A Beam Interlock System for CERN High Energy Accelerators

A thesis submitted for the degree of Doctor of Philosophy in Electrical and Electronic Engineering

Benjamin Todd

School of Engineering and Design, Brunel University, West London.

Geneva, Switzerland, October 2006.

Abstract

The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already underway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundamental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed.

Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero and there is a high chance of particle impacts causing a magnet to quench, where the magnet becomes normal conducting and has to be switched off before it destroys itself. Losing as little as 10^{-8} of the beam into the superconducting magnets will lead to a quench. A loss of 10^{-4} of the beam into any part of the machine will cause damage, such as rupturing the machine vacuum, which in the best case results in costly repairs and weeks of downtime, in a worse case the destruction of one or more dipole magnets would mean many weeks of repairs to return the machine to operation.

Due to the unprecedented sensitivity of the machine to beam losses, and the high cost of failure, both financially and in terms of inefficiency, a complex Machine Protection System is envisaged, surveilling and diagnosing the operation of the CERN high energy accelerators, ensuring their safe operation.

Machine Protection Systems are employed in the LHC, SPS and beam transfer lines, protecting all parts of the accelerator complex that handle beam above damage thresholds.

At the heart of each Machine Protection System lies a Beam Interlock System, connecting the many components of the Machine Protection Systems which are located all around the accelerator complex. The LHC is the ultimate application of these protection systems, here the Beam Interlock System is responsible for relaying a command for controlled removal of the beam (Beam Dump) to the LHC Beam Dumping System. The Beam Dumping System is the only part of the accelerator that is capable of withstanding the impact of the full LHC beam without being damaged in the process. The time response of the LHC Beam Interlock System has to be around 100μ s, to protect against the fastest events which lead to beam losses. Each LHC Beam Interlock System is made from sixteen Beam Interlock Controllers. These are distributed around the 27km circumference of the machine, one at the left and one at the right of each Insertion Region, each Controller acts as a local concentrator, monitoring up to 14 User System inputs. Fibre optic links join the sixteen Controllers in so-called beam permit loops, making the high-speed, highly dependable backbone of the Beam Interlock System.

This thesis is focussed on the conception, design and realisation of a generic Beam Interlock System used to protect the high energy accelerators at CERN. The Beam Interlock System has been designed to provide the LHC and its injector chain, as well as the SPS and its transfer lines, including the CERN Neutrinos to Gran Sasso project, with an unsurpassed level of protection. In every application the stored beam energy is orders of magnitude above the damage thresholds of the machines.

This work has been carried out as part of the Doctoral Student Program at the European Organisation for Nuclear Research, CERN, Geneva, Switzerland.

Contents

\mathbf{A}	bstra	act	iii
C	onter	nts	vii
A	cknov	wledgements	xi
1	Intr	roduction	1
-	1.1	Physics, the State of the Art	3
		1.1.1 Questions at the Forefront of Physics	4
		1.1.2 Particle Accelerators, Past, Present and Future	7
	1.2	The European Organisation for Nuclear Research (CERN)	8
	1.2	1.2.1 The Large Hadron Collider (LHC)	9
		1.2.1 The barge matrix condition condition (birle) 1.2.2 LHC Experiments	10
		1.2.2 Enconstruction of the second secon	12
		1.2.3 The CERT High Energy Accelerator Complex 1.2.4 Investment in the LHC Project and its Experiments	15
		1.2.4 Investment in the LITC Project and its Experiments	10
2	Mae	chine Protection Systems	17
	2.1	LHC Stored Energy and Associated Risk	17
		2.1.1 Energy in the Powering Circuits	18
		2.1.2 Beam Energy	18
		2.1.3 Beam Damage Tests and Examples	19
	2.2	Protecting the High Energy Accelerators	20
	2.3	Failure Scenarios	24
	2.4	Dependability	26
		2.4.1 Realising the Safety Specification	27
		2.4.2 Beam Interlock System Dependability Requirements	28
3	Bea	am Interlock System Introduction	31
0	3.1	Reaction Time	32
	3.2	Beam-1, Beam-2 and Both-Beam Interlocking in the LHC	33
	3.3	Architecture of the LHC Beam Interlock System	33
	0.0	3.3.1 Beam Permit Loops	34
		3.3.2 Beam Interlock Controllers (BICs)	35
		3.3.3 Expanding the Manager (CIBM)	36
	3.4	Connecting to the User Systems	37
	0.1	3.4.1 Making a Fail-Safe RS485 Link	37
		3.4.2 BEAM_PERMIT_INFO	38
		3.4.3 Redundant USER_PERMITS	39
		3.4.4 The User Interface (CIBU)	39
		3.4.5 Accommodating Simultaneous and Independent LHC User Systems	40
	3.5	Meeting the Dependability Requirements	41
	3.6	Supervision of the Beam Interlock System	41
	5.0		41
4	Bea	m Interlock System Realisation	43
	4.1	Communications Architecture	46
	4.2	Beam Permit Loops	48
		4.2.1 Ring-Closed and Tree-Open Permit Loop Summary	51
		4.2.2 Beam Permit Loop Frequency	51
		4.2.3 Optical Power Budget	52

		4.2.4 Engineering the Optical Transceiver
		4.2.5 Transmission Characteristics
		4.2.6 Bit Error Rate
		4.2.7 Detection of BEAM_PERMIT
		4.2.8 Arming the Beam Permit Loop
		4.2.9 Other Detectors for BEAM_PERMIT
	4.3	Beam Interlock Controllers
		4.3.1 LHC and SPS Chassis Types
		4.3.2 USER_PERMIT to LOCAL_BEAM_PERMIT
		4.3.3 BEAM_PERMIT to BEAM_PERMIT_INFO
		4.3.4 TEST and MONITOR
	4.4	The Manager Board
		4.4.1 Permits, Disabling & Permit Loop Signals
		4.4.2 Masking and the Safe Beam Flag
		4.4.3 Latching and Arming
		4.4.4 Fail-Safe Programming of the Critical Signals
		4.4.5 Matrix CPLDs
		4.4.6 Monitor FPGA
		4.4.7 Manager Display (CIBMD)
	4.5	Test & Monitor Board (CIBT)
	1.0	4.5.1 Manchester Encoded Frame Format in the Beam Interlock System
		4.5.2 BEAM_PERMIT_INFO
		4.5.3 Serial Communications FPGA
		4.5.4 TEST Data
		4.5.5 MONITOR Data
		4.5.6 Display Driver FPGA and Test and Monitor Display (CIBTD) 91
	4.6	The Interface to the User Systems (CIBU)
	4.0	4.6.1 USER_PERMIT
		4.6.2 BEAM_PERMIT_INFO
		4.6.3 TEST and MONITOR
		4.6.4 Implementing the TEST and MONITOR Links
		4.6.5 Single and Double User Interfaces (CIBUS and CIBUD)
		4.6.6 Fibre Optic Extension of the Controller to User Link (CIBFx)
	4.7	Electrical Analysis of the System
	4.1	4.7.1 Different Types of Link in the Beam Interlock System
		4.7.1 Different Types of Link in the Beam Interlock System
		4.7.2 General Rules
		4.7.4 System Level Electro-Magnetic Compatibility Analysis
	10	
	4.8	Failure Modes, Effects and Criticality Analysis 109 4.8.1 Drogodume for Derforming of EMECA
		4.8.1 Procedure for Performing a FMECA
	4.0	4.8.2 Results of the BIS FMECA
	4.9	Testing, Commissioning and System Diagnosis
		4.9.1 Controller Testing, Commissioning and Diagnosis
		4.9.2 System Testing, Commissioning and Diagnosis
	4 10	4.9.3 Inter-System Testing, Commissioning and Diagnosis
	4.10	Software and Supervision
		4.10.1 Operator Screens
		4.10.2 Specialist Screens
5	Dro	of of Concept and First Experience 127
9	5.1	Prototype Testing Examples
	$5.1 \\ 5.2$	Interlocking the SPS
	0.4	5.2.1 Software Supervision of the SPS
		5.2.1 Software Supervision of the SFS
	5.3	Interlocking the CNGS Extraction
	0.0	5.3.1 Extraction Procedure
		5.3.2 Current-Change Interlocking for CNGS
		5.3.3 Software Supervision of the CNGS Extraction
		5.3.4 The VME Chassis in SPS BA4
	5.4	Scaling to the LHC
	0.4	beaming to the LHC \ldots \ldots 142

	5.4.1LHC Beam Interlock System Response Time5.4.2Final Improvements to the System	
6	Conclusions	149
Aı	ppendices	151
	RS485 versus Current Loop Technology A.1 Current Loop Testing A.2 Optocoupled RS485 Testing A.3 RS485 Testing	. 154
в	Testing a CERN Standard NE12 Cable	157
С	LHC Beam Interlock System User's List	159
D	TEST and MONITOR Data in the BIS D.1 History Buffer RecordsD.2 MONITOR DataD.3 TEST data	. 161
Ε	Socket and Connector Coding	169
F	Electro-Magnetic Compatibility Analysis F.1 Cables from User System to User Interface	. 173
G	 Signal Integrity Analysis G.1 Electrical Length Calculation G.2 Type-1 Signal Integrity G.2.1 USER_PERMIT from User System to CIBU G.2.2 BEAM_PERMIT_INFO from CIBU to User System G.3 Type-2 Signal Integrity G.3.1 Differential Signals between CIBU and BIC G.4 Type-3 Signal Integrity G.5 Type-4 Signal Integrity G.6 Type-5 Signal Integrity G.6.1 Worst Case Type-5 Link G.6.2 Special Case Type-5 Link 	 . 175 . 176 . 176 . 177 . 177 . 177 . 177 . 178 . 178 . 178
н	Failure Modes, Effects and Criticality AnalysisH.1Double User Interface (CIBUD) Example	181 . 181
Ι	BEAM_PERMIT_INFO in the Test & Monitor Board	199
J	Schematic Examples	203
K	PCB Examples	215
L	VHDL Examples L.1 Manchester Encoder	
м	Display Boards	229
Ν	Photographs of Components N.1 CIBM Manager & CIBT Test and Monitor Boards	. 233 . 235 . 235 . 237

N.7CIBD DC Power SupplyN.8TT40 Installation Example	
O Assembling the Rear Section of a VME Chassis	241
List of Figures	243
List of Tables	249
Bibliography	251
Glossary of Terms, Acronyms and Abbreviations	259
Index	265

Acknowledgements

Two and a half years hard work and here we are, finally a thesis! This may only have one name as the principle author, but there are many who have contributed to my work in some way or another, I don't think a single page can express just how much I owe to others for their help, but i'll try!

There are three people who have been absolutely fundamental to this thesis. First and foremost I want to thank Rüdiger Schmidt for his excellent work, both as co-inventor of the LHC Machine Protection System and as PhD student supervisor. Secondly I'd like to thank Bruno Puccio as leader of the Machine Interlock Section, thanks for taking a chance on a student for the design of the Beam Interlock System. Thirdly Cinzia Da Via, of Brunel University, for taking on and sponsoring a student that she'd never worked with before and accommodating my thesis as part of Brunel's portfolio at a moments notice.

I also want to thank Arni Dinius, who has always been there with bright ideas, ready to spend an afternoon debating the finer points of the design. Philippe Nouchi for the Manager board, and his help with the VHDL. Markus Zerlauth, a voice of reason who's been more help to me than he probably gives himself credit for, and Matthias Werner, who has given me outstanding help looking over schematics and polishing designs. Thanks to the rest of the Machine Interlocks section who have given me an excellent environment to write my thesis, without you guys it'd be a dull existence.

Thanks to Jan Uythoven, Roberto Filippini and Gianluca Guaglio who showed me the basics of reliability theory, giving me an open and un-supposing forum in which to discuss the dependability aspects of the design.

There are others whom i'd like to thank; Gary Beetham, who took a risk employing a technical student many years ago and Jean-Bernard Ribes who supervised that student, without you guys i'd not be here now. Also Pablo Alvarez Sanchez who introduced me to the world of VHDL and has been a sounding board for ideas since long before the beginning of this project.

Amongst those who have guided and moulded me academically over the years, there are two who deserve much credit. John Wheeler of Sunderland University, who taught me the skills of engineering and professionalism, and John Curry of Durham School, who taught me to be a scientist before being an engineer.

Of course, the academic influence is one thing, but to finish a thesis like this you need a solid group of close friends who understand what it takes. My deepest thanks to Šárka who has put-up with me over the last year or two and who has helped wherever she could to make my life a little bit easier, cheers to Shorty for being there the last few weeks and thanks to Big-Ben for the words of support and for letting me keep the smartest appartment in Geneva.

Finally I come to the few people who have been with me since the beginning. I don't need to write much for them to know how much I appreciate their help. Mum, we finally did it! I'm proud of you. John, cheers fella for being there when it mattered and Amy, the coolest little sister in the world - You guys are the rock on which this thesis has been built. Love to you all.

Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already underway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundamental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed.

Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero and there is a high chance of particle impacts causing a magnet to quench, where the magnet becomes normal conducting and has to be switched off before it destroys itself. Losing as little as 10^{-8} of the beam into the superconducting magnets will lead to a quench. A loss of 10^{-4} of the beam into any part of the machine will cause damage, such as rupturing the machine vacuum, which in the best case results in costly repairs and weeks of downtime, in a worse case the destruction of one or more dipole magnets would mean many weeks of repairs to return the machine to operation.

Due to the unprecedented sensitivity of the machine to beam losses, and the high cost of failure, both financially and in terms of inefficiency, a complex Machine Protection System is envisaged, surveilling and diagnosing the operation of the CERN high energy accelerators, ensuring their safe operation.

Machine Protection Systems are employed in the LHC, SPS and beam transfer lines, protecting all parts of the accelerator complex that handle beam above damage thresholds.

At the heart of each Machine Protection System lies a Beam Interlock System, connecting the many components of the Machine Protection Systems which are located all around the accelerator complex. The LHC is the ultimate application of these protection systems, here the Beam Interlock System is responsible for relaying a command for controlled removal of the beam (Beam Dump) to the LHC Beam Dumping System. The Beam Dumping System is the only part of the accelerator that is capable of withstanding the impact of the full LHC beam without being damaged in the process. The time response of the LHC Beam Interlock System has to be around 100μ s, to protect against the fastest events which lead to beam losses. Each LHC Beam Interlock System is made from sixteen Beam Interlock Controllers. These are distributed around the 27km circumference of the machine, one at the left and one at the right of each Insertion Region, each Controller acts as a local concentrator, monitoring up to 14 User System inputs. Fibre optic links join the sixteen Controllers in so-called beam permit loops, making the high-speed, highly dependable backbone of the Beam Interlock System.

This thesis is focussed on the conception, design and realisation of a generic Beam Interlock System used to protect the high energy accelerators at CERN. The Beam Interlock System has been designed to provide the LHC and its injector chain, as well as the SPS and its transfer lines, including the CERN Neutrinos to Gran Sasso project, with an unsurpassed level of protection. In every application the stored beam energy is orders of magnitude above the damage thresholds of the machines.

The first chapter outlines the CERN high energy accelerator complex including the LHC machine. The fundamental motivations for the LHC are discussed, along with the key questions that remain to be answered to broaden the understanding of the physical world. The ultimate aim of the Machine Protection Systems is briefly discussed, with the key trade off being protection of the machine versus permitting operation with destructive beam circulating in the machines.

The second chapter, marking the beginning of the work undertaken by the author, describes the role of the Beam Interlock System in the context of the Machine Protection System, describing the failure mechanisms that can lead to unstable situations and ultimately beam losses. The critical operation path of the Beam Loss Monitor System to Beam Interlock System and LHC Beam Dumping System is also described, showing the fundamental apportionment that has been used to qualify the system's safety, the concept of Safe Machine Parameters is also introduced, giving flexibility in the operation of the machine during commissioning and at lower energies.

Chapter three presents an overview of the Beam Interlock System, briefly describing the basic components and architecture, the concept of the Safe Beam Flag is described in the context of the Beam Interlock System and complex interlocking criteria that use a Software Interlock channel are also explained. The criteria for operation, supervision and good-as-new testing is also laid out.

The fourth chapter describes the design and realisation of the Beam Interlock System in detail, the beam permit loops, Beam Interlock Controllers and User Interface devices are explained. Electro-Magnetic Compatibility, RS485 and signal integrity issues are all presented and described. The thesis continues by presenting the results of dependability calculations based on manufacturer data and military handbooks, showing the expected failure rates and failure modes of the Beam Interlock System. Software and the test-monitor process is described, as the Beam Interlock System is a first point of call for event analysis after a beam dump (Post Mortem). Differences to accommodate the different applications of the Machine Protection System are presented, such as those found in the extraction, injection and the SPS ring systems.

The fifth chapter describes the operation of the Beam Interlock System in two environments prior to its final deployment in the LHC, the first is the SPS ring, where a small LHC type system has been implemented since SPS startup in 2006, the second is the CNGS extraction where the system has been tested and proven. Operational issues relating to these two applications are also presented, leading to chapter six where conclusions are drawn regarding the design and implementation of the Beam Interlock System.

The Beam Interlock System stands apart from other comparable electronic protection systems in several aspects. The LHC is the first accelerator to have a Machine Protection System with a defined dependability and the Beam Interlock System is the first of its type to have a dependability specification. One must also consider that the testing, monitoring and aspects such as the Safe Beam Flag are novel inventions setting the Beam Interlock System apart from others.

The author has been the lead-engineer in the design and realisation of the Beam Interlock System to meet the strenuous requirements both in terms of safety and function. The author has being involved in the project at every level and has been responsible for several key elements of the system such as the built-in testing, monitoring and realising the safety constraints.

Readers can get a quick overview of the Beam Interlock System by consulting just a few sections of this thesis. Looking through Chapter 3 and Appendix N reveals the basic architecture, operation and gives an impression of what each part of the system represents in reality. Chapter 5 gives an outline of the system operation, and proof of its function in a real application.

1.1 Physics, the State of the Art

In 1917 Rutherford used alpha radiation to determine that the mass of a particle is concentrated in a small central area called the *nucleus*, having smaller negatively charged *electrons* in a much larger area around it [1, 1910], this irreversibly changed the understanding of the period, in stark contrast to Thompson's "pudding model" that had been accepted as valid since around 1900. Almost one hundred years have passed and Rutherford's model has been proven to be well founded, the nucleus he described has been shown to be made of positively charged *protons* and neutral *neutrons*, which they themselves have been shown to be composites of *quarks*.

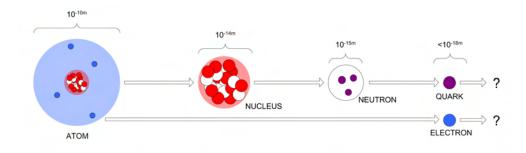


Figure 1.1: Sub-Atomic Structure [2]

Understanding rapidly progressed in the first half of the 20th century, culminating in the conception of the Standard Model. This describes the quantum world as a function of four fundamental interactions of twelve basic particles and their antiparticles. The Standard Model is known to be flawed however, for example it makes no effort to describe gravity at the quantum level, after all, gravity is such a weak force, it's effects at this scale are almost negligible.

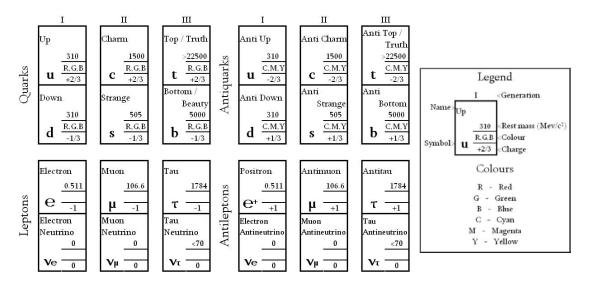


Figure 1.2: Particles of the Standard Model

The four fundamental interactions of the Standard Model are:

- **Electro-Magnetism** is the attraction of positive charge to negative charge, it's carrier is the *photon*
- **The Strong Interaction** is the mechanism which enables positively charged protons to remain in such close proximity within the nucleus when the electro-magnetic force is attempting to separate them. The charge carrier of the strong interaction is the *gluon*
- The Weak Interaction governs nuclear decay, the W and Z bosons are the charge-carriers of the weak interaction.
- **Gravity** is perhaps the most fundamental interaction, it is hypothesised that the *graviton* is the force carrier of gravity.

Experiments have proven the Standard Model to be accurate, the Wand Z bosons were discovered in SPS and their characteristics measured in the Large Electron Positron collider (LEP) at CERN: their masses aligned almost perfectly with those expected.

However, certain aspects of the Standard Model have still not been ratified experimentally, neither the graviton, nor the Higgs boson (introduced to account for mass) have ever been witnessed in experiments to date. One then has to ask what the exact limitations of the Standard Model are, and what's next? Can quarks themselves be described as composites of more fundamental particles? Indeed, can all the forces be described using a single theory, and more importantly, can we verify this theory experimentally?

To begin to answer these types of questions, one needs to delve deep into the nature of matter, examining its composition at a very low level. Particle accelerators are the microscopes at this quantum scale, of which the LHC will be the most powerful ever constructed.

1.1.1 Questions at the Forefront of Physics

The LHC and its experiments are designed to provide clues to the answers of basic questions in theoretical physics. The high energy of the LHC collider will test the limits of the Standard Model, and will provide solid experimental data to help physicists in their search for a more complete understanding.

Mass and the Higgs Boson

Some may argue that the most important question to be answered in modern physics relates to the possible existence of the Higgs boson. This force carrier is so fundamental that proving its existence would clarify a large section of hypothetical thinking. The Higgs boson was first proposed in a paper by Peter Higgs at Edinburgh University in 1964 [3].

Higgs proposed that the whole of space is permeated by a field, particles moving through this field interact and acquire mass, the larger the interaction, the more mass the particles appear to have. The Higgs boson is a particle of this Higgs field, just as photons are particles of the electromagnetic field, it forms a cornerstone of the Standard Model and yet has not been experimentally observed to date. Finding the Higgs boson would explain whether this hypothesis for the generation of mass is correct [5].

The Standard Model does not make an exact prediction of the Higgs boson mass, it does give a likely range for it to lie within, experiments in the Large Electron Positron collider in 2000 could be interpreted as showing some evidence of the Higgs at around 104GeV, but the results were ultimately inconclusive.

