanticen que la certidumbre del diagnóstico sea máxima, lo cual es un aporte adicional de la tesis. Esta tesis pretende establecer un procedimiento que permita obtener ¿diccionarios de fallos¿ en los que se establece una correlación entre el punto de inyección y la respuesta del circuito codificada en una firma de pocos bytes. Durante un test de radiación se pueden obtener en tiempo real las firmas generadas por el circuito, que servirán para diagnosticar en cada caso el origen del daño empleando los diccionarios de fallos previamente generados en un emulador hardware. En el supuesto de que la firma generada durante la irradiación no estuviera contenida en un diccionario exhaustivo, se puede decir que el error no ha sido originado por el 5 4 Metodología y Trabajo Realizado modelo de fallo empleado en la generación del diccionario, debiéndose por tanto a un tipo de daño no contemplado (por ejemplo daño físico). La culminación de la tesis es el test de radiación en un acelerador de partículas. La Universidad de Sevilla cuenta con las instalaciones del Centro Nacional de Aceleradores, que puede ser un banco de pruebas idóneo para comprobar la validez de la metodología y comprobar las ventajas e inconvenientes de la misma. 4. Metodología y Trabajo Realizado El plan de trabajo incluyó los siguientes hitos en el orden expuesto: Estudio de la base de conocimiento genérica relacionada con los efectos de la radiación en circuitos electrónicos Análisis del Estado del Arte en técnicas de inyección de fallos en circuitos digitales. Recopilación de normas y estándares relacionados con los test radiación de componentes electrónicos. Estudio simulado de bajo nivel de los efectos de la radiación en tecnologías submicrométricas. Selección de un módulo adecuado para creación de firmas a partir de las salidas de un circuito digital. Adecuación del emulador hardware FT-UNSHADES para la generación de firmas durante las campañas de inyección. Selección de un vehículo de test para el experimento en la microsonda nuclear del CNA. 6 4 Metodología y Trabajo Realizado Realización de campañas de inyección masivas para la generación de diccionarios de fallos sobre diseños digitales y análisis de resultados. Preparación del setup experimental para el acelerador de partículas. Experimento en la microsonda nuclear del CNA y análisis de resultados. El estudio bibliográfico de la base de conocimiento en el campo de los efectos de la radiación sobre circuitos electrónicos ha sido fundamental para poder establecer el ámbito de aplicación de la tesis. El papel de la emulación hardware para inyección de fallos en esta investigación fue crítica y ha sido necesario un estudio de las plataformas existentes para entender qué puede aportar cada herramienta. Para acabar con la documentación, es necesario además recopilar las normas y estándares relacionados con test de radiación de circuitos electrónicos. La simulación de bajo nivel de los efectos de la radiación sobre una determinada tecnología engloba herramientas como SPICE, SRIM y TCAD. Estas simulaciones permiten estimar cuales deben ser las características del haz de iones empleado en un futuro ensayo en el acelerador de partículas. Los resultados de estas simulaciones fueron discutidos con los técnicos del acelerador para estudiar la viabilidad de los parámetros deseados. Un elemento clave en la metodología fue el bloque que debe generar las firmas a partir de las salidas del circuito digital. Es deseable que se trate de un módulo sencillo y que pueda ser implementado en un dispositivo programable sin suponer un consumo excesivo de recursos. El emulador FT-UNSHADES fue adaptado par incorporar el módulo de firmas. Se dispuso de un circuito integrado que servió vehículo de test para un experimento en el CNA. Es necesaria además la descripción VHDL del mismo para su emulación en FT-UNSHADES. No es objeto de esta tesis el desarrollo de este componente, su diseño y fabricación está fuera del alcance de esta tesis. Se gener- 7 4 Metodología y Trabajo Realizado aron diccionarios de fallos del vehículo de tests y de otros diseños digitales y, a partir de estos diccionarios, se han confeccionado estudios estadísticos de diagnóstico. En una fase ulterior, se desarrolló el hardware necesario para el setup experimental. Todo el hardware se probó en el laboratorio, antes de acudir al CNA. El resultado de esta etapa es la configuración del equipamiento de test automático (ATE) que se encargó de introducir estímulos en el chip y monitorizarlo durante el experimento en el acelerador de partículas. Finalmente, se llevó a cabo un experimento en el Centro Nacional de Aceleradores sobre el vehículo de test elegido para completar una prueba de concepto de la metodología propuesta.

    Advanced Modular Inverter Technology Development

    Full text link

    Novel fault tolerant Multi-Bit Upset (MBU) Error-Detection and Correction (EDAC) architecture