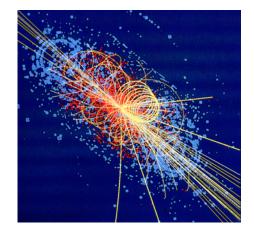


Figure 1.3: CMS Higgs Decay [4]

The predicted mass of the Higgs is well within the range which can be searched by the LHC.

Charge Parity Violation

Another important question in theoretical physics concerns the origins of Charge Parity (CP) violation. CP is the product of two symmetries, charge conjugation and parity. Charge conjugation is a simple symmetry between particles and anti-particles, and CP is represents an equivalent simple symmetry between matter and anti-matter. The strong interaction and electromagnetic interaction obey CP-symmetry, but certain types of weak interaction do not, exhibiting a so called CP-violation.

Particle	Particle	Anti Particle
	Symbol	Symbol
Charged Kaon	K^+	K^{-}
Natural Kaon	K^0	\bar{K}^0
K-short	K_S^0	K_S^0
K-long	$K_L^{\tilde{0}}$	$K_L^{ar 0}$

Table 1.1: The K-Mesons / Kaons

The first observations of CP-violation were in Kaon systems, Kaons are a sub-set of mesons, which are particles made of a single quark and antiquark. Kaons can spontaneously transform into their anti-particles and in a symmetric world the Kaon and anti-Kaon would be equally observed. Experiments in 1964 by Cronin and Fitch showed that the Kaons' existence is unevenly split between the two states, this experimental breakthrough was rewarded with a Nobel Prize in 1980. For a long time CP-violation was only observed in Kaons, but more recently the BaBar experiment at SLAC and Belle Experiment at KEK have shown that B-mesons also clearly exhibit CP-violation [6].

So why is it that only the weak interaction has a CP-violation? Interestingly the Standard Model implies that the Big Bang should have produced equal amounts of matter and anti-matter, which it didn't. CP-violation provides an explanation for this asymmetry, and leads to another important observation of the physical world: dark matter.

Dark Matter

The first indication of dark matter came more than 70 years ago from observations on galaxies and on clusters of galaxies. Close inspection showed that the speeds at which galaxies moved within a cluster was very different from what would be expected if visible matter were all that was needed to hold the cluster together. Later, the phenomenon was confirmed through studies of the rotation of spiral galaxies. The results suggested that the spiral galaxies must be embedded in an invisible spherical halo of dark matter. Cosmologists and particle physicists have begun to move towards the same conclusion: dark matter must be made of things that are massive but undetectable, the so-called Weakly Interacting Massive Particles (WIMPs). So do WIMPs exist and is CP-violation somehow involved in dark matter's origins?

The LHC is expected to examine these questions, the LHC-b experiment in particular is designed to investigate CP-violation and rare decays of B-mesons, giving valuable experimental data to use as baselines for models of CP-violation.

String Theory, Supersymmetry and Superstring Theory

Since the Standard Model is known to be flawed, numerous other theories have emerged to try and improve it. String theory is a model of quantum physics which describes particles as small single dimension strings rather than point charges. These strings are tiny, on the Planck length scale (around 10^{-35} m), and resonate at different frequencies representing different particles. Strings can be open with two ends, or closed like a ring. The original string theory is now called 'Bosonic String Theory' as it could only account for bosons (force carriers), and not fermions (matter). Twenty-two extra dimensions and a particle having imaginary mass called the Tachyon had to be invented to make the theory mathematically plausible. Enhancing string theory to account for fermions led to hypothesis of supersymmetry (SUSY) which suggests that there are so-called super-partner particles for every boson and fermion of the standard model.

Particle	Symbol(s)	Superpartner	Superpartner Symbol(s)
leptons	ϵ,μ, au	sleptons	$\tilde{\epsilon},\tilde{\mu}, ilde{ au}$
neutrinos	$v_{\epsilon}, v_{\mu}, v_{\tau}$	sneutrinos	$\tilde{v}_{\epsilon}, \tilde{v}_{\mu}, \tilde{v}_{\tau}$
quarks	u,c,t,d,s,b	squarks	$\tilde{u},\tilde{c},\tilde{t},\tilde{d},\tilde{s},\tilde{b}$
photon	γ	photino	$\tilde{\gamma}$
W boson	W^{\pm}	Wino	\tilde{W}^{\pm}
Z boson	Z^0	Zino	$ ilde{Z}^0$
gluons	g	gluino	${ ilde g \ ilde G}$
graviton	G	gravino	-
higgs boson	h	higgsino	$ ilde{h}$

Table 1.2: Standard Model Particles and their Superpartners

String theory that includes SUSY is referred to as 'superstring theory' however no direct evidence of any superpartner has been found as of yet, despite the successfully application of SUSY to many other areas physics from the quantum to celestial scales. The LHC collision energy should be sufficient to reveal some of the supersymmetrical partners, if they do exist.

There are five popular superstring theories, six if the original 'Bosonic String Theory' is included.

Theory	Dimensions	String Types	SUSY?	Tachyon?	Bosons?	Fermions?
Bosonic	26	open and closed	No	Yes	Yes	No
Ι	10	open and closed	Yes	No	Yes	Yes
IIA	10	bound-open and closed	Yes	No	Yes	Yes
IIB	10	bound-open and closed	Yes	No	Yes	Yes
HO	10	closed	Yes	No	Yes	Yes
HE	10	closed	Yes	No	Yes	Yes

Table 1.3: Bosonic String and Superstring Theories

Some of the models suggest the existence of WIMPs, corresponding to the investigations into dark matter [7] [8], the LHC will break new ground in the exploration for any evidence that supports or contradicts these theories.

Theory of Everything

Maxwell described electrical and magnetic forces as a single electromagnetic theory 1864, this theory was later expanded to include the weak force by Glashow, Salam and Weinburg leading to electroweak theory in 1968. It is hypothesised that the electroweak and strong forces are manifestations of the same force at extremely high energies, leading many to believe that these two theories could be unified to create a single Grand Unified Theory (GUT), the Standard Model does just that, but it's known to be flawed as it cannot explain gravity. If gravity could also be accommodated in the context of a Grand Unified Theory, then everything would be explained in a single theory. A complete Theory of Everything (TOE).

So, questions remain, is superstring theory a step in the right direction towards a Theory of Everything? Some would argue so, especially as Witten in the 1990s showed that the five different types of Superstring theory could all be regarded as different aspects of a single M-Theory, could this be the basis of a Theory of Everything?

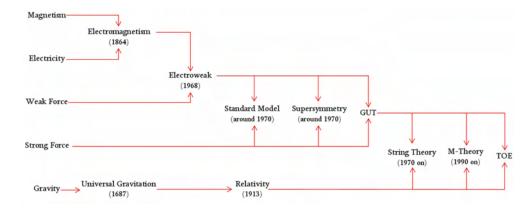


Figure 1.4: Unification of the Forces [2]

The LHC will explore the limits of the standard model, searching regions for evidence to ratify these theories.

1.1.2 Particle Accelerators, Past, Present and Future

The LHC is one of over 17000 particle accelerators in the world today, around half of these are used for medical purposes, and only a handful are for fundamental research [9]. The LHC represents the cutting edge of accelerator physics, it will be the world's leading proton-proton accelerator for possibly decades to come.

Hadron accelerators like the LHC are primarily used to look for new particles and observations, electron accelerators are then used to carry out a detailed investigation at precise energies once observations have been made in a hadron collider. Accelerators, whether proton or electron, are expensive to design, realise and operate, only large organisations like CERN have the capability to build and operate the largest accelerators. To put the energy of the LHC in perspective consider Table 1.4, comparing the LHC design energy to past, present and future colliders.

Name	Type	Collision Energy [TeV]	Location	Status	
SLC	e^+e^-	0.1	Stanford, USA] [:
LEP-I	e^+e^-	0.1	CERN	Past	[:
LEP-II	e^+e^-	0.2	CERN		[
KEKB	e^+e^-	0.008 + 0.0035	Tsukuba, Japan		ן ו
PEP-II	e^+e^-	0.009 + 0.0031	Stanford, USA	Present	[
HERA	$e^{\pm}p$	0.028 + 0.92	DESY, Hamburg	Present	ĺ
TEVATRON	$p\bar{p}$	2.0	FermiLab, USA		[
LHC	pp	14.0	CERN	Future] [
ILC	e^+e^-	0.5 to 1.0	T.B.C.] [
CLIC	e^+e^-	2.0 to 10.0	CERN		[
LHC-II	pp	25.0	CERN	Hypothetical	ĺ
VLHC-I	pp	40.0	FermiLab, USA		
VLHC-II	pp	175.0	FermiLab, USA		[

Table 1.4: Past, Present, Future and Hypothetical Colliders [20]

CERN is one of many particle physics laboratories throughout the world, the LHC was chosen to be built at CERN as a natural progression following the decommissioning and dismantling of LEP.

1.2 The European Organisation for Nuclear Research (CERN)

The name CERN is derived from the French "Conseil Européen pour la Recherche Nucléaire", or European Council for Nuclear Research, a provisional body founded in 1951 with the mandate of establishing a world-class fundamental physics research organization in Europe. When the organization officially came into being in 1954 the new organization was given the title European Organization for Nuclear Research, although the name CERN was retained. CERN was one of Europe's first joint ventures, presently it includes 20 member states. The evolution of CERN from a notion in 1949, to host of the LHC in 2007 is shown in the Table 1.5.

Year	Key Events
1949	Louis de Broglie suggests CERN be created
1954	CERN officially comes into being
1957	600MeV Synchrocyclotron commissioned
1959	28GeV Proton Synchrotron (PS) commissioned
1963	Bubble Chambers give first evidence of neutrino interactions
1965	CERN extends into France to build the Intersecting Storage Rings (ISR)
1967	ISOLDE commissioned
	Gargamella Bubble Chamber agreed
1968	Multi-Wire Chambers tested in PS Beam-Line
1971	ISR commissioned
	Super Proton Synchrotron (SPS) project approved
1972	800MeV Booster added to the PS Injector
1973	Neutral Currents discovery ratified
1976	SPS commissioned
1978	LINAC added to PS Injector
	Stochastic Cooling demonstrated
	$p\bar{p}$ proposed for the SPS
	SPS reaches 500GeV
1981	$p\bar{p}$ collisions in SPS at 270GeV
	Large Electron Positron collider (LEP) approved
	Research into a superconducting proton-proton collider (LHC) starts
1983	W and Z Bosons discovered at SPS
	LEP construction begins
1984	Nobel Prize awarded to C. Rubbia and S van der Meer for W and Z
1989	LEP commissioned
1990	T. Berners-Lee proposes the World Wide Web (www)
1991	LHC proposed to CERN council
1992	Nobel Prize awarded to G. Charpak for Multi-Wire Chambers
1994	LHC approved by CERN council
1995	anti-matter created from anti-particles
1996	LEP energy increased (LEP-II)
2000	LEP decommissioned to make way for LHC
2001	Charge-Parity (CP) Violation results verified
2005	LHC tunnel receives first LHC dipole
2006	CERN Neutrinos to Gran Sasso Project (CNGS) begins
2007	SPS to LHC Transfer Lines commissioning scheduled to start
	LHC Commissioning and operation scheduled

Table 1.5: A Brief History of CERN [21]

The word nuclear gives an impression which is misleading. The organisation's founding charter makes it clear that CERN is devoted to pure science, open for everyone.

"The Organization shall provide for collaboration among European States in nuclear research of a pure scientific and fundamental character, and in research essentially related thereto. The Organization shall have no concern with work for military requirements and the results of its experimental and theoretical work shall be published or otherwise made generally available." [22]

1.2.1 The Large Hadron Collider (LHC)

CERN's latest challenge is the construction of the Large Hadron Collider (LHC). This machine will take physics into a new era, exploring what lies beyond the Standard Model. The LHC will be the world's most powerful particle accelerator. It will collide protons at a combined energy of 14TeV, giving access to physics at an energy scale far higher than has been explored so far.

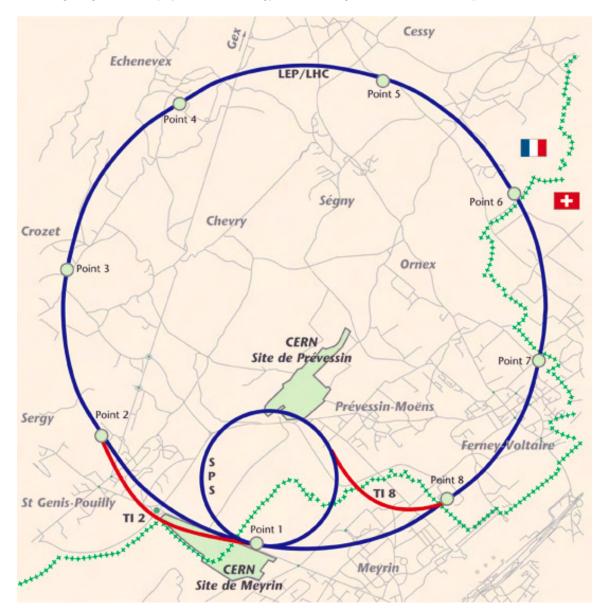


Figure 1.5: The 27km LHC Accelerator with SPS [Not to Scale] [23]

The LHC is the most complex scientific instrument ever constructed, it uses 1232 superconducting dipole magnets with niobium-titanium coils. The superconducting magnets are maintained at only 1.9 degrees above absolute zero (about -271°C) and are cooled by super-fluid helium. A major feature of the LHC dipoles is their two-in-one design, providing opposite magnetic fields for the two beams travelling around the machine in opposite directions within a single structure. The 27km accelerator also over one hundred normal conducting magnets, used to focus the beams and fine-tune orbits, in addition to the superconducting dipoles.

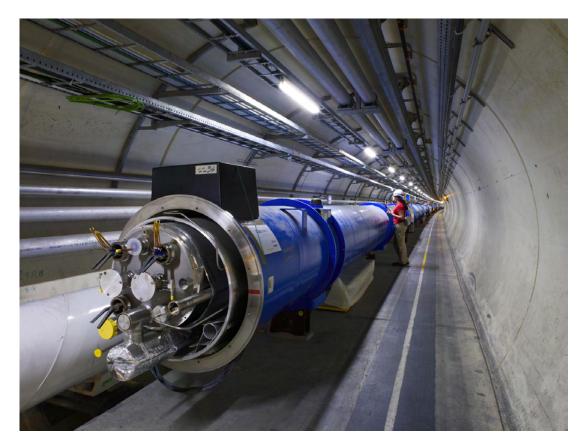


Figure 1.6: LHC Dipole Magnet Installed in the Machine [24]

The LHC is a considerable investment and a long-term project, it began over 25 years ago, and is expected to be operational for around 20 years. The LHC is designed to produce billions of proton-proton collisions per second. Making it not only a machine for frontier physics, but also for frontier technologies.

1.2.2 LHC Experiments

The LHC has four main experiments, each is a series of detectors surrounding a collision point, measuring the energies and trajectories of the emerging particles at four beam crossings in the machine.

- 1. ATLAS A Toroidal LHC ApparatuS
- 2. CMS Compact Muon Solenoid
- 3. ALICE A Large Ion Collider Experiment
- 4. LHCb LHC beauty

Two detectors called ATLAS and CMS have been designed by a collaboration of around 2000 researchers from around the world. These detectors are specifically designed to search for Higgs bosons and evidence of supersymmetry.

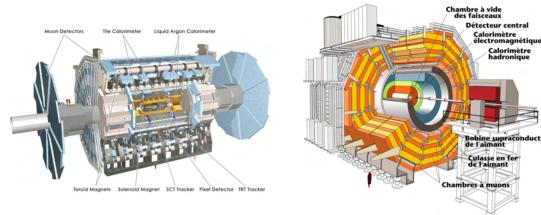


Figure 1.7: The ATLAS Experiment [25]

Figure 1.8: The CMS Experiment [26]

Two other detectors, ALICE and LHCb are also under construction. ALICE will study matter as it was in the first instants of the Universe, by observing ion collisions. LHCb will search for evidence that address the matter-antimatter imbalance.



Figure 1.9: The ALICE Experiment [27]

Figure 1.10: The LHC-b Detector [28]

Each collision gives rise to a spray of new particles such as those shown in Figure 1.11, simulated in the ATLAS detector. This pattern shows what the detector would see if a Higgs boson was produced. The various layers of the detector measure different particle properties, building up a complete picture of each collision. In each collision between 100 and 1000 particles emerge and there can be up to six hundred million collisions per second in each detector. Trigger electronics select the interesting collisions, even after rigorous selection the volume of data recorded by each experiment would fill 100,000 DVDs every year.

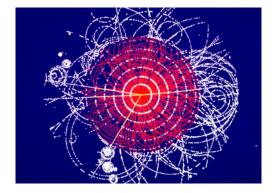


Figure 1.11: Simulation of Higgs boson decay in ATLAS [29]

1.2.3 The CERN High Energy Accelerator Complex

CERN was chosen as the site for the LHC for many reasons, perhaps the most motivating was that the pre-injector complex and civil works required for the LHC already existed, as they had been used during the LEP era.

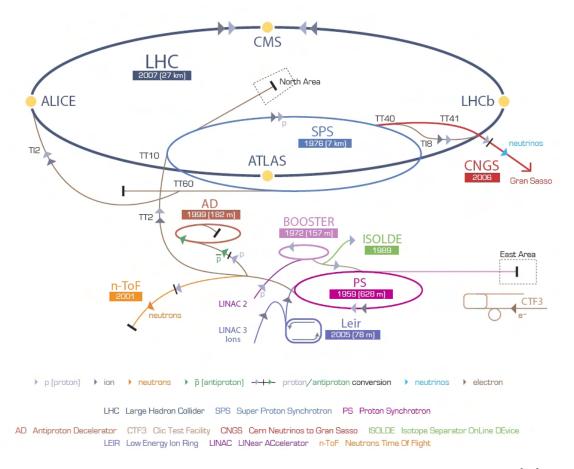


Figure 1.12: CERN Accelerator Complex, Dimensions and Operational Year Marked [30]

A five accelerator path is used to get protons into the LHC:

$$LINAC2 \rightarrow Booster \rightarrow PS \rightarrow SPS \rightarrow LHC$$

For ions, the path is almost the same

$$LINAC3 \rightarrow Leir \rightarrow PS \rightarrow SPS \rightarrow LHC$$

This complex has been enhanced and upgraded over many years, the Proton Synchrotron (PS) was one of the first accelerators commissioned at CERN, and almost fifty years later is still working with very high efficiency. PS accelerate protons to 28GeV, from here they are passed to the SPS where they are accelerated to 450GeV, finally they are transferred to LHC, where acceleration will bring protons to an energy of 7TeV. The magnetic cycle of the LHC is shown in Figure 1.13 on the next page, where the magnetic field is ramped up in a few minutes, accelerating the protons to their final energy, which is maintained for several hours during collisions.

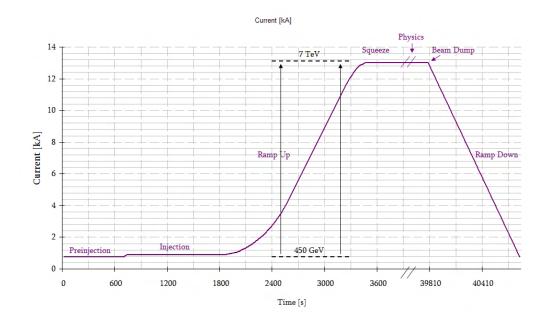


Figure 1.13: Nominal LHC Magnetic Cycle - adapted from [31]

The **CERN high energy accelerators** are considered as SPS and LHC, their stored beam energy far surpasses the damage levels for the machines themselves. These are the machines that fall under the auspices of the Machine Protection System and associated Beam Interlock Systems, ensuring their operation is carried out in a dependable manner.

The Super Proton Synchrotron (SPS)

The SPS was originally a 7km proton accelerator, in the late 70's and early 80's it was used as a proton - antiproton collider, revealing the W and Z bosons, which eventually resulted in the Nobel Prize being awarded to Simon van der Meer and Carlo Rubbia. SPS is currently a proton or ion accelerator, it's been fitted with two transfer lines, TI2 and TI8 for the two LHC beams.

Figure 1.14: The SPS, shown with LHC transfer lines TI2 and TI8 [32]

CERN Neutrinos to Gran Sasso (CNGS)

Neutrino oscillation, where one type of neutrino becomes another, was first detected by Super-Kamiokande, Japan, in 1998. Neutrinos must have mass to oscillate, their tiny mass gives clues towards the expansion of the Standard Model. A number of laboratories have begun programs designed to investigate neutrino oscillation, CERN included. One of the LHC transfer lines can be used to send a beam of neutrinos 730km through the Earth to purpose-built targets in the Gran Sasso underground laboratory, Italy.

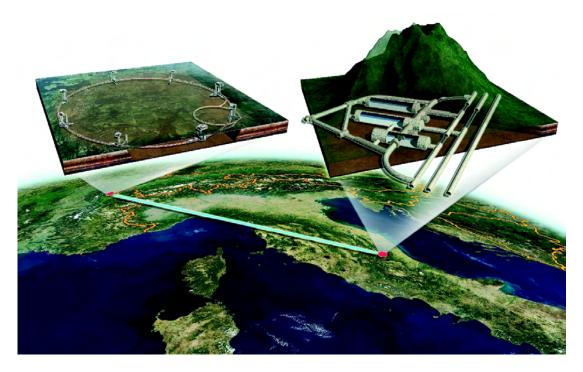


Figure 1.15: Neutrinos Sent from CERN, Switzerland to Gran Sasso, Italy [33]

SPS extraction regions must therefore accommodate numerous types of beam, switching quickly between one type and another. The SPS is a cycling machine, designed to toggle between different operation modes following a preprogrammed sequence. For example, SPS may operate for several cycles delivering LHC beam, only to be followed by some CNGS cycles, then returning to LHC beam operation.

Derivation of the signals to allow beam transfer is made somewhat complex by the cycling nature of the SPS machine. Extraction interlocking must take into account 'soft' information such as beam type and destination, as well as 'hard' interlocks.

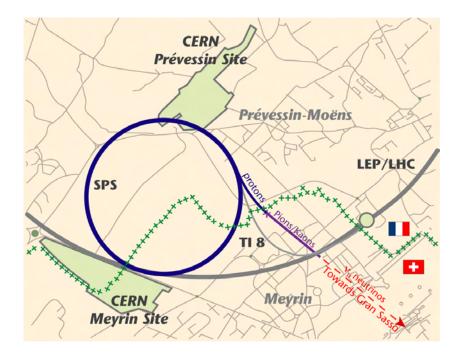


Figure 1.16: SPS is the Source of Neutrinos for the CNGS Experiment [34]

Protecting the CERN High Energy Accelerator Chain

Seven elements of the CERN complex require safe and reliable Machine Protection Systems (MPS):

- 1. SPS Ring
- 2. SPS Extraction at SPS Point 4
- 3. SPS Extraction at SPS Point 6
- 4. LHC Injection at LHC Point 2
- 5. LHC Injection at LHC Point 8
- 6. LHC Ring 1 (for beam one)
- 7. LHC Ring 2 (for beam two)

The LHC is used as the baseline for the Machine Protection Systems, it has the most strenuous requirements for time response and safety, with the heaviest consequences in case of failure.

1.2.4 Investment in the LHC Project and its Experiments

The LHC and its detectors are all very complex systems, requiring a substantial investment. To put the cost of the LHC machine protection system into perspective, one has to understand the investment at risk if things go wrong. The simplest way to envisage this is to consider the cost of each of the projects:

Project	Cost [MChf]	
The LHC Project	2923.7	[35]
ATLAS	449.5	[36
CMS	459.0	[37
ALICE	122.9	[38
LHC-b	75.3	[39
CNGS	71.0	[40
Total	$pprox\!4100$	

Table 1.6: The Cost of CNGS, LHC and its Experiments

These figures are only material costs, running of the accelerator complex, LHC machine and experiments raises the overall investment to some 10 billion francs. The primary role of the Machine Protection System is to protect the LHC, its experiments and injector chain against damage from stored energies, whilst simultaneously giving physicists the time they require to run their experiments fruitfully.

Chapter 2

Machine Protection Systems

The LHC machine and its injector chain have a Machine Protection System (MPS) designed to detect faults, failures and potentially dangerous situations, reacting in time to protect the machine from damage.

2.1 LHC Stored Energy and Associated Risk

To compare how the LHC differs from other accelerators, consider Figure 2.1 showing the energy stored in each of the machines. The axes are on a logarithmic scale, clearly the energy in the LHC is orders of magnitude higher than that of others.

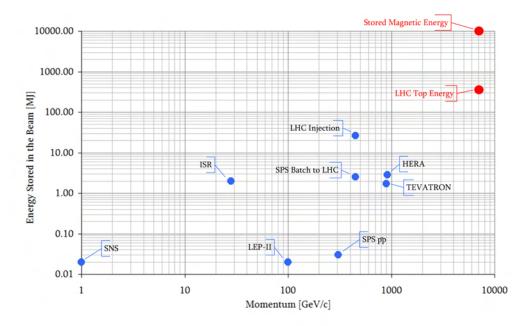


Figure 2.1: Stored Energy of the LHC and other Accelerators [41]

This energy is stored in two key areas:

- 1. The powering circuits (electrical and magnetic energy)
- 2. The circulating beam

The Machine Protection System is responsible for protection of the machine against the dangers of an uncontrolled release of this energy. The Quench Protection System (QPS) and Powering Interlock Controllers (PIC) safeguard the machine from the energy stored in the powering circuits, whereas the Beam Interlock System (BIS) protects the machine from the dangers related to the energy of the beam.

2.1.1 Energy in the Powering Circuits

The energy, E, stored in a dipole magnet can be calculated using the magnet current, I, and inductance, L:

$$E = 0.5 \times L \times I^2 \tag{2.1}$$

At full current of around 13kA, this gives a stored energy of 7.5MJ per dipole magnet of which there are 1232 in the LHC Machine, giving a total stored energy of 10GJ, enough energy to heat and melt more than ten tonnes of copper from room temperature.

The LHC is split into powering subsectors reducing the energy stored in each electrical circuit by an order of magnitude, to levels similar to other accelerators, this also has the advantage that the powering system can be made available progressively, allowing for a staged commissioning.

2.1.2 Beam Energy

The LHC is filled with beam from the SPS at the injection energy of 450GeV, adding the two beam intensities to Figure 1.13 on page 13 gives Figure 2.2.

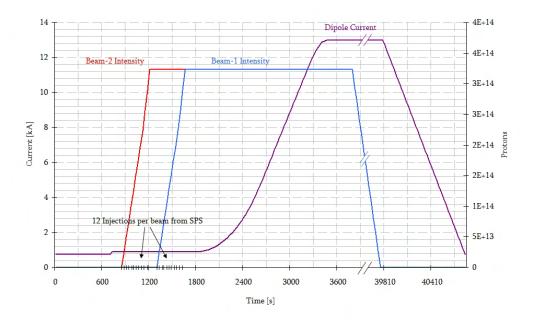
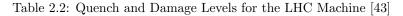


Figure 2.2: Beam Intensity and Main Dipole Current in an LHC Cycle


Each LHC beam consists of 2808 bunches of 1.15×10^{11} protons. Twelve successive beam injections from SPS, each consisting of 216 or 288 LHC bunches, are needed to make each LHC beam. The magnetic ramp is started once all the bunches are in place, where the energy of the beams is increased from 450GeV to 7TeV.

Beam Parameter	Value
Proton Energy at Injection	450 GeV
Proton Energy at Collision	$7 \mathrm{TeV}$
Protons per Bunch	1.15×10^{11}
Number of Bunches in LHC	2808
Protons in LHC	$3.23 imes 10^{14}$
Number of Bunches in SPS Extraction	216 or 288
Protons in SPS Extraction	$2.48 \times 10^{13} \text{ or } 3.31 \times 10^{13}$
Number of Bunches in PS Extraction	72
Protons in PS Extraction	8.27×10^{12}

Table 2.1: Beam Parameters of the LHC [42]

Beam impact into the material of the accelerator produces a cascade of particles due to nuclear and electromagnetic interactions, the energy deposition into the material is calculated using simulation software such as FLUKA, combining this with temperature calculations determines quench and damage levels, Table 2.2 shows the quench and damage limits for fast losses at both injection and collision energies.

Consequences	Causes (approximate values)			
Consequences	Proton Losses Fraction of Beam		Percentage of Beam	
Quench at 450GeV	$2 - 3 \times 10^{9}$	7.7×10^{-6}	0.0008%	
Damage at 450GeV	$1-2\times 10^{12}$	4.6×10^{-3}	0.5%	
Quench at 7TeV	$1 - 2 \times 10^{6}$	4.6×10^{-9}	0.000005%	
Damage at 7TeV	$1-2\times10^{10}$	4.6×10^{-5}	0.005%	

This table represents the fundamental challenge of the LHC.

2.1.3 Beam Damage Tests and Examples

Experiments have been carried out to judge the accuracy of the beam damage simulations. In 2004 a dedicated experiment was carried out where various intensities of protons were extracted from the SPS at 450GeV, aimed at a fixed target consisting of several metal plates arranged into layers. The observed plate destruction and depth was correctly predicted by simulations within an error of 30% [44].

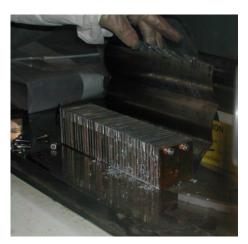


Figure 2.3: Layered Metal Plates

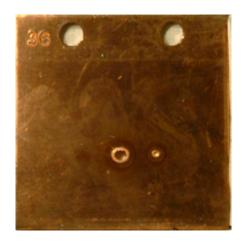


Figure 2.4: Damaged Plate

To demonstrate that beam losses and equipment damage are a real threat to the LHC, consider some examples of beam related damage within the High Energy Physics (HEP) community:

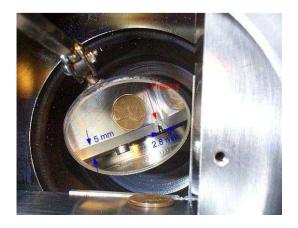

In October 2004 a failure in the SPS extraction system led to a vacuum chamber being destroyed and the machine being off line for several days [45].

Figure 2.5: Destroyed SPS Vacuum Chamber

Figure 2.6: 5mm Groove in HERA Collimator

The Tevatron has failed in numerous ways, in December 2003 a Roman Pot moved into the beam, causing a quench and seriously damaging collimators [47].

HERA collimators were progressively destroyed by fast beam losses in 2003, which led to a major overhaul of its protection

Figure 2.7: Damage to a Tevatron Collimator

Any of these failures would prove very costly for the LHC. A failure of the LHC Beam Dump, where it would be impossible to remove the beam, would be one of the worst possible scenarios, yet this has already happened at Tevatron [47]. This thesis concerns the beam related machine protection, which covers more than just the LHC. Figure 2.1 on page 17 shows that even a single batch of beam being accelerated in the SPS has a similar energy to the whole beam stored in other accelerators. This means that the beam related machine protection is vital from the SPS onwards.

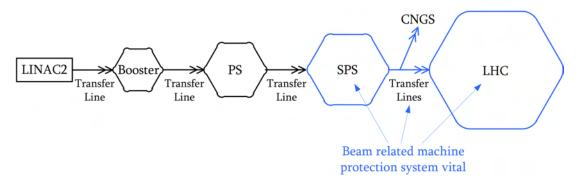


Figure 2.8: Accelerator Structures with Beam Based Protection in the CERN Complex

2.2 Protecting the High Energy Accelerators

The LHC Machine Protection System is composed of numerous sub-systems, the protection system has evolved in the years since it was initially proposed [48] [49] [50]. Figure 2.9 on the next page compares the current architecture with that of 2000.

system [46].

Figure 2.9: Evolution of the LHC Machine Protection System 2000-2006

The specification which was originally proposed described a simple, modular protection system, with concise and uncomplicated functions to be carried out by a series of smaller dedicated systems. The powering and beam protection were separated, leading to the powering interlock and Beam Interlock System architectures. Function and safety of both were decided at the very beginning of the project, forming a solid basis for the whole Machine Protection System [51] [52] [48]. In April 2005 the LHC Machine Protection System was peer reviewed, it was shown to be sound, representing a reasonable extension of existing systems [53].

The LHC, with its strenuous safety requirements, is the baseline for the machine protection, as a system that can safely protect LHC can be readily applied to the rest of the complex. The key beam related protection systems are briefly outlined in the following sections.

LHC Beam Dumping Systems (LBDS)

One of the most critical sub-systems of the LHC Machine Protection System is the LHC Beam Dumping System (LBDS), it is the only element of the machine that is specifically designed to withstand the impact of a full LHC beam without damage. The beam dumping system receives Beam Permit signals from the Beam Interlock System which control the triggering of a beam abort. A $3\mu s$ gap is left in the circulating LHC beam, this is referred to as the abort gap, once the beam abort is triggered the beam dumping system waits for this abort gap to pass in front of the extraction kicker magnets in Insertion Region 6 (IR6), then it triggers, spraying the beam into a purpose built graphite target which absorbs the beam energy without damage.

The dumping system also accepts two further input signals which do not pass through the Beam Interlock System. The first is a connection to the access system, which will cause a beam abort and inhibit when personnel are inside potentially dangerous parts of the accelerator complex. The second is from a dedicated Beam Loss Monitor (BLM), which will independently trigger the beam dumping system if excessive beam losses are observed around the beam dump region.

Beam Interlock Systems (BIS)

The Beam Interlock System is the backbone of the beam related protection. A Beam Interlock System takes inputs from User Systems distributed around the machine being protected and inhibits beam operation if a User System indicates that there is a problem, or that it is not ready for beam operation. In the LHC the Beam Interlock System links around 180 User Systems distributed around the circumference of the machine to the beam dump located in Insertion Region 6, a list of LHC User System connections to the Beam Interlock System can be found in Appendix C.

The critical function of the Beam Interlock System is to collect User Permit signals, generating Beam Permit signals. Two interlock systems are used in the LHC, one per beam being protected. User Systems can either interlock each LHC beam individually via a beam-1 or a beam-2 connection, or they can interlock the two beams simultaneously via a both-beam connection. This basic 'AND' gate structure is the core of the Beam Interlock System, only permitting beam operation when all User Systems give permission.

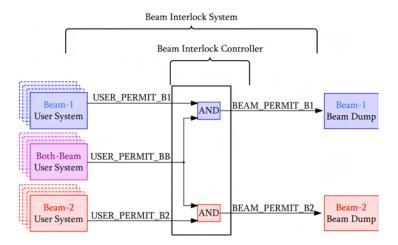


Figure 2.10: Simplified Architecture of the Beam Interlock System

During commissioning and at low intensity the stored energy of the beam can be below damage thresholds. When this is the case a signal is received by the Beam Interlock System which allows certain less critical User Systems to be ignored (MASKING).

Beam Loss Monitor System (BLMS)

The Beam Loss Monitor System consists of several thousand ionisation chambers located along-side the beam pipe in the SPS, LHC and transfer lines. When particles escape from the accelerator they are detected by these chambers and if the number of lost particles is above predefined threshold then a beam abort is requested. Larger losses can be tolerated at lower energy, thus the threshold is a function of the actual beam energy. This means that the Beam Loss Monitor System that is distributed throughout all of the high energy accelerators at CERN, requires a dependable source of beam energy information.

Safe Machine Parameters (SMP)

The Safe Machine Parameters (SMP) System is responsible for the transmission of mission critical information concerning the operation of the machines. Safe Machine Parameters are sent through the CERN General Machine Timing (GMT) exploiting the available bandwidth to make safe and reliable communications.

This system is responsible for the transmission of several values for the operation of the machine.

1. Safe Beam Flag (SBF) - This flag is set to TRUE when the stored beam energy is below damage limits. This is used by the Beam Interlock System to control the masking of inputs.

- 2. **Beam Energy** This is a value representing the beam energy, in the LHC this ranges from 450GeV to 7TeV. This is used mainly by the Beam Loss Monitor System to set the thresholds for beam loss tolerance.
- 3. Beam Intensity This is a value representing the number of protons currently in the machine.
- 4. **Beam Presence** This flag is set when the number of protons in the machine represents the presence of a beam..
- 5. Machine Mode This is a value which describes the current operational mode of the machine, this is used by several systems for correct operation.

Beam Absorbers and Collimators

Beam absorbers and collimators are used throughout the LHC and the transfer lines, these are large carbon or metal jaws which can be positioned very close to the beam orbit, scraping off any particles that have excessively large amplitudes.

Beam absorbers and collimators are critical for the protection against so-called 'ultra-fast' losses that can occur during beam injection or extraction. As an example, in the case of a mis-firing injection kicker magnet the beam would be deflected into such an absorber.

Normal and Superconducting Magnet Powering Interlocks

The LHC has more than 10000 normal and superconducting magnets, powered from 1712 power converters.

The normal magnets are interlocked by a system (WIC) based on temperature sensors which detect high temperatures and interlock before the magnets overheat. The interlock system provides a signal for switching off the power converters when a failure is detected and provides a signal to request a beam dump via the Beam Interlock System [54]. [55]. There are seven interlock controllers for normal conducting magnets installed in the LHC. The SPS and Transfer Lines are also equipped with similar controllers for the protection of their normal conducting magnets.

The superconducting magnets are protected by two systems, the Quench Protection System and the Powering Interlock System. In the case of a quench the Quench Protection System triggers the controlled discharge of the magnet energy and requests that the appropriate power supply be switched off by the Powering Interlock System. The Powering Interlock System provides a permit signal to the magnet powering circuits when several conditions are fulfilled: magnet temperatures are within tolerances, Uninterruptible Power Supplies (UPS) are working correctly, etc. Each of the 36 LHC powering sub-sectors has a Powering Interlock Controller.

The Beam Interlock System receives User Permit signals from these interlock controllers, only allowing beam operation if the relevant magnets are powered, at the moment of a magnet failure the Beam Interlock System requests a beam dump before the decaying magnetic field can adversely affect the beam orbit.

Both interlock systems are implemented in Programmable Logic Controllers (PLCs), giving a response time in the order of a millisecond from fault to power down request. For some critical superconducting magnets a Complex Programmable Logic Device (CPLD) has been added in parallel to the PLC, providing redundancy and reducing the beam abort response time by an order of magnitude to around one hundred microseconds. The use of PLCs for this type of protection has been commonplace for sometime, for example SLAC implemented a PLC interlock system for superconducting magnets in 1989 and the SPS had a PLC based magnet interlock system installed in 1998 [56] [57].

Fast Magnet Current-Change Monitors (FMCM)

Several normal conducting magnets have a large effect on beam trajectory and in certain cases the operation of the powering protection systems is not fast enough to detect a fault and initiate a beam abort. Some errors, such as an incorrect magnet current, will not trigger a beam abort

through the powering interlocks at all. These cases are protected against by the application of Fast Magnet Current-Change Monitors (FMCMs) which supervise the operation of these critical magnets. A changing magnet current implies a changing magnet field, meaning that it is unsafe to allow beam to pass through the area. The Fast Magnet Current-Change Monitors can be configured to suit their application, either in the LHC or transfer lines from SPS to LHC.

2.3 Failure Scenarios

The design of the Machine Protection System described in the preceding pages has been based on extensive research that has revealed the key failure modes of the machine. Failure modes are classified by beam loss time constants. The failures that lead to the loss of beam in the shortest time are the most critical. The fastest of these failures relies on passive protection through collimation, the others must be caught by the Machine Protection System [58].

- 1. Ultra-Fast Losses could occur during a beam injection or extraction process. In these cases the beam is completely lost within $100\mu s$. A typical cause would be a badly set magnet current, resulting in the mis-steering of a beam. Correct settings and passive protection through collimators and beam absorbers protects against these types of failure.
- 2. Fast/Very Fast Losses are failures that drive the beam unstable within around ten turns of the machine. A typical cause could be a magnet quench. One of the worst case failures is a fault in the D1 separation magnet which is installed at two points in the LHC, in this case the beam becomes unstable within several turns. Beam Loss Monitors are designed to react to fast and very fast losses, giving sufficient time to abort the beam before the accelerator is damaged.
- 3. Slow Losses take many turns of the machine to develop, having beam loss timescales of at many milliseconds. Many elements of the Machine Protection System protect against these failures.

The response times of the MPS sub-systems are shown in Table 2.3 on the facing page, Figure 2.11 shows a graphical representation of these figures, organised by response time.

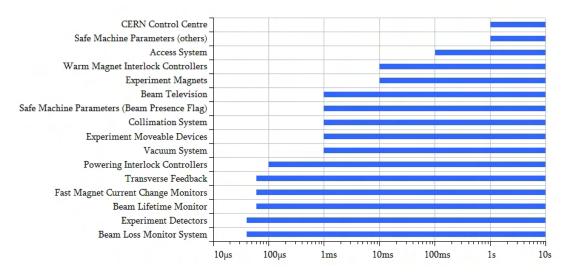


Figure 2.11: Response Times of Elements of the Machine Protection System

Only low intensity beam operation is foreseen during the first months of machine operation, this allows for a progressive installation of the less critical elements of the beam related Machine Protection System following the start of LHC operation.

2.3. FAILURE SCENARIOS

Cause of Interlock	beam losses outside of tolerances	beam loss in an experimental area outside of tolerances	lifetime of the beam is outside of tolerances	rate of change of critical magnet field is outside tolerances	bunch feedback shows bunches outside of tolerances	failure of superconducting magnet power converter	vacuum outside of tolerances, or valve not in safe position	experiment movable devices are not in safe position	collimator jaws are not in safe position	beam presence flag is inconsistent	other machine safety parameter is inconsistent	invasive beam diagnostic equipment is not in safe position	magnet failure in an experimental area	failure of normal conducting magnet or power converter	machine access violation endangering personnel	operator beam dump request	LHC Beam Dumping System is not ready to operate
Approximate Fastest Response Time	$40\mu s$	$40\mu s$	$60 - 180 \mu s$	$60\mu s$	$60 - 120 \mu s$	$100 \mu s$ - $1 m s$	1 - 10ms	1 - 10ms	1 - 10ms	1ms	1000 - 10000ms	1 - 10ms	10 - 100 ms	10 - 100 ms	100ms	1 - 10s	$60 - 180 \mu s$
System Name	Beam Loss Monitor System	Experiment Detectors	Beam Lifetime	Fast Magnet Current-Change Monitor	Transverse Feedback	Powering Interlock Controllers	Vacuum System	Experiment Movable Devices	Collimation System	Cofe I IIC Domonotome	Date LIIO F at attretes	Beam Television	Experiment Magnets	Warm Magnet Interlock Controllers	Access System	CERN Control Room (Operators)	LHC Beam Dumping System

Table 2.3: Response Times of User systems with Typical Causes

2.4 Dependability

The LHC is the first accelerator to have a protection system with a dependability specification, in practice the only accelerator related systems that must legally be analysed for dependability are those that involve personnel protection, but as the euro-value of accelerators and experiments grows, the loss of all or part of a machine could mean that the construction of a new particle accelerator of similar scale would be questionable. Dependable interlock systems have to be employed ensuring that the machine is fully protected from itself [59] [60].

Dependability is the term used to describe many aspects of safety engineering, the most commonly known terms which it encompasses are:

- Safety linked to the consequences of system failure.
- *Reliability* The continuity of system operation.
- Maintainability The ability of a system to be modified and repaired.
- Availability The readiness of a system for operation.
- Mean Time Between Failures (MTBF) or Failures in Time (FIT) A measure of the statistically predicted time between failures.
- Failure Modes The way in which a system fails.

The specification of the LHC Machine Protection System gives the dependability requirement in the form of a Safety Integrity Level (SIL). Four possible levels exist, from 1 to 4. SIL 4 is the most strenuous. These are defined by the IEC-61508 standard [61], which gives the following relationship between SIL and Mean Time Between Failures:

Safety	Probability of Dangerous Failure	Mean Time Between Unsafe Failures
Integrity Level	[per Hour]	[Years]
4	10^{-9} to 10^{-8}	≈ 23000
3	10^{-8} to 10^{-7}	≈ 2300
2	10^{-7} to 10^{-6}	≈ 230
1	10^{-6} to 10^{-5}	≈ 23

Table 2.4: Probabilities for Unsafe Failure Rates [62]

The SIL chosen for a specific system is determined from two properties of the unprotected system:

- 1. The expected frequency of failures
- 2. The consequences of these failures

Although the IEC 61508 bases the choice on events leading to the possible loss of human life, the consequences of failure in the case of the LHC are counted financially and in terms of efficiency. Consequences are split into four categories: catastrophic, critical, marginal and negligible.