    Get PDF
    Desde el punto de vista de seguridad, la certificación aeronáutica de aplicaciones críticas de vuelo requiere diferentes técnicas que son usadas para prevenir fallos en los equipos electrónicos. Los fallos de tipo hardware debido a la radiación solar que existe a las alturas standard de vuelo, como SEU (Single Event Upset) y MCU (Multiple Bit Upset), provocan un cambio de estado de los bits que soportan la información almacenada en memoria. Estos fallos se producen, por ejemplo, en la memoria de configuración de una FPGA, que es donde se definen todas las funcionalidades. Las técnicas de protección requieren normalmente de redundancias que incrementan el coste, número de componentes, tamaño de la memoria y peso. En la fase de desarrollo de aplicaciones críticas de vuelo, generalmente se utilizan una serie de estándares o recomendaciones de diseño como ABD100, RTCA DO-160, IEC62395, etc, y diferentes técnicas de protección para evitar fallos del tipo SEU o MCU. Estas técnicas están basadas en procesos tecnológicos específicos como memorias robustas, codificaciones para detección y corrección de errores (EDAC), redundancias software, redundancia modular triple (TMR) o soluciones a nivel sistema. Esta tesis está enfocada a minimizar e incluso suprimir los efectos de los SEUs y MCUs que particularmente ocurren en la electrónica de avión como consecuencia de la exposición a radiación de partículas no cargadas (como son los neutrones) que se encuentra potenciada a las típicas alturas de vuelo. La criticidad en vuelo que tienen determinados sistemas obligan a que dichos sistemas sean tolerantes a fallos, es decir, que garanticen un correcto funcionamiento aún cuando se produzca un fallo en ellos. Es por ello que soluciones como las presentadas en esta tesis tienen interés en el sector industrial. La Tesis incluye una descripción inicial de la física de la radiación incidente sobre aeronaves, y el análisis de sus efectos en los componentes electrónicos aeronaúticos basados en semiconductor, que desembocan en la generación de SEUs y MCUs. Este análisis permite dimensionar adecuadamente y optimizar los procedimientos de corrección que se propongan posteriormente. La Tesis propone un sistema de corrección de fallos SEUs y MCUs que permita cumplir la condición de Sistema Tolerante a Fallos, a la vez que minimiza los niveles de redundancia y de complejidad de los códigos de corrección. El nivel de redundancia es minimizado con la introducción del concepto propuesto HSB (Hardwired Seed Bits), en la que se reduce la información esencial a unos pocos bits semilla, neutros frente a radiación. Los códigos de corrección requeridos se reducen a la corrección de un único error, gracias al uso del concepto de Distancia Virtual entre Bits, a partir del cual será posible corregir múltiples errores simultáneos (MCUs) a partir de códigos simples de corrección. Un ejemplo de aplicación de la Tesis es la implementación de una Protección Tolerante a Fallos sobre la memoria SRAM de una FPGA. Esto significa que queda protegida no sólo la información contenida en la memoria sino que también queda auto-protegida la función de protección misma almacenada en la propia SRAM. De esta forma, el sistema es capaz de auto-regenerarse ante un SEU o incluso un MCU, independientemente de la zona de la SRAM sobre la que impacte la radiación. Adicionalmente, esto se consigue con códigos simples tales como corrección por bit de paridad y Hamming, minimizando la dedicación de recursos de computación hacia tareas de supervisión del sistema.For airborne safety critical applications certification, different techniques are implemented to prevent failures in electronic equipments. The HW failures at flying heights of aircrafts related to solar radiation such as SEU (Single-Event-Upset) and MCU (Multiple Bit Upset), causes bits alterations that corrupt the information at memories. These HW failures cause errors, for example, in the Configuration-Code of an FPGA that defines the functionalities. The protection techniques require classically redundant functionalities that increases the cost, components, memory space and weight. During the development phase for airborne safety critical applications, different aerospace standards are generally recommended as ABD100, RTCA-DO160, IEC62395, etc, and different techniques are classically used to avoid failures such as SEU or MCU. These techniques are based on specific technology processes, Hardened memories, error detection and correction codes (EDAC), SW redundancy, Triple Modular Redundancy (TMR) or System level solutions. This Thesis is focussed to minimize, and even to remove, the effects of SEUs and MCUs, that particularly occurs in the airborne electronics as a consequence of its exposition to solar radiation of non-charged particles (for example the neutrons). These non-charged particles are even powered at flying altitudes due to aircraft volume. The safety categorization of different equipments/functionalities requires a design based on fault-tolerant approach that means, the system will continue its normal operation even if a failure occurs. The solution proposed in this Thesis is relevant for the industrial sector because of its Fault-tolerant capability. Thesis includes an initial description for the physics of the solar radiation that affects into aircrafts, and also the analyses of their effects into the airborne electronics based on semiconductor components that create the SEUs and MCUs. This detailed analysis allows the correct sizing and also the optimization of the procedures used to correct the errors. This Thesis proposes a system that corrects the SEUs and MCUs allowing the fulfilment of the Fault-Tolerant requirement, reducing the redundancy resources and also the complexity of the correction codes. The redundancy resources are minimized thanks to the introduction of the concept of HSB (Hardwired Seed Bits), in which the essential information is reduced to a few seed bits, neutral to radiation. The correction codes required are reduced to the correction of one error thanks to the use of the concept of interleaving distance between adjacent bits, this allows the simultaneous multiple error correction with simple single error correcting codes. An example of the application of this Thesis is the implementation of the Fault-tolerant architecture of an SRAM-based FPGA. That means that the information saved in the memory is protected but also the correction functionality is auto protected as well, also saved into SRAM memory. In this way, the system is able to self-regenerate the information lost in case of SEUs or MCUs. This is independent of the SRAM area affected by the radiation. Furthermore, this performance is achieved by means simple error correcting codes, as parity bits or Hamming, that minimize the use of computational resources to this supervision tasks for system.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Luis Alfonso Entrena Arrontes.- Secretario: Pedro Reviriego Vasallo.- Vocal: Mª Luisa López Vallej
    corecore