- Catastrophic consequences of LHC protection system failure could be damage or destruction of several collimators and possibly many superconducting magnets. In these cases the cost of repair would start from many tens of millions of Swiss Francs, leading to many months of downtime, it could be argued that if a large proportion of the machine is damaged then the cost of rebuilding the LHC would be prohibitive. Without proper protection it's considered a catastrophic failure would feasibly occur in the twenty-year lifetime of the LHC, this is based on experience from other accelerators such as SPS [45], HERA [46] and Tevatron [47] that have all had failures that would probably be catastrophic if scaled up to the LHC [63].
- Critical consequences of failure could be the destruction of one or more LHC superconducting dipole magnets, costing several million Swiss Francs and leaving the machine inoperable for several weeks. It's considered that a critical failure would occur at least once per year without the LHC protection system [64].

2.4. DEPENDABILITY

- Marginal consequences are events such as destruction of collimator jaws. Several hundred thousand Swiss Francs would need to be invested to replace the jaw, with a downtime of around two weeks [65].
- Other failures with less impact are considered **negligible** these do not necessarily result in costly damage to equipment but almost certainly result in reduced efficiency through loss of beam physics.

The expected frequency of these four categories of failures is used to derive the SIL requirement of the Machine Protection System. The look up table in IEC-61508 is shown in Table 2.5.

Frequency	por voor	Consequence					
Frequency	per year	Catastrophic	Critical	Marginal	Negligible		
Frequent	1	SIL4	SIL3	SIL3	SIL2		
Probable	0.1	SIL3	SIL3	SIL3	SIL2		
Occasional	0.01	SIL3	SIL3	SIL2	SIL1		
Remote	0.001	SIL3	SIL2	SIL2	SIL1		
Improbable	0.0001	SIL3	SIL2	SIL1	SIL1		
Not Credible	0.00001	SIL2	SIL1	SIL1	SIL1		
cost [Million	s of CHF]	>50	1-50	0.1-1	0-0.1		
downt	downtime [days]		20-180	3-20	0-3		

Table 2.5: SIL Requirements after Risk Classification[66] [67]

The determining factor in the safety specification is the prevention of catastrophic failure, leading to SIL 3 for the dependability specification, highlighted in <u>blue</u> in Table 2.5. This was chosen as a realistically attainable safety making the chances of unsafe failure As Low As Reasonably Possible (ALARP), with development costs and time in proportion to the whole machine.

A single 10 hour operation of the LHC is referred to as a **mission**, some 400 missions per year are expected, a SIL 3 Machine Protection System has less than a 1% chance of failure in the 8000 missions that are expected in the 20 year lifetime of the LHC.

2.4.1 Realising the Safety Specification

Realising the SIL 3 requirements of the LHC Machine Protection System could be interpreted to mean that every sub-system of the LHC Machine Protection System would need to be much safer than SIL 3 to result in a combined safety that meets the specification. In fact this is not true, as Figure 2.11 on page 24 shows that in almost every case there is a combination of sub-systems that will detect a fault, and only one of these needs to react to the fault and trigger a beam abort.

The fundamental principle of the beam related protection is that every failure of the machine leads to beam losses, either directly or indirectly. A minimalistic approach considers that fast beam losses will be detected by the Beam Loss Monitors with slower losses also being detected by the Quench Protection System which will trigger a beam abort via the Powering Interlock Controllers. This beam abort request must be correctly actioned by the Beam Interlock System and the LHC Beam Dumping System in order for the Machine Protection System to have correctly functioned [68].

Figure 2.12 on the next page shows the critical transmission paths from failure to beam abort, it is this section of the machine protection system that must be SIL 3. The Access System and dedicated Beam Loss Monitor that are connected directly to the Beam Dumping System do not form part of the calculations for the safety of the Machine Protection System.

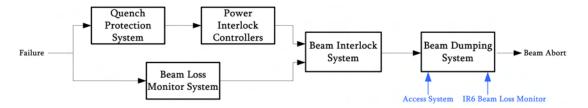


Figure 2.12: Cross Redundancy Following a Failure, adapted from [68]

2.4.2 Beam Interlock System Dependability Requirements

One of the key aspects of a safety control-system is determinism, whereby a system will react in a predictable way to a given situation. This simple statement rules out a lot of design ideas, such as Fuzzy Logic or any kind of Neural or Learning Machine, that could otherwise be feasibly implemented for control purposes. Safety design starts at the lowest level of the system and a basic choice must be made concerning a trade off between choice of technology, operating speed and inherent safety.

Technology	Reactio	on Time	Inheren	t Safety
Microprocessor (μP)	$\approx ns$	Faster	Low	Worse
Programmable Logic Device (PLD)	$\approx \mu s$	↑	High	\downarrow
Programmable Logic Controller (PLC)	pprox ms	Slower	Highest	Better

Table 2.6: Hardware Implementation versus Speed of Response versus Inherent Safety

There are three different technologies that are widely used for safety-critical control systems, each has a different fundamental operating speed and inherent safety, these are compared in Table 2.6.

Microprocessor systems are inherently fast, with typical processing times in the order of a few nanoseconds, however, the inherent use of software to control the process leads to unsafety. Accelerators for hadron therapy are a good example of microprocessors in use, to achieve safety, operators are given a clear graphical interface usually running on a computer platform while a PLC runs in parallel, interlocking the machine if a dangerous situations arises [69].

So why is software so bad for safety? Well, since software is pure design there is no need to worry about the random wearout failures found in physical devices, which is a plus, but system behaviour can be significantly affected by software design errors [70]. Software can never be perfect, even specialised software only claims to reduce errors to one in every 10000 lines [71], a study by the British Royal Signals and Radar Establishment used commercial tools to determine the number of errors in software written for some highly safety-critical systems [72]. Up to 10% of the program modules or individual functions were shown to deviate from specification in one or more modes of operation.

A **Programmable Logic Device**, such as a CPLD or Field Programmable Gate Array (FPGA) is a small integrated circuit that can be programmed to perform desired electronic functions. This 'programming' physically creates a circuit inside the device which can represent anything from a microprocessor to simple discrete logic. The final implementation can be almost completely verified by exploiting JTAG and for simpler circuits end-to-end functional testing is possible [73] [74]. More complicated circuits, such as microprocessors, exhibit all the problems associated with software, but PLDs programmed with simple functions have a high inherent safety. PLDs are widely used in other HEP Interlock Systems, such as the BESSY and LNLS personnel interlocks and the RF station interlock of the European X-Ray Laser [75] [76] [77].

Programmable Logic Controllers are the safest of all implementations shown here if specific safety related devices are used. These have redundant architectures and reduced instruction sets and are purpose built for use in safety critical situations. PLCs in general are used in slow control systems, having a simple function carried out by a robust and deterministic controller, leading to a very safe yet somewhat slow control system.

Combining all these discussions as well as the specification of the Beam Interlock System [78] leads to the following criteria for the realisation of the Beam Interlock System.

2.4. DEPENDABILITY

- 1. Low-level hardware design, Programmable Logic Device (PLD) basis.
- 2. Reaction time in LHC $< 100 \mu s$.
- 3. Meeting at least Safety Integrity Level 3.
- 4. Less than 1% all missions should be prematurely aborted due to failure of the system.

A simple diagram with probability of failure during a single 10 hour mission is shown in Figure 2.13, it assumes that only one failure can occur at a time.

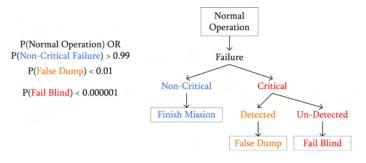


Figure 2.13: Specified Probability of Beam Interlock System Failure Modes

Realising these key points is the fundamental challenge of the design of the Beam Interlock System, the specification of SIL 3 is particularly challenging to meet. The following chapter introduces the Beam Interlock System in more detail, describing its design and conception as a dependable communications system for the beam related Machine Protection Systems of the CERN high energy accelerators.

Chapter 3

Beam Interlock System Introduction

The Beam Interlock System forms the backbone of the Machine Protection Systems installed in the CERN accelerator complex. Each system takes USER_PERMIT signals given by various User Systems and converts them into BEAM_PERMIT signals used by the injection, extraction and beam dumping systems to permit or inhibit beam operation. In the circular accelerators a transition from beam permit to beam inhibit causes the circulating beam to be extracted from the machine and dumped in a purpose built dissipation block.

Altogether there are seven applications in the CERN accelerator complex, all of which must be installed and commissioned before the LHC can start high intensity beam operation. The system is a generic solution to the interlocking requirements existing throughout CERN high energy accelerators. Two different architectures can be used to meet the requirements of different areas of the complex.

- 1. Ring protecting the circular SPS and LHC machines.
- 2. Tree protecting the extraction and injection systems.

Beam Interlock System	System Using BEAM_PERMIT	Architecture
LHC beam-1	LHC Beam-1 Dumping System	Ring
LHC beam-2	LHC Beam-2 Dumping System	Ring
SPS	SPS Beam Dumping System	Ring
LHC beam-1 injection	LHC beam-1 injection kicker	Tree
LHC beam-2 injection	LHC beam-2 injection kicker	Tree
SPS BA4 extraction	SPS BA4 extraction kicker	Tree
SPS BA6 extraction	SPS BA6 extraction kicker	Tree

Table 3.1: Beam Interlock Systems in the CERN Accelerator Complex

Throughout the development of the Beam Interlock System the SPS has been used to test prototype and preseries ring architectures, with SPS BA4 extraction being used to test the tree architectures. In both cases the same basic Beam Interlock System is used, the tree system is formed by being connecting the components of the system together in a slightly different way.

It's important to understand that with the advent of each new accelerator, protection and control systems are enhanced and upgraded from existing designs, only in very rare cases is it necessary to introduce a completely new concept. 'Design evolution, not revolution' is a good way to describe the development of the LHC Machine Protection System. The Beam Interlock System is no exception to this rule, research and development was started in around 2002 with the initial concept based on systems in operation in other CERN accelerators and other High-Energy Physics laboratories [48].

This thesis is centred on the work carried out between **early 2004 and late 2006**, taking the prototype systems first created as a basis, enhancing and expanding them to meet the full Beam

Interlock System specification. The final installation date of the interlock systems is Autumn 2007, to be commissioned in time for the first injections of beam into the LHC scheduled later that year.

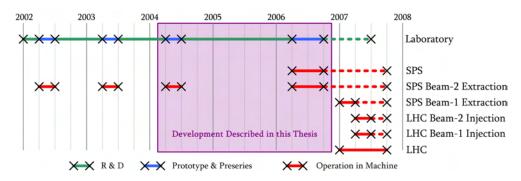


Figure 3.1: Research, Development, Prototyping and Installation Schedule of the BIS

The various components of the Beam Interlock System are referred to by pseudonym, this starts with **CIB** meaning **C**ontrols-Interlocks-Beam, up to two letters are appended to distinguish the various subsystems. The key subsystems are described in this chapter, their definitions can also be found in the glossary at the end of this thesis.

3.1 Reaction Time

One of the most strenuous specifications of the Beam Interlock System is the response time, the previous chapter has already shown that the LHC stored beam energy is more than capable of destroying the machine. A failure or bad setting can lead to the beam in the LHC becoming dangerous after only a few turns of the machine. A single turn takes around $90\mu s$, meaning that fast failures must be detected and reacted to within just hundreds of microseconds. Figure 3.2 shows the reaction time of the Machine Protection System that is required in order to protect the LHC machine from fast and very fast losses.

- t_0 : A fault or dangerous situation arises, that could result in damage to the machine.
- t_1 : A User System reacts to the fault, informing the Beam Interlock System by setting USER_PERMIT to FALSE.
- t_2 : The Beam Interlock System informs the beam dumping system, by setting BEAM_PERMIT to FALSE.
- t_3 : The Beam Abort begins, a maximum of $90\mu s$ after the change in BEAM_PERMIT, whilst the beam dumping system waits for the beam abort gap.
- t_4 : The Beam Abort is completed after one full turn.

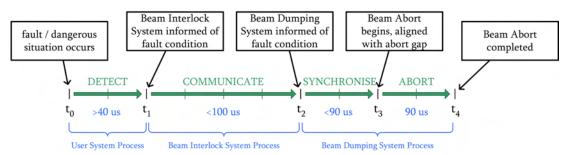


Figure 3.2: A Breakdown of the MPS Reaction Time

The Machine Protection Systems require a Beam Interlock System that can transmit a Beam Abort request to the beam dumping systems within $100\mu s$ of a failure from any point around the machine. The Beam Interlock System is essentially a high-speed, highly dependable, distributed communications system. In the LHC there will be less than two turns delay between USER_PERMIT becoming FALSE and the appropriate BEAM_PERMIT being detected as FALSE

by the relevant beam dumping system. A Beam Interlock System that meets the LHC specification can be safely applied to any of the other implementations. In principle this means that the LHC is used as the basis for the system realisation.

The following sections briefly review the realisation of the LHC system using a ring architecture, Chapter 4 explains the realisation of the Beam Interlock System in detail, including the steps taken to accommodate the tree architecture.

3.2 Beam-1, Beam-2 and Both-Beam Interlocking in the LHC

The LHC has two counter rotating beams, beam-1 travelling clockwise, and beam-2 anti-clockwise. This means that LHC has two beam dumping systems, and two Beam Interlock Systems, one for each beam. If a fault occurs in a beam-1 system then strictly speaking the beam-2 dumping system need not be activated, so the two systems operate independently. The dumping systems are completely independent, each receiving a unique BEAM_PERMIT signal. The critical function of the Beam Interlock System is to provide the relevant beam dumping system with BEAM_PERMIT TRUE only when all relevant USER_PERMIT signals are TRUE.

User Systems can either act on both LHC beams **simultaneously**, or each LHC beam **independently**. The Beam Interlock System provides connections to accommodate different User Systems, ensuring that the correct LHC beam or beams are interlocked, this creates a simple architecture as shown in Figure 3.3.

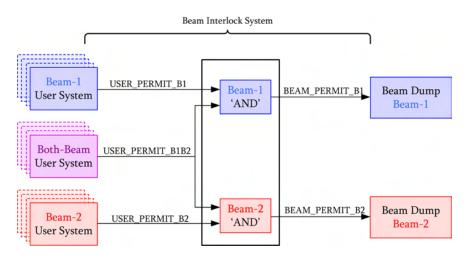


Figure 3.3: Beam-1, Beam-2 and Both-Beam Interface to the Beam Interlock System

A simple colour scheme has been employed to help identify the various sub-systems. Those relating to beam-1 are blue, having signals are appended with _B1, sub-systems that relate to beam-2 are red, signals are appended with _B2, those signals relating to both-beams are purple, being appended with _B1B2. In the cases where only a single beam is present, such as the SPS, the sub-systems are usually purple, with signals having no appendage, as no differentiation between beams is needed.

3.3 Architecture of the LHC Beam Interlock System

The architecture of the LHC Beam Interlock System is closely tailored to the geographical layout of the LHC Machine. The LHC Beam Dumping System is situated in Insertion Region 6 (IR6), and the Machine Protection System is distributed around the whole circumference of the LHC, it follows that the LHC Beam Interlock System has sixteen Beam Interlock Controllers (BICs) per beam. Each acts as a local concentrator, the controllers are distributed around the machine, one installed to the left and one to the right of each Insertion Region.

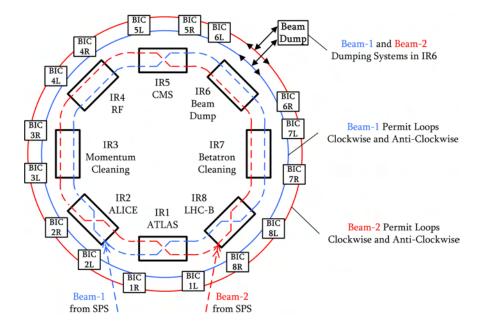


Figure 3.4: LHC Layout with Permit Loops and Controllers and Dumping Systems (not to scale)

Beam permit loops link the controllers with the beam dumping system, the key points of the LHC Beam Interlock System are shown on Figure 3.4 with respect to the machine itself, the dashed red and blue lines in the centre represent the beam passage, with the solid red and blue lines indicating the beam permit loops. The beam-1 and beam-2 dumping systems shown in the upper right hand corner.

3.3.1 Beam Permit Loops

Beam permit loops start at Insertion Region 6, travelling around the machine passing through each controller in turn. These loops are optical, minimising the propagation delay as signals can travel at almost the speed of light. Furthermore, two loops are used for each BEAM_PERMIT, one each in a clockwise and anti-clockwise path, these are labelled _A for anticlockwise, and _B for clockwise. Having two counter-rotating loops means that the BEAM_PERMIT signal always takes the shortest path back to the beam dumping system, giving the optimum response time. There are four beam permit loops altogether, two each for beam-1 and beam-2.

The principle of the beam permit loop is very simple, a generator is implemented that transmits a frequency which passes through each controller in turn. Each controller creates a LOCAL_BEAM_PERMIT signal which evaluates to TRUE when all the connected User Systems have USER_PERMIT TRUE. LOCAL_BEAM_PERMIT is used to control a switch on the beam permit loop, the switch is closed when the signal is TRUE. In this way, having a frequency at the end of the loop means that all LOCAL_BEAM_PERMIT signals are TRUE and hence the relevant BEAM_PERMIT can also be considered as TRUE. A detector is embedded in the beam dumping system which monitors the permit loop and determines the logical value of BEAM_PERMIT. A transition from TRUE to FALSE initiates a beam dump.

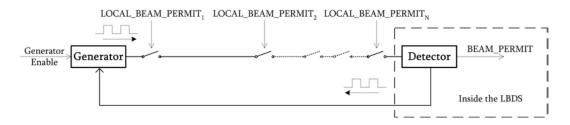


Figure 3.5: Generator and Detector Principle for the BEAM_PERMIT signal

In the ring interlock systems the generation of frequency is conditional on the presence of frequency at the end of the loop, this is referred to as 'closed-loop' operation. In this case once the

loop is broken the frequency is no longer generated. The tree interlock systems have 'open-loop' operation, relaxing the constraints for arming and disarming of the permit loop.

Figure 3.6 shows the implementation of a pair of beam permit loops, carrying the BEAM_PERMIT signals _A and_B for LHC beam-2.

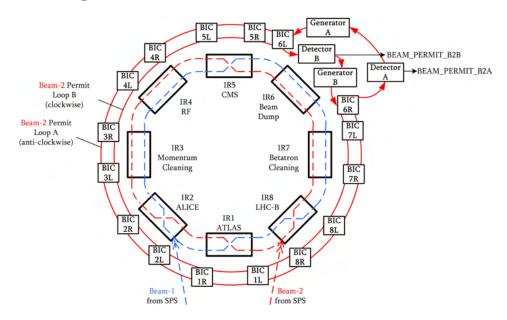


Figure 3.6: Beam Permit Loops for LHC Beam-2

The permit loop is not a new idea, the principles and implementation are heavily based on systems designed and implemented in other accelerators. A very early example of frequency being used for a safety critical system is in the PEP personnel protection system at SLAC; in the late 70's 'tone-loops' were implemented, highly synonymous to the permit loops of the LHC [79]. Similarly, in the 80's Ducar at Fermilab implemented a 'permit link' with 'permit concentrators' and 'permit generators', the same system was adapted and carried over for the Tevatron and NuMI at Fermilab [80]. In the 90's Conkling at Brookhaven National Laboratory (BNL) used Ducar's work as the basis for their safety interlocks [81]. The initial proposals for the Beam Interlock System included beam permit loops based on the Brookhaven design [82]. Clearly the LHC beam permit loop is an example of system evolution rather than revolution in accelerator controls.

Generally, the use of a frequency to describe a logic level is considered to be almost entirely fail-safe, almost every failure results in the link becoming stuck at one of the logic levels or oscillating at a different frequency than that which represents BEAM_PERMIT TRUE. It is regarded as a sound implementation for highly critical status signals. This statement is justified by the dependability analysis of the beam permit loops and optical components that has been carried out, where failures of beam permit loop components have been quantified and their impact on the system safety have been shown to be acceptable.

3.3.2 Beam Interlock Controllers (BICs)

The Beam Interlock Controllers (BICs) take USER_PERMIT signals from up to fourteen User Systems and generate a LOCAL_BEAM_PERMIT which is TRUE only when all the User Systems connected to the controller can be considered as ready for beam. The sixteen distributed controllers in the LHC can accommodate over 200 User System inputs. Not all of these channels are used, a current list of all LHC User Systems and their connections can be found in Appendix C.

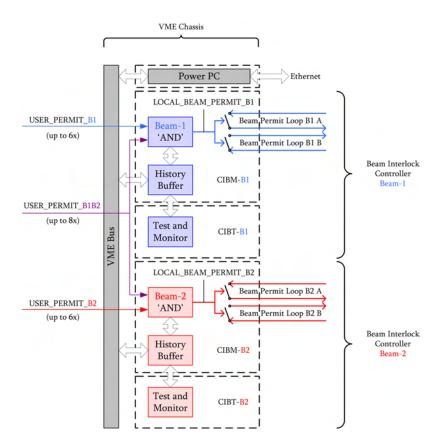


Figure 3.7: Simple Block Diagram of a pair of LHC Beam Interlock Controllers

The controller is embedded in a Versa Module Europa (VME) chassis, which is a CERN standard front-end. This provides remote access via a Power PC and ethernet. A single VME chassis has been enhanced to house a pair of controllers, one for LHC beam-1 and the other for beam-2. In other parts of the CERN accelerator complex, where only a single beam is to be interlocked, the VME chassis can be configured to implement two controllers operating independently. The implementation of two controllers in a single chassis reduces the cost of the system considerably, as each VME chassis with dual power supply costs almost 10,000 CHF [83].

The key components of a controller are two VME boards; a Manager and Test & Monitor board.

The Manager (CIBM), performs the critical operation of 'AND'-ing the USER_PERMIT signals to create LOCAL_BEAM_PERMIT it also records a history of changes in a history buffer which is synchronised to the General Machine Timing (GMT). This logs all events to $1\mu s$ precision. The Manager has an interface to the VME bus, and can be remotely interrogated and configured via an ethernet link through a Power PC embedded in the VME chassis.

The **Test & Monitor (CIBT)**, performs the non-critical operations of supervising the distributed sections of the controller and initialising test routines, acting as a relay between the Manager and the distributed components of the Beam Interlock System. communications takes place over dedicated full-duplex serial links, without software and without hardware flow control. The Test & Monitor board has no need for a VME interface or the associated software drivers and protocols for operation.

The Manager is the only remotely accessed hardware of the controller, Figure 3.7 shows the basic block diagram of the LHC VME chassis, including two controllers, one for beam-1 and the other for beam-2.

3.3.3 Expanding the Manager (CIBM)

The key component of the Manager is an AND-gate used to derive LOCAL_BEAM_PERMIT from the fourteen USER_PERMIT signals. This AND gate analogy is slightly misleading, the function

is more complex, implemented within a small Complex Programmable Logic Device (CPLD) referred to as a matrix.

The matrix has four features that extend its functionality beyond the simple AND structure:

- 1. A Software Interlock Input Allowing for more complicated interlocking criteria to be established, the SOFTWARE_PERMIT can be set and reset via the ethernet connection.
- 2. A Safe Beam Flag This SAFE_BEAM_FLAG is provided by the Safe Machine Parameters System (SMP), it allows a certain section of the USER_PERMIT signals to be ignored (MASKED) when the SAFE_BEAM_FLAG is TRUE. This indicates that the energy and intensity of the beam in the LHC machine is below damage thresholds for the LHC components. The maskable versus un-maskable partition is permanently defined in hardware.
- 3. Glitch Filters That remove any spurious changes in the USER_PERMIT signal having a duration of less than around $2\mu s$. This increases the availability of the system by removing transient effects that could otherwise cause false beam dumps. A record of glitches is maintained in the Manager.
- 4. Latching Outputs In the LHC version of the Manager, the LOCAL_BEAM_PERMIT signal latches when it transitions TRUE to FALSE. This means that it has to be rearmed after each activation, ensuring that the post-mortem process is carried out and that intervention is required before the machine may begin a new mission.

It may be subject to debate whether the implementation of the matrix function in small CPLD having a form of VHDL 'program' should constitute software. In fact the matrix CPLD is a small digital circuit operating in a robust and deterministic manner, the VHDL defines the circuit operation, essentially describing hardware. In principle, the CPLD replaces many discrete 7400 type devices that would be capable of implementing the same function.

3.4 Connecting to the User Systems

The USER_PERMIT signals given to the matrix originate in User Systems distributed around the machine. These are based on many different types of hardware platform, ranging from slow acting PLCs with operational at 24V to faster VME type systems with only 5V operation. To accommodate these different systems, a homogeneous **User Interface (CIBU)** has been designed that uses current loops as inputs. The logic levels of these current loops are read, conditioned and converted to differential RS485 using simple fail-safe techniques.

3.4.1 Making a Fail-Safe RS485 Link

Two types of RS485 transmission are implemented in the Beam Interlock System. Flags, which are sent as DC signals and data, sent as Manchester encoded frames. The transceiver chosen for the implementation of these links is the MAX3440E from Maxim, this is slew-rate limited, with 'true fail-safe', so when a fault condition arises it behaves in a deterministic way, with a guaranteed output level. Shielded twisted pair cable, coupled with slew-rate-limited transmissions and bi-directional termination is used to maintain signal integrity. Links passing outside of the closed space of the controller are completely protected with Transient Voltage Suppressor diodes (TVS). Chapter 4 details the Electro-Magnetic Compatibility (EMC) and signal integrity analysis that has been carried out on the differential links. The circuit used is shown in Figure 3.8 on the next page, R_T being approximately equal to the Z_O of the interconnection.

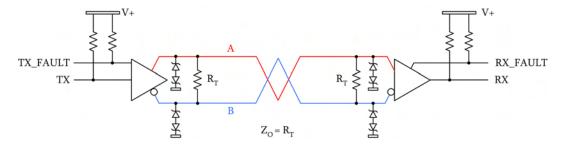


Figure 3.8: Fail Safe RS485 Link Implementation

To implement the link in a safe manner RX and RX_FAULT both have to be considered. A typical example for the transmission of USER_PERMIT is shown in Table 3.2, note that the critical signals are programmed active low as failures lead to a logic '1' output. TX_FAULT could also be considered for link diagnosis, but in most cases its operation is identical to RX_FAULT. The increased complication of remote read-back, resynchronisation and real-time comparison of TX_FAULT is largely unjustified.

Differential Voltage	Common Mode Voltage	RX	RX_FAULT	USER_PERMIT
[Volts]	[Volts]	[Logic Level]	[Logic Level]	[Boolean]
x	> 12	1	1	FALSE
≥ 0.45		1	0	FALSE
0.27 to 0.45		1	?	FALSE
-0.05 to 0.27		1	1	FALSE
-0.20 to -0.05	< -7 and > 12	?	1	FALSE
-0.27 to -0.20		0	1	FALSE
-0.45 to -0.27		0	?	?
≤ -0.45		0	0	TRUE
x	< -7	1	1	FALSE

Table 3.2: RX_FAULT and RX of the MAX3440E Transceiver [84]

A '?' in the table represents a condition that could lead to an output oscillating, an 'x' is a don't care state. There are also several further comparisons built into the MAX3440E transceiver which lead to RX_FAULT and RX failing-safe to logic '1':

- Either A or B (or both A and B) shorted to a Voltage between 7 and 12 Volts
- Either A or B (or both A and B) open circuit
- Either A or B (or both A and B) less than 7 or greater than 12 Volts
- A shorted to B

Combining these characteristics, and correctly selecting the transmission polarity of a signal means that the RS485 links can be guaranteed to fail safe. The Beam Interlock System is not the first project to use RS485 communications, it's extensively used at CERN in the machine timing and field busses exploited by PLC systems [85]. Other Machine Protection Systems, such as those found at BSRF and TRISTAN are heavily based on the use of RS485 differential signalling [86] [87]. It has to be noted that Electro-Magnetic Compatibility has been addressed at a fundamental level as RS485 is highly immune to external effects, using slew-rate limited transmitters and effective cable shielding has ensured that the Beam Interlock System is not a source of perturbation for neighbouring systems. Appendix A describes the results of comparisons of RS485 to other transmission techniques that were considered during the initial stages of the system design.

3.4.2 BEAM_PERMIT_INFO

In addition to giving a USER_PERMIT signal, the User Systems are supplied with a BEAM_PERMIT_INFO signal from the Beam Interlock Controller. This signal evaluates to TRUE when the BEAM_PERMIT signals _A and _B are both TRUE for the relevant beam. BEAM_PERMIT_INFO is derived by carrying out a local detection of the beam permit loop

Beam-1	Beam-2	Beam-1	Beam-2	Both-Beam
PERMIT_A 'AND' _B	PERMIT_A 'AND' _B	_INFO	_INFO	_INFO
FALSE	FALSE	FALSE	FALSE	FALSE
FALSE	TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	TRUE	FALSE	TRUE
TRUE	TRUE	TRUE	TRUE	TRUE

frequencies in each controller. The BEAM_PERMIT signal is a logical 'OR' of the BEAM_PERMIT signals for beam-1 and beam-2 in the case of the both-beam systems.

Table 3.3: Truth Table for the BEAM_PERMIT_INFO signals

The frequency detection used to create the BEAM_PERMIT_INFO does not need to be fast, or excessively accurate. Detecting the loop frequency $\pm 10\%$ with a response time of some 100's of μs is more than acceptable. As its name suggests BEAM_PERMIT_INFO is NOT a safety critical signal. The main purpose it serves is for information only. For example, some User Systems check to ensure that the BEAM_PERMIT_INFO is FALSE before running self test programs. Above all, it is not used to drive a control process directly related to the safe operation of the machine.

3.4.3 Redundant USER_PERMITs

Studies presented in Section 4.8 show that a simple system does not meet the safety requirements specified for the Beam Interlock System. Continuing the redundancy that is already present in the beam permit loops throughout the system to the USER_PERMIT signals improves the safety of the system to reach the specified Safety Integrity Level. Expanding Figure 3.3 on page 33 to show these signals leads to Figure 3.9.

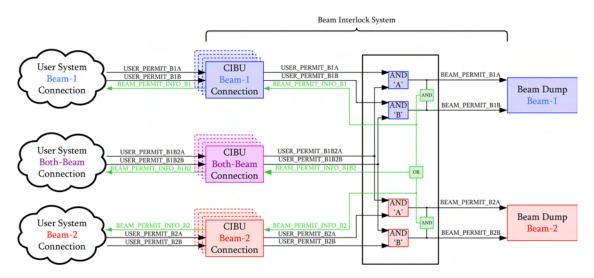


Figure 3.9: Redundant Critical Paths and Non-Critical BEAM_PERMIT_INFO

The USER_PERMIT, LOCAL_BEAM_PERMIT and BEAM_PERMIT signals are the only signals that are safety-critical during the operation of the machine as failures in other signals cannot lead to a dangerous state of operation.

3.4.4 The User Interface (CIBU)

The User Interface is a discrete hardware unit, translating the USER_PERMIT current loops driven by User Systems into RS485 signals. BEAM_PERMIT_INFO is returned to the User System through a transistor which allows a simple current or logic interface to be realised in the User System. The User Interface is relatively simple, an expanded block diagram is shown in Figure 3.10 on the next page.

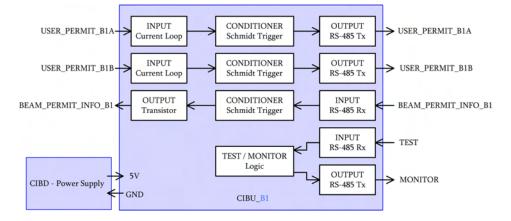


Figure 3.10: Simple Block Diagram of the User Interface Hardware

A full duplex serial connection called TEST and MONITOR is implemented, allowing the User Interface to be remotely monitored and tested As Good As New (AGAN) before each mission. Also shown in the diagram is a dedicated **DC supply (CIBD)** which is installed in each Interface.

3.4.5 Accommodating Simultaneous and Independent LHC User Systems

In almost every case the User Systems interlocking the two LHC beams independently do so from the same geographic location, and in most cases from the same electronic hardware. This has been exploited to make the User Interface more effective with a single mechanical hardware capable of containing two sets of the Interface electronics. The units that provide a double connection are called CIBUD, those that provide a single are called CIBUS. In the cases where there is only a single beam to be interlocked a Single-Interface is used, User Systems that interlock the LHC beams independently are given a Double-Interface allowing both connections to be made through a single hardware unit. Figure 3.11 goes some way to explaining this:

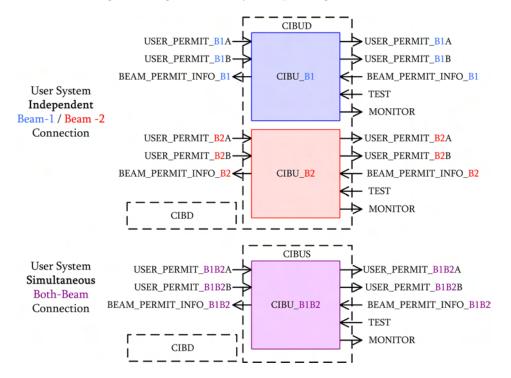


Figure 3.11: The Two Variants of the User Interface

Socket and connector coding has been used to ensure that the connections for beam-1 and beam-2

cannot be reversed in the Double-Interface, Appendix E shows the variations.

3.5 Meeting the Dependability Requirements

The dual-use components, such as the SPS VME chassis and Double-Interface are very successful in making a system more reliable, but in fact have a negligible effect on safety. To reach required safety level studies have shown that that the system had to be doubled, with redundant paths used for all the USER_PERMIT signals.

Section 2.4.1 laid out the dependability specification of the Beam Interlock System, interpreting the figures shown there leads to the following description.

The Beam Interlock System must react to a single change in USER_PERMIT by correctly actioning the relevant BEAM_PERMIT with a safety better than or equal to Safety Integrity Level 3. Less than 1% of missions must be aborted due to failures in the Beam Interlock System.

Studies have shown that the system mathematically meets this specification. In meeting the safety requirements the system becomes much more complex, and hence less reliable. Trade off in failure modes has been made, making the system more available, the system statistically meets the requirement of less than four false beam dumps per year.

It is important to understand why one cannot say that the system *will* meet the specification, this is because of the methods used in reliability prediction. One can never be absolutely sure of a component failure rate, or failure mode. Mathematical models and high-temperature tests are used to form a statistical prediction concerning the operation of the system. Hence, one can only say that mathematically, or statistically, the system should match the prescribed requirements.

The discussion relating to the system safety design and the predicted failure rates and modes is presented in Section 4.8.

3.6 Supervision of the Beam Interlock System

The Beam Interlock System is crucial for operation, being ultimately responsible for permitting machine operation with beam. LHC operators are expected to know the basic operation of the Beam Interlock System, but are not expected to understand the internal workings, whereas machine interlock experts need to be able to also visualise the low-level internal operation of the system. The critical functions of the Beam Interlock System are implemented in pure hardware, completely free of software. However, software is needed for the supervision of the systems. The supervision is split into two sections following the requirements of the operations team and interlock experts.

- 1. **Operator Screens** showing the basic function of the Beam Interlock Systems from a purely operational point of view.
- 2. **Specialist Screens** showing all the details of the system operation, from the user to system levels.

There are three key aspects to the supervision, related to the operational timescale:

- 1. **Before Operation** before the machines are to be operated with beam it must be possible to test, commission and verify the complete operation of the systems. Detailed hardware processes have been implemented to provide complete testing. These processes need to be triggered by user-friendly software that allows quick and concise testing, with rapid diagnosis of any problems that may exist.
- 2. **During Operation** when the machines are being operated it must be possible to verify that the critical paths of the Beam Interlock System are operating correctly. This includes the extraction zones that require detailed views of processes that last just some milliseconds. It must also be possible to rapidly observe and diagnose any sections that may be experiencing problems, such redundant power supply statuses or errors in serialised communications channels.

3. After Operation - once a failure has been observed and the beam has been dumped or a beam transfer has been inhibited it must be possible to interrogate the Beam Interlock System to determine the reason for the missing kick or beam dump. The Beam Interlock System acts as the first point of call concerning this so-called Post Mortem of the machines. This is especially important in the LHC, where each and every beam abort must be fully analysed to ensure that the safety of the machine has not been compromised.

All of these functions are undertaken by a dedicated software, the CERN Neutrinos to Gran Sasso project has allowed prototype supervision screens to be developed, showing an overview of the global SPS machine operation, and the function of each Beam Interlock Controller installed in the SPS and the CNGS systems.

Chapter 4

Beam Interlock System Realisation

This chapter describes the design and realisation of the Beam Interlock System. A generic system has been designed, capable of meeting the requirements of all four parts of the CERN accelerator complex that require a Beam Interlock System.

- 1. The LHC ring
- 2. The SPS ring
- 3. LHC injection
- 4. SPS extraction

The LHC has two counter-rotating beams, it can be considered that these are protected by individual interlock systems. Equally the two SPS extraction zones and two LHC injection zones each have Beam Interlock Systems. In total the CERN accelerator complex can be considered to have seven systems, as shown in Figure 4.1 on the next page, the direction of beam travel is marked by the arrows on this figure. The LHC shown in green has two interlock systems, one for beam-1, the other for beam-2. A generic Beam Interlock System refers to these systems that are protecting the LHC, which are used as the specification of the Beam Interlock System as they have the safety and time constraints that are the hardest to meet. Any system that satisfies the requirements of the LHC Machine Protection System can be applied to any part of the CERN accelerator complex.

The LHC beam is accelerated in first the PS then the SPS accelerators before finally being transferred to the LHC. Beam energy and intensity reaches damage thresholds in the SPS accelerator, from this moment a Beam Interlock System is required to protect the machines. In principle the seven Beam Interlock Systems are discrete, each having their own inputs and outputs. Part of the fundamental requirement of the Machine Protection System is that a beam transfer process is interlocked against transferring a beam into part of the complex that is not ready. To meet this requirement the BEAM_PERMIT of the destination machine can used as an input to the source machine's interlock system, chaining together the interlock systems at a hardware level for protection during beam transfers.

Figure 4.2 on the following page shows a typical feedback where LHC BEAM_PERMIT is used as an input to the injection interlock systems. Injection permit is also an input to the extraction interlock. The extraction system will not give an extraction enable window if the LHC is not ready for beam, ensuring that beam transfer is made in a safe, reliable and deterministic way.

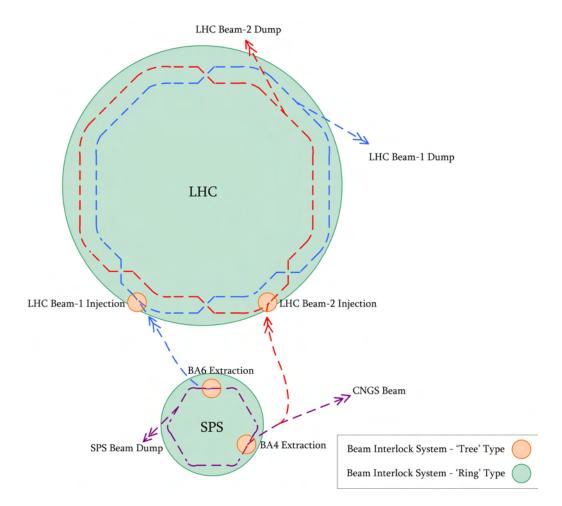


Figure 4.1: Part of the CERN Accelerator Complex and Associated Beam Interlock Systems

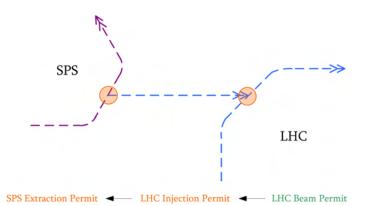


Figure 4.2: Feedback of Beam Permit from Destination to Source Equipment

Ring and Tree Structures

To serve all the requirements, there are two different hierarchies that can be implemented for the Beam Interlock System. A **ring** architecture is used in the LHC and SPS rings, whereas a **tree** architecture is used in the extraction and injection zones. Fundamentally the sub-components of the Beam Interlock System have been designed to accommodate these without modification, simply connecting the system components together differently creates the different architectures.

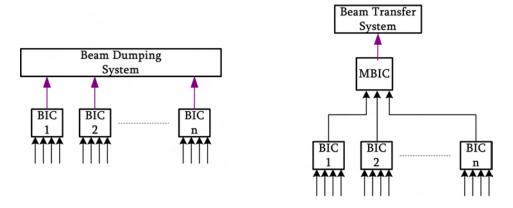


Figure 4.3: Ring Versus Tree Architectures of the Beam Interlock System

The Beam Interlock System indicates to User Systems whether BEAM_PERMIT is TRUE or FALSE with the signal BEAM_PERMIT_INFO. This is generally used to inhibit test modes and to ensure that User Systems are in the correct operational mode, this is not a critical safety function of the Beam Interlock System. In the **tree** structures the extraction and injection windows BEAM_PERMIT is TRUE for only some milliseconds, in these cases BEAM_PERMIT_INFO has little real value, and is not required for the operation of the User Systems. Table 4.1 shows the architectures of the different interlock systems, with the length of time that BEAM_PERMIT will be asserted and whether BEAM_PERMIT_INFO is needed in each implementation of the Beam Interlock System.

Beam Interlock System	BEAM_PERMIT Active Time	BEAM_PERMIT_INFO Needed	Architecture
LHC Beam-1	10 hours	Yes	Ring
LHC Beam-2	10 hours	Yes	Ring
SPS Ring	< 1 minute	Yes	Ring
LHC Beam-1 Injection	< 20 milliseconds	No	Tree
LHC Beam-2 Injection	< 20 milliseconds	No	Tree
SPS BA4 Extraction	< 20 milliseconds	No	Tree
SPS BA6 Extraction	< 20 milliseconds	No	Tree

Table 4.1: BEAM_PERMIT and BEAM_PERMIT_INFO in the CERN Accelerator Complex

The ring and tree architectures accommodate all of the interlocking requirements. They operate in almost the same way, however there is one subtle difference: In the ring architecture every user must be ready before beam operation is allowed, this is not the case in the tree architecture where a Master Beam Interlock Controller (MBIC) can be used meaning that only a sub-set of users need to be ready for beam in order to give BEAM_PERMIT. For example, the SPS point four extraction region uses a master controller, which permits beam operation to either the LHC or the CNGS target, not all User Systems need to give USER_PERMIT for extraction to occur in this case.

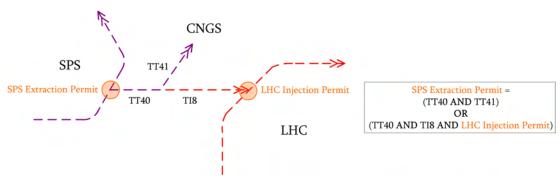


Figure 4.4: SPS BA4 Extraction to CNGS or LHC

This chapter discusses the design and realisation of Beam Interlock System that can satisfy all

requirements of any of these applications, generally using the LHC Beam Interlock System as a basis.

4.1 Communications Architecture

At a basic level the Beam Interlock System is a distributed electronic communications system. The largest distribution of the system in the CERN accelerator complex is around the circumference of the LHC machine, here around 180 distributed User Systems must be accommodated over a distance of 27km. Three key technologies have been used to interface the various sub-systems of the Beam Interlock System.

- 1. Current Loops
- 2. RS485 Differential Signalling
- 3. Single Mode Fibre Optic Communications

These three technologies have been chosen as they are the most adapted to the different requirements of the various parts of the system.

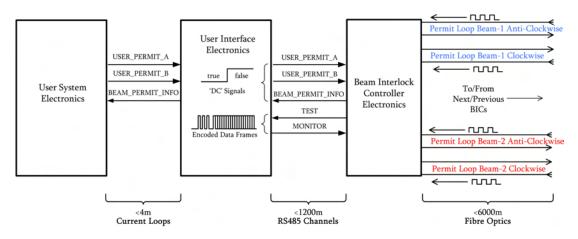


Figure 4.5: The Electrical Architecture of the Beam Interlock System

Current Loops from User System to User Interface

The connections of the three signals USER_PERMIT_A, _B and BEAM_PERMIT_INFO from the User System to the User Interface are made by **current loops**. These are highly suited to this task, as they allow a wide range of hardware platforms to be accommodated using a single homogeneous circuit. A fast link using current loops can be established without integrity issues provided that the cabling is correctly implemented as shielded twisted pair, and that the link has a short electrical length [88]. The maximum link length of the current loop is specified as around four meters, as the User Interface electronics can be placed directly in the User System rack, this pertains well to the use of current loops in this situation.

RS485 from User Interface to Beam Interlock Controller

The distance from User System rack to the nearest Beam Interlock Controller can be over one kilometer, a cable has to be installed to provide this connection. This cable can pass electrically noisy equipment and low voltage systems, so care and attention has to be paid to the effects of Electro-Magnetic Compatibility ensuring that the integrity of the system is maintained and that neighbouring systems cannot be perturbed. Experiments, summarised in Appendix A, show that current loops are difficult to implement over long distances with these requirements, **RS485** differential signalling was finally chosen for these links as it is well suited to transmission in heavy industrial environments and is specified for operation with cable lengths of up to 1200m [89]. A CERN standard 12-wire cable (NE12) has been installed between each User System and

4.1. COMMUNICATIONS ARCHITECTURE

the appropriate Beam Interlock Controller, having a full copper shield with six 90Ω twisted-pairs used to transmit the information required for the system operation.

Experiments summarised in Appendix B show that RS485 can be used to make DC signal transmission. Coupling this with the use of fail-safe slew-rate-limited transceivers leads to a noise immune and dependable link with a deterministic response in the case of failure [84]. Equally important is the transmission delay which is related to the cable length. Experiments, detailed in Appendix B have shown that cable delay is about 5.4ns per meter, leading to a maximum delay of about $6.5\mu s$ for a full 1200m link. Essentially this creates a communications system acting almost as fast as physically possible when using copper interconnects. Boolean transmission using DC signalling has been implemented for the three critical signals between each User Interface and controller USER_PERMIT_A, _B and BEAM_PERMIT_INFO.

Two of the remaining pairs of wires in the connection are devoted to a full-duplex serial communication between User Interface and controller. These two channels, called TEST and MONITOR allow for remote testing and supervision of the User Interface. The communications use Manchester encoded data frames. These frame types are used extensively in CERN accelerator controls, the Manchester Frame format implemented in the Beam Interlock System is heavily based on the format used in the CERN General Machine Timing (GMT) [90].

The final pair of wires is tied to electrical ground at both ends. This helps to meet the Electro-Magnetic Compatibility requirements. The discussion regarding EMC continues in Section 4.7 and Appendix F.

RS485 within the Beam Interlock Controller

The same RS485 techniques of flags and frames are used throughout the Beam Interlock Controller for communications. Critical signals are sent as flags, more complex information is serialised and transmitted using encoded frames. It has to be noted that RS485 transmission infers a maximum signal frequency that is proportional to the distance between transmitter and receiver, for the 1200m links the fundamental frequency has been chosen as 62.5kHz, for the shorter links inside the controller a modest 250kHz has been implemented, these slow links are more than adequate for the amount of data that has to be transmitted through the system.

Fibre Optics from Controller to Controller

The backbones of the Beam Interlock System are the **fibre optic** beam permit loops. Two beam permit loops linking neighbouring Beam Interlock Controllers are implemented in each LHC Beam Interlock System, one clockwise and one anti-clockwise for each beam. Fibre optic interconnects were chosen for these loops as they are required to be extremely fast and fibre with a refractive index of around 1.5 leads to a propagation speed of almost 70% the speed of light in a vacuum. Fibre optics are capable of transmitting information over a long distance, this accommodates the distance from one controller to the next where the maximum distance is around 3000m. The specification of the beam permit loops is for successful transmission over distances that are double this, giving some margin for error and degradation over time. One other key benefit of using a fibre interconnect is its resiliance to EMC problems. Light in fibre is resistant to peturbation from external magnetic and electric fields, equally it cannot peturb the operation of nearby systems.

4.2 Beam Permit Loops

The information transmitted over each beam permit loop consists of a single flag called BEAM_PERMIT. This indicates the readiness of the machine for beam operation. The injection, extraction and beam dumping systems use BEAM_PERMIT to control the activation of various kicker magnets. A frequency is used to represent the Boolean state of BEAM_PERMIT, if the correct frequency is present at the end of the loop BEAM_PERMIT can be considered TRUE. There is a frequency generator (CIBG) installed at the start of each loop responsible for the creation of the permit loop frequency, this is then propagated from controller to controller where it is either retransmitted or interrupted by a LOCAL_BEAM_PERMIT signal. Observing the correct frequency at the end of the loop indicates that each controller allowed the frequency to propagate, thus all LOCAL_BEAM_PERMIT signals are TRUE meaning BEAM_PERMIT is also TRUE.

The switching of the beam permit loop signals by LOCAL_BEAM_PERMIT is carried out in an electronic device, this means that the permit loop signal is converted from an optical signal to an electrical one and vice-versa at each controller. This infers the constraint of DC operation for the permit loop electronics as when switch is open the transmitted signal will be a DC level having constant output power.

The time for transmission around the beam permit loops needs to be as short as possible, to achieve this goal a pair of permit loops 'A' and 'B' are implemented in each system. When long distances are covered by the permit loops, the frequency propagates anti-clockwise around loop 'A' and clockwise around loop 'B'. This means that interruption of frequency propagates in the shortest possible route.

No frequency regeneration occurs at any point around the permit loops. The single generator principle increases the system safety by avoiding single failures that could force LOCAL_BEAM_PERMIT to erroneously generate a frequency which would effectively mask all the previous controllers in the loop.

Beam Transfer Systems

Injection, extraction and beam dumping systems are collectively referred to as Beam Transfer (BT) systems, the relationship between the seven Beam Interlock Systems and the Beam Transfer systems is shown in Table 4.2.

Beam Interlock System	Beam Transfer System	BEAM_PERMIT interpretation
LHC beam-1	LBDS beam-1	$TRUE \rightarrow FALSE = beam abort$
Life beam-1	LDD5 beam-1	injection permit
LHC beam-2	LBDS beam-2	$TRUE \rightarrow FALSE = beam abort$
Life beam-2	LDD5 beam-2	injection permit
SPS ring	SBDS	$TRUE \rightarrow FALSE = beam abort$
SI S Illig	5005	injection permit
LHC beam-1 injection	LHC beam-1 injection kicker	injection permit
LHC beam-2 injection	LHC beam-2 injection kicker	injection permit
SPS BA4 extraction	SPS BA4 extraction kicker	extraction permit
SPS BA6 extraction	SPS BA6 extraction kicker	extraction permit

Table 4.2: BEAM_PERMIT used by Beam Transfer Systems in the CERN Accelerator Complex

Note that the LBDS and SBDS are the LHC and SPS Beam Dumping Systems respectively.

Closed Beam Permit Loops

The final BEAM_PERMIT signal can be fed back into the generator to force the generation of the BEAM_PERMIT frequency to stop once BEAM_PERMIT becomes FALSE. This is referred to as 'closed-loop' operation. Using a closed-loop has two effects:

1. When the system is disarmed there will be no BEAM_PERMIT frequency present on any part of the loop, but...

4.2. BEAM PERMIT LOOPS

2. Arming the beam permit loop has to take into account the final BEAM_PERMIT signal (see Section 4.2.8)

The ring interlock systems use closed-loop, Figure 4.6 shows the basic principle.

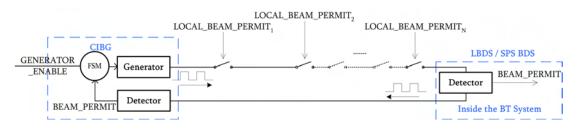


Figure 4.6: The Beam Permit Closed-Loop Principle

The LHC is the main application of the Beam Interlock System, Figure 4.7 shows the principle layout of the LHC beam-2 permit loops. These are closed-loop, the generator is combined with a detector at the start of the loops controlling the frequency generation. A dedicated detector (DET) is installed in the LHC Beam Dumping System to determine the logical value of BEAM_PERMIT.

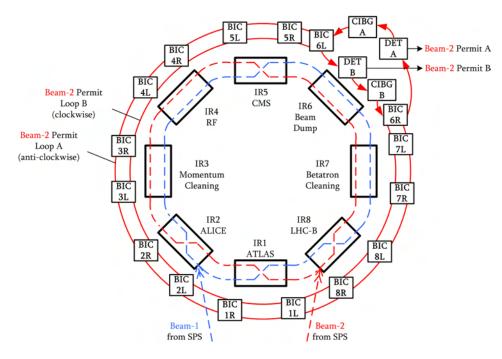


Figure 4.7: LHC Beam-2 Permit Loops

If any USER_PERMIT signal connected to a controller becomes FALSE then the LOCAL_BEAM_PERMIT of the controller is removed, interrupting the frequency retransmission. This interruption will be detected by the beam dumping system, the circulating beam will be removed from the machine as soon as possible. The same architecture is used for the LHC beam-1 interlock system meaning that the LHC has four permit loops, one clockwise and one anti-clockwise for each beam. A typical LHC mission will last at least ten hours, during which time BEAM_PERMIT will be maintained TRUE.

The SPS Beam Interlock System is very similar to the LHC, but on a much smaller scale, the physical length of the SPS accelerator is only around one quarter that of the LHC. The SPS has only one beam having therefore only two beam permit loops, and a typical cycle lasts less than one minute, during which time BEAM_PERMIT is TRUE. Figure 4.8 on the next page shows the SPS layout, with the key locations of the SPS Beam Interlock System.

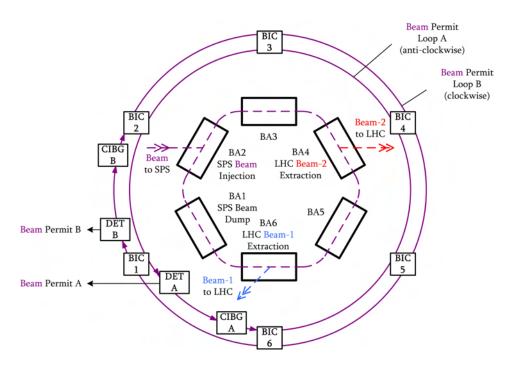


Figure 4.8: Permit Loops of the SPS

Open Beam Permit Loops

Injection and extraction Beam Interlock Systems use permit loops with open loop configurations. The concept of arming and disarming does not apply to the open-loop systems, as they are configured to continually generate frequency. This avoids the problems related to enabling the generator which would be difficult due to the alignment with the required extraction or injection window. Open-loop also means that there will be BEAM_PERMIT frequency in parts of the system even when the loop is disarmed. Figure 4.9 shows the principle.

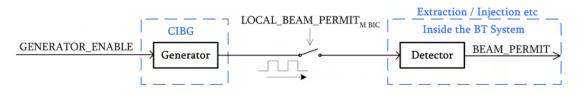


Figure 4.9: The Beam Permit Open-Loop Principle

Both open and closed loops have the same function and almost identical implementation, one can assume that the safety of these tree systems, using open-loop is comparable to that of the ring systems using closed-loop. Despite this the injection and extraction permit loops do not have the same level of criticality as those in the LHC. A missed extraction results in only some minutes of lost time as a new fill is prepared. A bad extraction, whilst being dangerous, does not have the huge financial penalties and downtime associated with failure in the LHC.

Injection and extraction Beam Interlock Systems have somewhat more complex interlocking requirements. A Master Beam Interlock Controller can be used that collects

LOCAL_BEAM_PERMIT signals from several controllers which are connected to User Systems. This partitioning combined with the use of a master controller allows more complex criteria to be established for the creation of the BEAM_PERMIT signals, which enable the extraction or injection at the relevant point.

Injection and extraction permit windows are very short, BEAM_PERMIT will only be TRUE for some tens of milliseconds at a time.

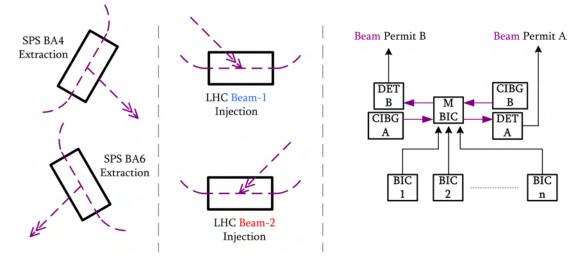


Figure 4.10: Permit Loops of the Injection and Extraction Systems

4.2.1 Ring-Closed and Tree-Open Permit Loop Summary

All of the tree systems use the open-loop configuration, all of the ring-structures use closed-loop. Table 4.3 summarises the differences between the ring and tree permit loops structures, taking the worst-case values from each implementation.

		Maximum	Worst Link	Maximum	Maximum	
Type	Application	Links	Length	Repetition	Active	Format
		Per Loop	[km]	Stages	Window	
Ring	LHC/SPS Ring	18	6	17	$\approx 36000 s$	Closed
Tree	Injection/Extraction	2	2	1	$\approx 0.01 s$	Open

Table 4.3: Comparison of the Ring and Tree Beam Permit Loop Architectures

Clearly this table shows that an LHC defines the design specification. SPS, injection and extraction loops can be created by using LHC compatible hardware, easily meeting their design requirements.

4.2.2 Beam Permit Loop Frequency

The frequency chosen to represent TRUE for the loops is 10MHz, transmitted with a 50/50 duty cycle, this frequency was taken from the system implemented at Brookhaven National Laboratories which uses 10MHz permit loops for the transmission of beam abort signals [81]. This frequency and symmetry allows a response time in the order of micro-seconds to be comfortably realised as the fundamental period is just 100ns. Simple electronic circuits can also be used for the signal repetition as 10MHz is very easily handled by modern electronic components [91]. The observed 100ns period distribution degrades as the signal is repeatedly retransmitted by the Beam Interlock Controllers, this degradation has been quantified and used to determine the correct parameters for the frequency detectors used to derive BEAM_PERMIT in a safe and reliable manner.

Commercial oscillators rarely have a guaranteed duty cycle of 50%, so the 10MHz is made by clocking a 20MHz signal through a T-Type flip-flop. Each LOCAL_BEAM_PERMIT switch includes an inverter, negating the signal on the loop. This corrects any differences that may arise due the circuit reaction to postive and negative going transitions that occurs naturally in transistor structures.

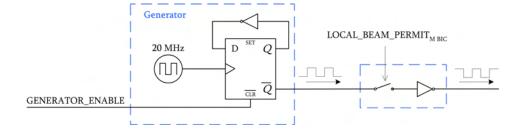


Figure 4.11: Creating and Maintaining the Beam Permit Loop 10MHz with 50% Duty Cycle

4.2.3 Optical Power Budget

The conversion between optical and electronic signals is carried out by a small transceiver. To design this device an Optical Power Budget (OPB) needs to be defined. This considers the optical power loss through the various components of the system, and from this the specification for the receiver sensitivity can be made when the transmitter output power has been chosen [92]. The budget is formed from connector losses, fibre losses and a safety margin.

To determine the connector losses, the number of interconnections from transmitter to receiver must be calculated, in the LHC a fibre-optic trunk is routed the complete length of LHC passing in a similar line to the accelerator itself. This trunk has a high bandwidth and provides the core signal path for the permit loops. Trunk connectors are installed at the left and the right of each Insertion Region (IR), giving access to the trunk fibres. This infers many interconnections between controllers. The worst case is an interconnection between controllers that passes through a local patch panel as well as the trunk, this is shown in Figure 4.12.

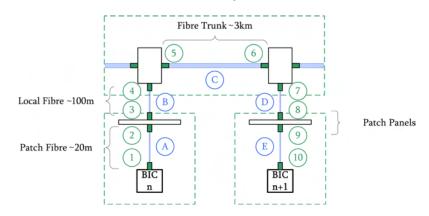


Figure 4.12: Worst Case Interconnections from Controller to Controller

This shows that there could be up to ten interconnections and five fibres between controllers. Using a wavelength of 1310nm with modern installations leads to typical worst case losses of 0.5dB per connector [93] and 0.5dB per kilometer of fibre [94]. A safety margin of 3dB has also been established, in order to give some leeway to cover component aging.

Calculating the losses for a double worst-case link length of 6000m using Figure 4.12 leads to Table 4.4 on the facing page. Summing the right-hand column gives a power loss of around **11.25dB**. Tests using the real optical fibres have shown that the losses observed are normally around one third of the worst case value shown here. Section 5.1 on page 130 shows typical values measured in the SPS, concluding that this Optical Power Budget is conservative.

To convert this figure of dB loss into real requirements one can switch to an absolute value of dB, called dBm. dBm is used extensively in optical engineering, it is defined by 0dBm being equivalent to one milliwatt of transmitted power. For example, if each link in the beam permit loop uses a transmitter with an output power of 0dBm (1mW) the receiver sensitivity must be at least -11.25dBm (74 μ W). These figures coupled with the DC to >10MHz frequency requirements form the basic specification of the optical transceiver.

4.2. BEAM PERMIT LOOPS

Source of Loss	Label on Figure 4.12	Power Change [dB]
Transmitter Connector	1	-0.5
Fibre (50m)	А	-0.025
Patch Connector	2	-0.5
Patch Connector	3	-0.5
Fibre (200m)	В	-0.1
Trunk Connector	4	-0.5
Trunk Connector	5	-0.5
Fibre (6000m)	С	-3.0
Trunk Connector	6	-0.5
Trunk Connector	7	-0.5
Fibre (200m)	D	-0.1
Patch Connector	8	-0.5
Patch Connector	9	-0.5
Fibre (50m)	\mathbf{E}	-0.025
Receiver Connector	10	-0.5
Safety Margin	-	-3.0

4.2.4 Engineering the Optical Transceiver

Each Beam Interlock Controller has a small optical transceiver (CIBO) for each beam permit loop. The optical transceiver converts the 1310nm light into an electronic signal, the conversion is digital, with a power transistion to light above a power threshold being interpreted as a logic '1', and logic '0' below the threshold. The transceiver, gives these logic levels as TTL signals. The basic block diagram of the transceiver is shown in Figure 4.13, Appendix O has a photograph of the complete transceiver.

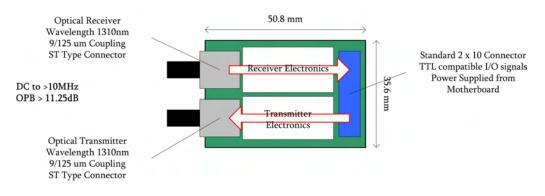


Figure 4.13: Block Diagram of the Optical Transceiver

The fundamental design of this is based on the Optical Power Budget and the frequency specification. Amongst the most basic choices that had to be made concerning the transceiver was the type of device used for transmission, both LED and LASER-Diode (LD) structures are used to make discrete transmitters, and both could be used for this application.

Characteristic	LED	LD
Output Drive Circuit	Simple	Complex
Drive Current	50-100 mA	Threshold 5-40mA (drive above)
Coupled Power	Moderate (μW)	High (mW)
Bandwidth	Moderate (≈ 100 's Mb)	High (≈ 10 's Gb)
Wavelengths	660 - 1550 nm	780 - 1550 nm
Cost	\$5 - 300	\$100 - 10000
Emission Spectrum	40 - 190nm FWHM	1 - 10nm FWHM
Safety Requirements	None	Return Loss & Eye Safety

Table 4.5: Comparison of LED and LASER Diode Technology [95]

The choice of a laser diode is unjustified for the permit loops, so an Edge Light Emitting Diode (ELED) is used as the transmitter, with a simple P-Type - Intrinsic - N-Type (PIN) diode receiver. The basis for the design is an application note by Avagotech (formerly Agilent) for DC to 32Mb data transmission through an optical fibre [96]. The circuitry described in this note has been modified and adapted to be compatible with the mechanical structure and supply specification of the Beam Interlock Controllers. A block diagram of the optical transceiver is shown in Figure 4.14.

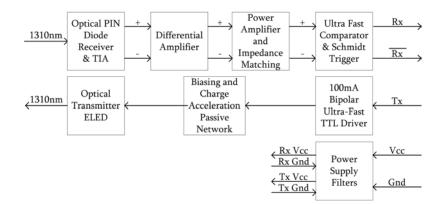


Figure 4.14: Detailed Block Diagram of the CIBO Optical Transceiver

The ELED is a PLD 1315M, with a specified output power between -15 and -25dBm at an nominal wavelength of 1310nm, this ELED is driven by a simple electronic circuit, giving the following characteristics:

Transmitter Input Voltage	ELED Current	ELED Output Power		
[Volts]	[mA]	$[\mu W]$	[dBm]	
>2.0	10	0.001	-65	
<0.8	100	10	-20	

Table 4.6: Electrical Characteristics of the ELED Based Optical Transmitter

When the input voltage is considered as TTL high, the transceiver emits no light, this is inverts the electronic signal at each stage. The receiver is based on an HFBR 2316 single-ended receiver with built in Trans-Impedance Amplifier (TIA); the conditioning electronics are capable of accepting a single ended or differential signal from a compatible receiver. An analogue section converts the low-voltage output into a TTL signal via three further electronic stages.

- 1. The millivolt outputs from the receiver are passed through a simple differential amplifier, this amplifies and removes common mode offset.
- 2. An emitter-follower is used to buffer the output of the differential stage. This provides a small gain, and impedance matching for the signals going into the high-speed comparator.
- 3. Finally the high-speed comparator evaluates the two input voltages, and generates a TTL signal and its compliment. Schmidt trigger feedback and a weak hysteresis is used to preventing the circuit from spurious oscillation.

The receiver sensitivity is at least -35dBm (0.3 μ W) although experiments have shown that receiver circuits may still function up to -40dBm (0.1 μ W). The circuit is AC coupled, but unlike most AC coupled fibre optic receivers, it doesn't require a constant frequency reception to achieve the correct biasing, it can be successfully used in a DC system provided the rising and falling edges of the signals are sufficiently fast.

To ensure that the Optical Power Budget is met, each link used by the Beam Interlock System has a measurement made during installation, the output power of -15 to -25dBm and receiver threshold of -35 to -40 dBm means that optical budgets of -10 to -25 dB can be accommodated. In the higher attenuation links the more powerful transmitters and more sensitive receivers can be used, giving the best power margin.

4.2.5 Transmission Characteristics

Considering the output transmission power and the input receiver threshold indicates whether the link can operate or not, obviously if the optical power is below the receiver threshold then the signal cannot be recovered and the link will not work. Considering this leads to questions concerning the effects of attenuation on the transmission of a signal when the received power is above the receiver threshold. How does attenuation affect the 10MHz signal? What will the 10MHz signal look like after seventeen retransmissions?

The effect of attenuation on the retransmission of the 10MHz signal has been carefully studied to answer these questions. Experiments were made based on a simple transmission - attenuation - reception loop as shown in Figure 4.15.

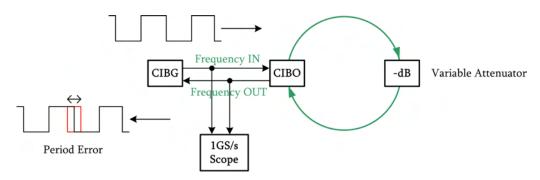


Figure 4.15: Testing the Effect of Attenuation on the 10MHz Waveform

The jitter of the 10MHz signal was recorded and a distribution plotted for various attenuations. Figure 4.16 shows the typical results of an experiment. The upper trace in orange is the frequency going into the Beam Permit Loop (Frequency IN), the lower trace in black is the observed frequency leaving the Beam Permit Loop (Frequency OUT). The jitter measurements are also plotted, using a logarithmic vertical axis, showing the distribution of the period. Retransmission clearly increases the jitter of the signal on the beam permit loop.

This experiment was repeated for a range of attenuations and optical transceivers (labelled CIBO.Pxx). The observations were then normalised to the receiver input threshold that had previously been experimentally obtained, Figure 4.17 on the following page shows the results of these experiments. The sigma, related to the standard deviation of the jitter, is plotted against the power margin.

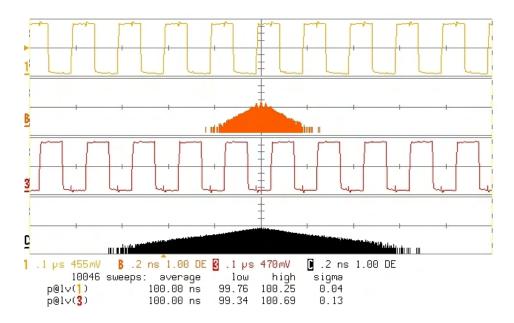


Figure 4.16: Typical Resulting Histogram for the Beam Permit Loop Period Observations

The black line on Figure 4.17 on the next page shows a pessimistic approximation to this period

Power Margin [dB]	Jitter [ns]	Category
>12.0	≈ 0.1	Excellent
5.0 - 12.0	≤ 0.5	Good
2.0 - 5.0	≤ 1.5	Poor
<2.0	≥ 1.5	Unacceptable

sigma error. It's clear that received power has a large influence on the form of the 10MHz signal. Tabulating these results show the boundaries of acceptable operation versus unacceptable.

Table 4.7: Interpretation of the Period Sigma Error Results

Essentially this means that although a link might be feasible due to the power budget, it is desirable to have at least 2dB of margin between the receiver threshold, and the received optical power, i.e. if a receiver has a threshold of -30dBm, the received power must be at least -28dBm. A link with a margin less than 2dB will operate correctly, but the jitter of the 10MHz may not be acceptable for the operation of the permit loop. Installations with high losses must be carefully observed to ensure that the performance is acceptable.

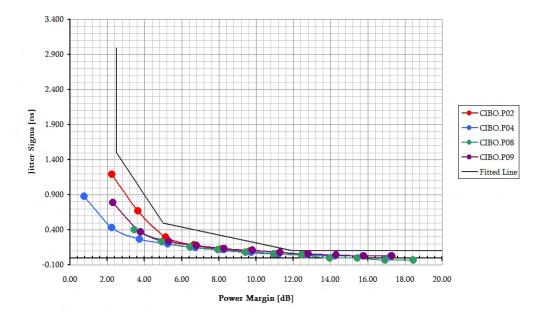


Figure 4.17: Results from the Frequency Observation Experiments

Of course, one must expand these results to cover a full LHC loop of seventeen retransmissions without regeneration, each accumulating jitter. To calculate the expected period at the end of the loop the errors induced from each links have to be convolved together. Figure 4.18 on the facing page shows the distributions resulting from two calculations.

- 1. 12.65dB power margin for each link of the beam permit loop.
- 2. 2.25dB power margin for each link of the beam permit loop.

Clearly the better the power margin, the better the jitter. Note that the vertical axis is now a probability, this is indicative, as the width of the distribution is the most important.

The results shown come from modelling seventeen retransmissions each having the same received power margin, to obtain the predicted value for a specific permit loop a recalculation is needed that takes into account the power margin of each link.

In conclusion, the frequency representing BEAM_PERMIT TRUE observed at the end of the permit loop will be 10MHz if the signal is observed for many cycles.

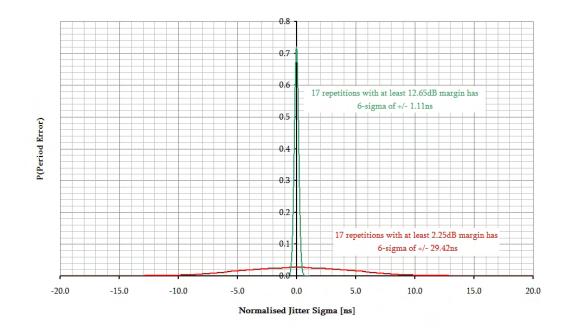


Figure 4.18: Results of Convolution of Period Errors for Seventeen Retransmissions

If the signal is observed on a period by period basis the value obtained for the frequency will vary between the upper and lower bounds which are defined by the transmission characteristics of each of the seventeen links that form the permit loop. This forms part of the basic definition of the frequency detection parameters for detectors in the Beam Transfer systems and in the generator of the closed-loop permit loops.

4.2.6 Bit Error Rate

The period distribution analysis explained in the previous section assumes that the 10MHz signal is simply distorted by the retransmission. What happens if periods are not distorted, but are lost? This has the potential to be a source of downtime if not carefully considered, as a single missing period could be misinterpreted as a BEAM_PERMIT transition from TRUE to FALSE. The Bit Error Rate (BER) of the permit loop can be used in conjunction with the transmission effects described in the previous section to derive a more intuitive model of the expected loop behaviour.

Bit Error Rate Test (BERT) equipment has been used to determine the expected rate of transmission errors for the permit loops. A single detected error can be readily interpreted as a missing or extra transition observed on the 10MHz link, as shown in Figure 4.19.

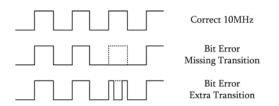


Figure 4.19: Manifestations of Bit Errors

These transitions falsely increase or decrease the measured frequency of the link, and are an unavoidable natural phenomena. Bit Error Rate Testers use Pseudo-Random Bit Sequence (PRBS) generators that encode pseudo-random data into frames of '0' and '1' bits. This sequence is transmitted through the optical link, and returned to the test equipment, which phase locks to the data stream and compares the input and output sequences. Any errors can be recorded and since the number of transmitted bits is known, the Bit Error Rate can be established. In these tests the data test patterns were configured as 10MHz level-encoded frames, replicating the DC

nature of the optical links. The pattern was set to $2^7 - 1$ giving a repetition every 127 bits, seven consecutive '1' or '0' bits can appear in frames produced by this pattern. The observed Bit Error Rate was then recorded for various values of optical attenuation, Figure 4.20 shows the experiment set-up.

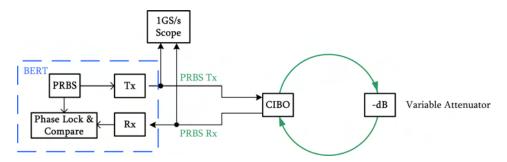


Figure 4.20: Experiment Setup to Determine the Bit Error Rate

In electrical systems the error rate is linked to the system's Signal to Noise Ratio (SNR), in high-bandwidth systems a reduction of the signal to noise ratio allows a kind of accelerated testing to be carried out to determine the system error rate [97]. The typical behaviour of an electrical link and the results of the transceiver tests are plotted in Figure 4.21.

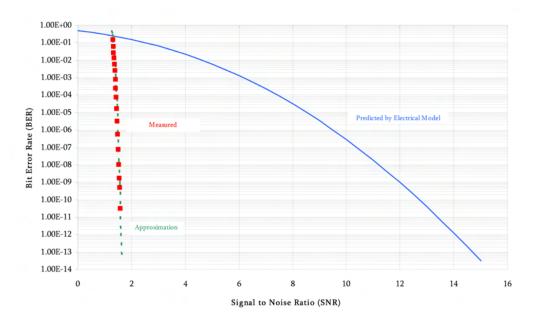


Figure 4.21: Bit Error Rate as a function of Signal to Noise Ratio

It is clear that the effect of attenuation on the optical devices does not match that of electrical systems, the cut-off is much steeper with a little increase in received power rapidly decreasing the Bit Error Rate. Indeed, extrapolating the results from Figure 4.21 for a link with a Signal to Noise Ratio of four quickly predicts a error rate much less than 1×10^{-16} , in this case many tens of years could pass without an error being observed.

A pessimistic approach must be used for the beam permit loop performance. If the **Signal to Noise Ratio is chosen as 1.6** Figure 4.21 suggests an error rate of 1.3×10^{-10} with a 99% confidence. This corresponds to a receiver power of only **2dB above receiver threshold**, which was shown in Table 4.7 on page 56 as the absolute lower limit for 'poor' but acceptable performance for a single permit loop link.

Considering that the LHC beam permit loops have seventeen links in series, a very basic estimate would be to multiply this error rate by seventeen, this makes the assumption that errors are uncorrelated. In this case a rate of 2.2×10^{-9} would be typical for the full beam permit loop. Considering that the link speed is 10^7 bits per second gives a mean time between errors of less than one minute.

4.2. BEAM PERMIT LOOPS

Care has to be taken when interpreting this number. Firstly, if taken literally, it means that a missing or extra transition would appear every minute, but only in the case where seventeen 'poor' quality links were being used. It must also be made clear that the characteristics of the worst link will be dominant, the average of the Bit Error Rates of the individual links does not represent the performance of the system. This is another motivation to ensure that the power budget for each link is acceptable, conforming to 'good' or 'excellent' in Table 4.7 on page 56.

4.2.7 Detection of BEAM_PERMIT

The studies described in the previous two sections derive the following rules and observations for each link of the beam permit loop.

- Each link must have a power margin of at least 2dB.
- Each link should have an error rate of better than 1.3×10^{-10} .
- Each link output should have a Gaussian distribution with a mean of 100ns, and sigma no more than 1.5ns (taken from Table 4.7).

Simple, but pessimistic extrapolation of these figures for the whole loop gives the following two rules:

- Each loop should have an error rate better than 2.2×10^{-9} .
- Each loop output should have a Gaussian distribution with a mean of 100ns and a 6-sigma of no more than 30ns.

The maximum reaction time of the detection circuits can also be defined by considering the specified reaction time of the whole Beam Interlock System. It was shown in Chapter 3.1 that the Beam Interlock System must react in approximately $100\mu s$, a sensible reaction time of the detection circuits should only be around 5-6% of this. So, one can observe the 10MHz frequency on the permit loop for a maximum of around $5 - 6\mu s$ to determine whether the frequency should be considered TRUE or FALSE.

Table 4.8 shows the probability of n bit errors occurring within windows ranging from 1 to $6\mu s$.

Wi	indow Length	Window Rate	Probability of n Bit Errors in Window			
$[\mu s]$	10MHz Cycles	$[s^{-1}]$	n = 1	n=2	n = 3	
1	10	1,000,000		4.1×10^{-16}	6.9×10^{-24}	
2	20	500,000		$1.7 imes 10^{-15}$	6.6×10^{-23}	
3	30	$333,\!333$	$6.4 imes 10^{-8}$		2.3×10^{-22}	
4	40	250,000	$8.5 imes 10^{-8}$	$7.0 imes 10^{-15}$	$5.7 imes 10^{-22}$	
5	50	200,000	1.1×10^{-7}	1.1×10^{-14}	1.1×10^{-21}	
6	60	$166,\!666$	1.3×10^{-7}	1.6×10^{-14}	2.0×10^{-21}	

Table 4.8: Probabilities of Glitch Occurrence for sampling Windows from 1 to $6\mu s$

The probabilities in this table can be converted into intervals by inversion and multiplication by the window rate, giving Table 4.9 on the next page.

Considering that there are four loops for the two LHC Beam Interlock Systems means that the mean time between events should be divided by four, the LHC is expected to operate for 4000 hours a year. Therefore at least two, if not three glitches should be tolerated by the frequency detection circuits, statistically one mission every six years could be lost due to glitches on the loops.

Window Length Window Rate			mean Time Between n Bit Errors in Window		
$[\mu s]$	10MHz Cycles	z Cycles $[s^{-1}]$		n=2	n = 3
1	10	1,000,000	5 seconds	78 years	>4 billion years
2	20	500,000	5 seconds	37 years	>900 million years
3	30	333,333	5 seconds	24 years	>400 million years
4	40	250,000	5 seconds	18 years	>200 million years
5	50	200,000	5 seconds	14 years	>140 million years
6	60	$166,\!666$	5 seconds	12 years	>96 million years

Table 4.9: Mean Time Between Glitch Occurences for sampling Windows from 1 to $6\mu s$

A frequency detection window operates by counting the number of edges on a signal in a specified interval, as the frequency initially has a 50/50 duty cycle both rising and falling edges can be counted. Figure 4.22 shows a $2\mu s$ window, which should measure 40 edges if a 10MHz frequency is present.

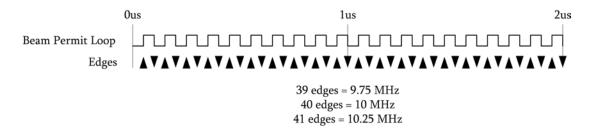


Figure 4.22: Counting the Edges of the Beam Permit Loop Signal During a Sampling Window

Figure 4.18 on page 57 showed that the jitter could be $\pm 30ns$, hence one should accept that the first and last edges may not be captured in the sampling window, coupling this with the expected glitches due to the error rate derives the Table 4.10.

Wi	ndow Length	Glitches	Lower Tolerance		Upper Tolerance		Error
$[\mu s]$	10MHz Edges	in Window	Edges	Frequency	Edges	Frequency	EIIOI
1	20	3	13	$6.5 \mathrm{~MHz}$	27	$13.5 \mathrm{~MHz}$	$\pm 35\%$
1	20	2	15	$7.5 \mathrm{~MHz}$	25	$12.5 \mathrm{~MHz}$	$\pm 25\%$
2	40	3	33	8.3 MHz	47	$11.7 \mathrm{~MHz}$	$\pm 17\%$
2	40	2	35	$8.8 \mathrm{~MHz}$	45	$11.2 \mathrm{~MHz}$	$\pm 12\%$
3	60	3	53	8.8 MHz	67	$11.2 \mathrm{~MHz}$	$\pm 12\%$
3	60	2	55	$9.2 \mathrm{MHz}$	65	$10.8 \mathrm{~MHz}$	±8%
4	80	3	73	9.1 MHz	87	$10.9 \mathrm{~MHz}$	$\pm 9\%$
4	80	2	75	$9.4 \mathrm{~MHz}$	85	$10.6 \mathrm{~MHz}$	$\pm 6\%$
5	100	3	93	9.3 MHz	107	$10.7 \mathrm{~MHz}$	$\pm 7\%$
5	100	2	95	$9.5 \mathrm{~MHz}$	105	$10.5 \mathrm{~MHz}$	$\pm 5\%$
6	120	3	113	9.4 MHz	127	$10.6 \mathrm{~MHz}$	$\pm 6\%$
6	120	2	115	9.6 MHz	125	$10.4 \mathrm{~MHz}$	$\pm 4\%$

Table 4.10: Specifying the FAST Detection Parameters

Choosing a sampling window of $5\mu s$ with a tolerance of two glitches gives a good reaction time, a good resistance to spurious trips, and a frequency resolution of 10MHz $\pm 5\%$. One erroneous detection of BEAM_PERMIT = FALSE every six years is perfectly acceptable for the operation of the Machine Protection System.

The permit loop frequency must be verified with a precision better than $\pm 5\%$, this can't be done in a short window, hence the detection needs to be divided into both FAST and SLOW circuits operating in parallel.

4.2. BEAM PERMIT LOOPS

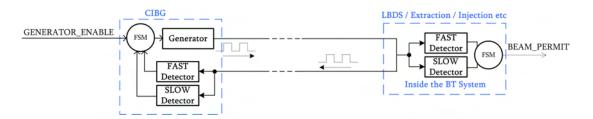


Figure 4.23: Beam Permit Loops with FAST and SLOW Detectors

The FAST detector measures over $5\mu s$, whereas the SLOW detector can operate over a longer interval of 100-1000ms to verify the frequency to better than 0.1%.

Wi	ndow Length	Lower Tolerance		Upper Tolerance		Error
[ms]	10MHz Edges	in Window	Edges	Frequency	Edges	Frequency
100	2,000,000	1,998,000	9.99 MHz	2,002,000	10.01 MHz	$\pm 0.1\%$
1000	20,000,000	19,998,000	$9.999 \mathrm{~MHz}$	20,002,000	$10.001 \mathrm{~MHz}$	$\pm 0.01\%$

Table 4.11: Specifying the SLOW Detection Parameters

This dual detector solution is very robust, allowing 5% precision to be determined in $5\mu s$, with 0.1% precision verified in 100ms. However, the SLOW detector must not always be taken into account, for example millisecond bursts of BEAM_PERMIT TRUE are needed for extraction and injection operation, in this case SLOW detector does not have time to react. This leads to particular requirements for the arming of the beam permit loops when a closed-loop is used.

4.2.8 Arming the Beam Permit Loop

The generator (CIBG) is the source of the permit loop frequency, to start operation the loops have first to be armed. To do this GENERATOR_ENABLE is set to TRUE, if all LOCAL_BEAM_PERMIT signals are TRUE then the frequency will propagate and will be observed back at the generator after a propagation delay. The generation of 10MHz is the maintained until the BEAM_PERMIT becomes FALSE. In the LHC the arm command is carried out via GENERATOR_ENABLE, a $500\mu s$ timeout is set in hardware to allow for the propagation delay. In the 'ring' structures it is impossible to force the continuous generation of the 10MHz by holding GENERATOR_ENABLE TRUE.



Figure 4.24: Detailed Diagram of the Beam Permit Loop Frequency Generator

The verification of the received frequency is initially carried out only by the FAST detector, as the $500\mu s$ reaction time is not long enough for the SLOW detector to correctly determine the frequency. A small state machine detailed in Figure 4.25 on the next page is implemented for the arming of the loops.

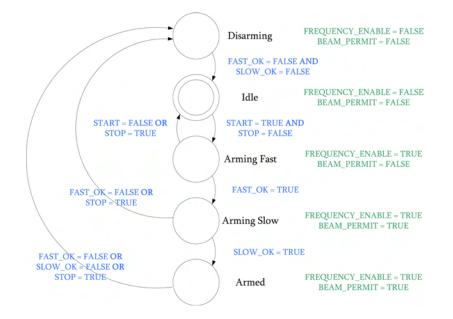


Figure 4.25: Finite State Machine for the Arming of the Beam Permit Loop

The source of GENERATOR_ENABLE can be configured to be a locally written software command or an electrical input coming from the timing system, this means that it is possible to have a timing event control the initialisation of the beam permit loops, a necessity in the SPS where synchronisation would make it very difficult to have a software process involved. Conversely, a GENERATOR_DISABLE command can be issued to force the loop generation to stop, this can also be selected as a software or hardware input. Only the rising edge of this disable signal is taken into account.

In the open-loop configurations the continuous generation of frequency is forced by bypassing the state machine, this gives independence from the General Machine Timing, and poses no danger to the system safety. In the injection and extraction zones User Systems do not need to be aware of the status of BEAM_PERMIT, so no operational issues arise due to the continuous generation.

Each generator has a BEAM_PERMIT output which is TRUE when the returned frequency is detected from the loop. This serves primarily for local debugging, but in the LHC it is foreseen to connect the BEAM_PERMIT of the beam-1 generator to the GENERATOR_DISABLE of the beam-2 generator and vice-versa. This gives operators the option of configuring the source of GENERATOR_DISABLE as hardware, in this case both LHC beams will be dumped automatically when BEAM_PERMIT for a single beam becomes FALSE.

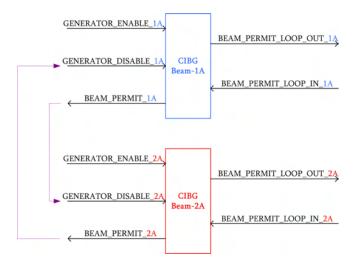


Figure 4.26: Automatic Simultaneous Disarm of Both Beam Permit Loops in the LHC

There is a frequency source for each Beam Permit Loop, clockwise and anticlockwise. These are labelled as CIBG_A for anticlockwise, and CIBG_B for clockwise.

4.2.9 Other Detectors for BEAM_PERMIT

The specification of the detection circuits described in the previous sections applies to both the permit loop generator and those detectors that are implemented in the Beam Transfer systems. In the LHC it is foreseen to add a set of independently designed detection circuits operating in parallel to these circuits. In principle this prevents common mode failures that could cause BEAM_PERMIT to be read as TRUE when in fact it is FALSE. Figure 4.27 shows the beam permit loop on the left hand side, which passes through the Beam Transfer system, here a pair of detectors is 'AND'ed to derive BEAM_PERMIT. A third input to this AND gate is available, originating from an independent detection circuit called the Tertiary Permit Unit (TPU).

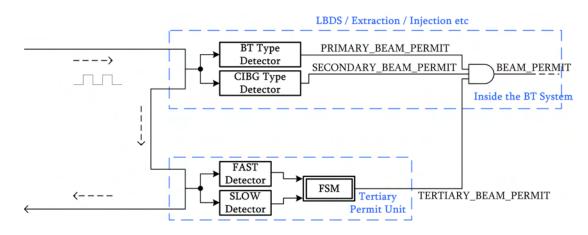


Figure 4.27: Implementation of the Detector Circuits in the BT Systems, with Tertiary Trigger

Essentially the BEAM_PERMIT is derived from a logical AND of the primary, secondary and tertiary BEAM_PERMITs. BEAM_PERMIT can also be used to trigger other events, such as the Post Mortem event sent by the timing system generator (CTG), which causes a full diagnostic logging to be carried out by all the machine sub-systems once the beam has been removed from the machine. The interconnection of beam interlock systems also requires that the BEAM_PERMIT from one system be used as a USER_PERMIT of another, this tertiary trigger unit can satisfy all of these requirements.

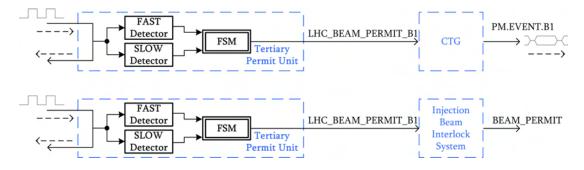


Figure 4.28: Using the Tertiary Permit

4.3 Beam Interlock Controllers

Beam Interlock Controllers act as local concentrators, taking many USER_PERMIT signals to create a LOCAL_BEAM_PERMIT which is used to enable or disable the retransmission of the signal on the beam permit loop. A redundant architecture has been implemented to achieve the required safety for the system, this means that a pair of LOCAL_BEAM_PERMIT signals _A and _B are used to control the corresponding _A and _B permit loops.

A small matrix derives LOCAL_BEAM_PERMIT from the USER_PERMIT signals, this is the most critical function of the Beam Interlock Controller. Aside from this there are three non-critical functions.

- 1. Transmit BEAM_PERMIT_INFO back to the User Systems.
- 2. Provide facilities for TESTs to be activated through a remote connection.
- 3. Provide MONITORING for remote supervision and diagnosis.

BEAM_PERMIT_INFO is a signal that is sent back to the User Systems representing whether the Beam Interlock System is ready for beam operation, essentially this is TRUE only when BEAM_PERMIT_A and _B are both TRUE. BEAM_PERMIT is determined in each controller by observation of the beam permit loops to determine whether the 10MHz permit frequency is present. The BEAM_PERMIT_INFO signal is not critical as a failure cannot lead to an unsafe state. Generally User Systems implement the BEAM_PERMIT_INFO as a test inhibiter, checking it before running internal test procedures. If it is FALSE, then the User System can assume that it is safe to activate a test. Even so, before a routine is started the User System must pulse USER_PERMIT_A and _B to FALSE, this ensures that the Beam Interlock System sets BEAM_PERMIT is FALSE. In the tree architectures BEAM_PERMIT_INFO is not read back by User Systems as BEAM_PERMIT is only active for some milliseconds during a beam transfer. Using BEAM_PERMIT_INFO in this case does not make sense as the software processes that initialise test routines will take many hundreds of milliseconds to activate. The cost of a missed extraction due to a User System being in test mode is minimal, in contrast to the loss of an LHC physics fill due to a User System erroneously activating a self test sequence.

In the LHC User Systems can either interlock both LHC beams simultaneously, by using a both-beam connection, or they can interlock LHC beam-1 and beam-2 independently via a pair of connections, it follows that the BEAM_PERMIT_INFO transmitted to the User Systems represents the BEAM_PERMIT corresponding to the User System type.

BEAM	PERMIT	BEAM_H	PERMIT	
_B1	_B2	_B1B2	_B1	_B2
TRUE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	TRUE	TRUE	FALSE
FALSE	TRUE	TRUE	FALSE	TRUE
FALSE	FALSE	FALSE	FALSE	FALSE

Table 4.12: Deriving BEAM_PERMIT_INFO from BEAM_PERMIT

Figure 4.29 on the next page shows the basic layout of a pair of LHC Beam Interlock Controllers, with the reception and transmission of the USER_PERMIT and BEAM_PERMIT_INFO signals.

In the case of the LHC there is a controller for each beam to the left and right of each Insertion Region. Each controller is embedded in a VME chassis giving remote access for test and monitoring. A single VME chassis contains a pair of controllers, a typical LHC pair is shown in Figure 4.30 on page 66.

There are two key components of the Beam Interlock Controller, a Manager board (CIBM) responsible for the critical functions of the controller, and a Test & Monitor board (CIBT) which is responsible for the remote supervision and control of the distributed User Interfaces (CIBU). The User Interfaces are connected to the controller by NE12 cables, the rear of the controller has been fitted with a patch-panel (CIBPx) and extender boards (CIBEx) connecting these cables to the user defined pins of the VME bus.

4.3. BEAM INTERLOCK CONTROLLERS

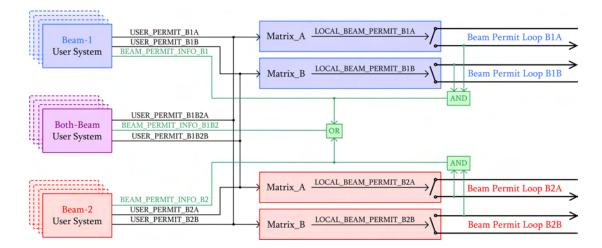


Figure 4.29: Creating BEAM_PERMIT_INFO for User Systems

In summary a VME Chassis can support:

- 1. Two Manager boards (CIBM) with displays (CIBMD) and two optical transceivers (CIBO) for each controller.
- 2. Two Test & Monitor boards (CIBT) with displays (CIBTD).
- 3. One Safe Machine Parameters Receiver (SMPR) generating the Safe Beam Flags (SBF).
- 4. Six extension boards to interface the Manager, Test & Monitor and Safe Machine Parameters Receiver cards to the Patch-Panel (4 x CIBEA and 2 x CIBEB).
- 5. One patch-panel (CIBPL or CIBPS) used to route signals between User Interfaces, Manager, Test & Monitor and Safe Machine Parameters Receiver boards.
- 6. Two permit loop generators (CIBG) each with a pair of optical transceivers (CIBO) to be installed at the start of the Beam Permit Loops.
- 7. A single or dual-redundant VME Power Supply Unit (VME PSU).
- 8. A single or dual-redundant VME Fan Tray (VME FAN)
- 9. One Power PC (PPC) with a single or dual timing Receiver (CTRP) for remote access and synchronisation.

The Manager board is partitioned into critical and non-critical parts. The critical operations are implemented in two Matrix CPLDs, the non-critical operations are implemented in a monitoring FPGA. The patch-panel and extension boards serve as routing between the various parts of the controller and the User Interfaces, they have no active components.

4.3.1 LHC and SPS Chassis Types

The LHC requires the possibility of interlocking two beams within a single chassis, this is not required in those situations that have only a single beam. Two patch-panels are available that allow a slightly different inter-connection of the sub-systems of the Beam Interlock Controller. The LHC patch-panel, CIBPL, is shown in Figure 4.31 on page 67.

This means that a single LHC type VME chassis provides connections for the following User Systems:

User System Connection	Connected to BIC(s)	Maximum Number Supported
beam-1	beam-1	6
both-beam	beam-1 and beam-2	8
beam-1	beam-2	6
	Total	20

Table 4.13: Break-Down of Connections to the LHC Patch-Panel

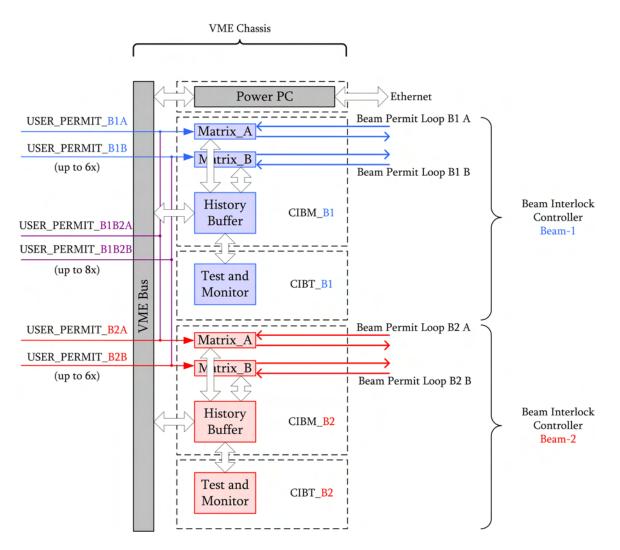


Figure 4.30: A Single LHC VME Chassis Housing Both Beam-1 and Beam-2 BICs

Modification of the patch-panel allows signals to be rerouted so that two independently operating controllers can be accommodated in a single VME chassis. The SPS patch-panel, CIBPS, is shown in Figure 4.32 on the facing page.

In this case each of the LEFT and RIGHT controllers can accept up to fourteen connections to User Systems. The interlocking architecture is hardwired by socket and connector coding at the input to the Beam Interlock Controllers, automated test sequences in software can be activated to verify the links. The combination of hardware coding and software verification leads to a robust and secure architecture that prevents simple errors from jeopardising the safe operation of the LHC accelerator. Appendix E details the different combinations of socket and connector that are possible.

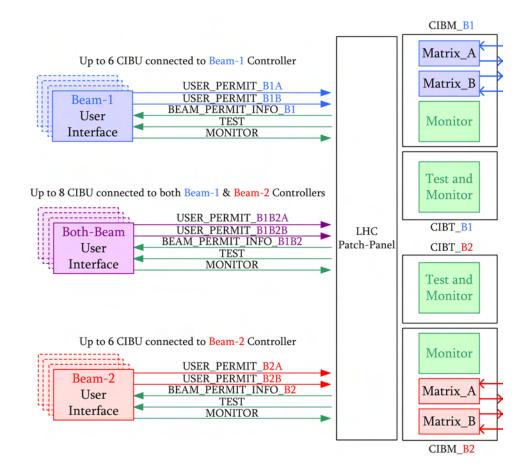


Figure 4.31: Signal Routing through the LHC Patch-Panel (CIBPL) and Extension Cards

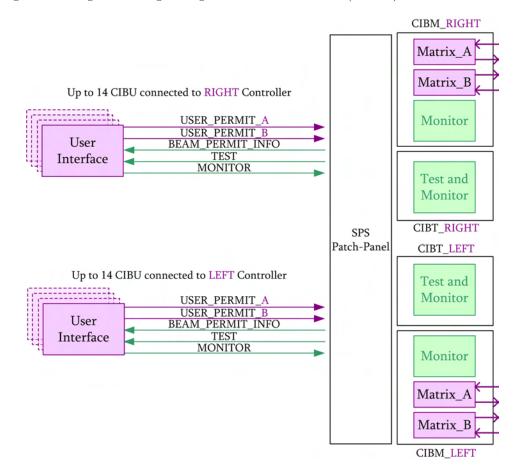


Figure 4.32: Signal Routing through the SPS Patch-Panel (CIBPS) and Extension Cards

4.3.2 USER_PERMIT to LOCAL_BEAM_PERMIT

Redundant USER_PERMIT signals are transmitted from User Interface to Manager. Two independent matrices are implemented to derive LOCAL_BEAM_PERMIT, controlling the opening and closing of the relevant permit loops. The LHC patch-panel routes the USER_PERMIT signals to the matrices as shown in Figure 4.33.

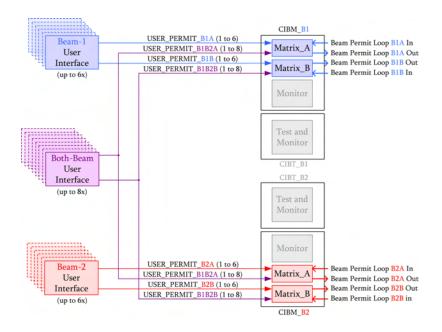


Figure 4.33: USER_PERMIT to Beam Permit Loop Using the LHC Patch-Panel

The SPS patch-panel partitions the USER_PERMIT signals to allow two controllers to operate independently each connecting up to fourteen User Interfaces as shown in Figure 4.34.

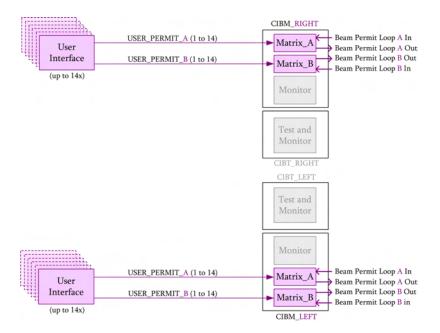


Figure 4.34: USER_PERMIT to Beam Permit Loop Using the SPS Patch-Panel

The non-critical operations of the Manager board are implemented in a monitoring device which works alongside the matrices. It is clear that in all cases the operation of the critical paths only depends on the matrices, neither the monitoring built into the Manager not the Test & Monitor board are required for this function. Essentially it has been reduced to a clean and simple path.

4.3.3 BEAM_PERMIT to BEAM_PERMIT_INFO

The monitor device built into the Manager board is used to deriving BEAM_PERMIT_INFO from the beam permit loops. In the LHC each Manager board can directly inform the User Interfaces that are operating either on beam-1 or beam-2, as each manager board can observe the frequencies on the locally connected beam permit loops. A logical OR has to be made of the BEAM_PERMIT_INFO_B1 and _B2 signals to derive the value for the both-beam User Interfaces. This is carried out in the Test & Monitor board connected to the beam-1 Manager. Figure 4.35

shows the LHC implementation of this.

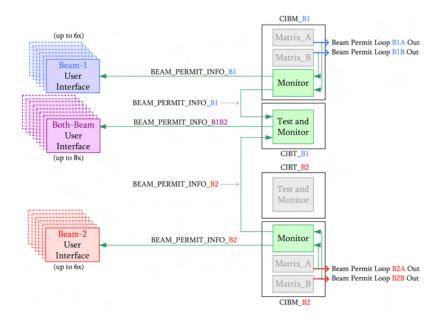


Figure 4.35: BEAM_PERMIT to LOCAL_BEAM_PERMIT Using the LHC Patch-Panel

The SPS implementation has an independent LEFT and RIGHT controller:

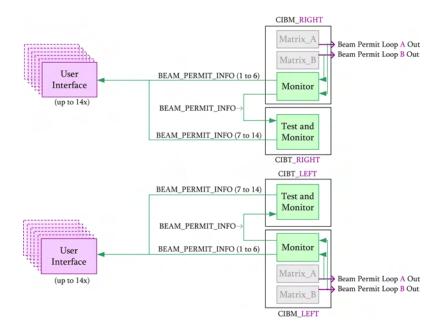


Figure 4.36: BEAM_PERMIT to LOCAL_BEAM_PERMIT Using the SPS Patch-Panel

LEFT and RIGHT are not to be confused with "left and right of an insertion region" which signifies two complete LHC VME Chassis in two separate locations. In this case the LEFT Manager and Test & Monitor boards are used to drive BEAM_PERMIT_INFO for User Interfaces connected to the LEFT controller. Equally the RIGHT boards drive BEAM_PERMIT_INFO to the RIGHT User Interfaces. In each case the first six User Interfaces receive BEAM_PERMIT_INFO directly from the Manager board, the remaining eight receive it from the Test & Monitor board.

4.3.4 TEST and MONITOR

The Test & Monitor board acts as a relay between the Manager board and User Interfaces, communicating with serially encoded data frames. In the LHC application the testing and monitoring of the beam-1 and both-beam User Interfaces is carried out by the beam-1 Test & Monitor board, beam-2 User Interfaces are tested and monitored by the beam-2 Test & Monitor board. The LHC application of TEST and MONITOR is shown in Figure 4.37.

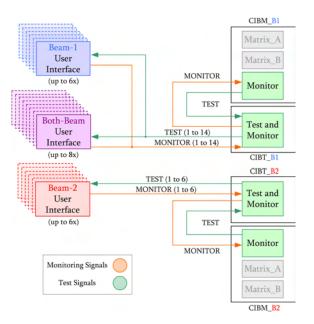


Figure 4.37: TEST and MONITOR Using the LHC Patch-Panel

In the SPS implementation the LEFT Test & Monitor board is used to dialog with the User Interfaces connected to the LEFT controller, the RIGHT board considers those connected to the RIGHT controller.

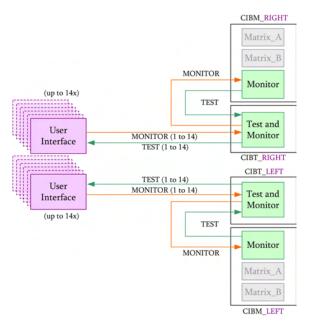


Figure 4.38: TEST and MONITOR Using the SPS Patch-Panel

4.4 The Manager Board

The Manager board is the main part of the Beam Interlock Controller, its central role is to derive LOCAL_BEAM_PERMIT from the USER_PERMIT input signals. This is carried out via a pair of independent matrices _A and _B based in Complex Programmable Logic Devices (CPLDs). The secondary role of the manager is to provide a remote supervision, testing and a log of events, this is implemented in a monitoring Field Programmable Gate Array (FPGA) which synchronises to the CERN timing system and gives data access via a VME bus.

The only parts of the Manager that are on the safety critical path are the matrices, therefore effort has been made to implement robust designs in the CPLD fabric of each. The two matrices will be designed by two different engineers following a design specification, they are also chosen to be devices with slightly different characteristics to try and avoid common mode failures that could circumvent the _A and _B redundancy for connected USER_PERMIT signals. The monitor FPGA has not been designed with safety constraints as a priority, it has been designed to meet the functionality requirements of the controller for supervision and test.

The Manager contains some elements that are not part of this thesis:

- A VME bus interface and arbitration.
- Complete power supply and board decoupling.
- The possibility of remotely upgrading the monitor FPGA (NOT the matrices).
- A local RS232 serial data link.

Design choices that are pertinent to this thesis are:

- Matrix CPLDs _A and _B.
- Monitor FPGA.
- Configuration switches, jumpers and address decoding.
- Front panel display.
- Interconnections to LHC sub-systems.

The Manager board is designed to adapt to three other required implementations, in every case the monitor FPGA carries out the same function, only the matrices are reprogrammed. This means that each variant of the Manager can use the same driver and that the software can adapt to the board type and show the correct information.

Extraction Master (CIBMM/CIBX)

The extraction master has almost exactly the same function as the 'normal' Manager. However in this case the LOCAL_BEAM_PERMIT output of the matrix is not derived using a simple AND, rather a combination of AND and OR circuits. This allows beam extraction from SPS to accommodate the various destinations for the beam.

Permit Loop Generator (CIBMG/CIBG)

The Manager board also implements the generator board used at the start of each beam permit loop. The generator does not need any RS485 connections, it uses only the monitor FPGA, the matrices and the optical transceivers. There are three functions implemented in the monitor FPGA when the CONFIGURATION indicates that the Manager board is configured as a Generator:

- 1. External Start/Stop An external signal, such as a timing event can start the generator. Equally, an external signal can stop the generator when software configures the device to accept an external start and stop.
- 2. Software Start/Stop A software signal can be used to remotely start and stop the generator.
- 3. Forced Generation The generator uses some of the LATCH signals (explained in Section 4.4.3) to allow the generator to be configured to generate constantly.

Permit Verifier (CIBMV/CIBV)

The permit verifier is a very simple device, it has no RS485 interfaces, and it always allows the beam permit loop frequency to propagate, its role is to monitor the performance of the beam permit loop and derive a BEAM_PERMIT flag in a redundant manner, this device can be used as a Tertiary Permit Unit.

The following sections explain the operation of the normal Manager board (CIBM) as used throughout the Beam Interlock Systems. Figure 4.39 shows a basic block diagram of this board

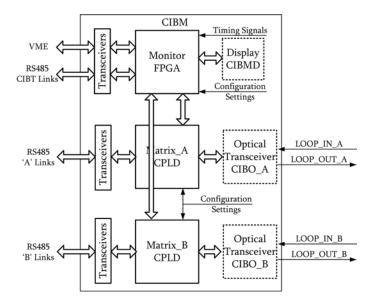


Figure 4.39: Block Diagram of the Manager Board with Matrix CPLDs and Monitor FPGA

4.4.1 Permits, Disabling & Permit Loop Signals

Figure 4.40 shows the signal flow through the matrices and monitor for the permits, disabling and permit loop signals. Only a single matrix is shown, the signals are repeated for the second. Note that feedback signals from the matrix to the monitor are not shown.

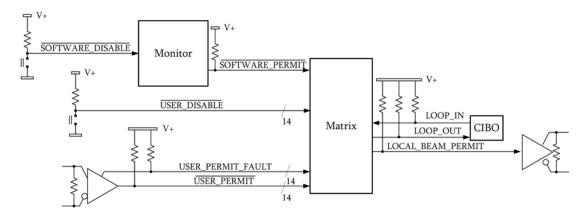


Figure 4.40: Routing of the Permit Signals in the Manager

The differential RS485 USER_PERMIT signals are converted to TTL by MAX3440E transceivers which give USER_PERMIT and USER_PERMIT_FAULT, which must be considered simultaneously to derive LOCAL_BEAM_PERMIT in the matrices. The monitor FPGA is fed-back a copy of USER_PERMIT and USER_PERMIT_FAULT which can be used to provide remote supervision and a history of changes, a failure on these feed-back signals does not lead to an unsafe state for the critical operation of the Beam Interlock System. The monitor FPGA provides a SOFTWARE_PERMIT signal that is considered as a fifteenth USER_PERMIT input,

4.4. THE MANAGER BOARD

alongside the fourteen USER_PERMIT signals. SOFTWARE_PERMIT can be set and unset remotely via ethernet and the Power PC, this allows more complex interlocking criteria to be realised, that cannot be easily attributed to a single hardware system. The SOFTWARE_PERMIT can also be permanently set to TRUE by fixing a jumper in the SOFTWARE_DISABLE position on the Manager board.

As all fourteen USER_PERMIT inputs to the matrix are seldom if ever always used, spare channels have to be disabled by adding a USER_DISABLE jumper in the correct position on the board, which forces the associated USER_PERMIT to be TRUE. This is a very dangerous capability, and two steps have been taken to prevent dangerous operation:

- 1. Two separate banks of jumpers exist for the two matrices, so if one jumper is added by accident, or a short is formed, it cannot put the controller in a dangerous state.
- 2. The jumper positions are read-back and compared to a database before the matrices are permitted to operate. If the verification fails then the monitor FPGA prevents the matrices from starting by holding a flag high. The physical positioning of the jumpers forces the board to be removed from the chassis if the jumpers need changing, the verification is retriggered once the Manager board is reinstalled in the chassis.

LOOP_IN and _OUT are the permit loop signals that interface with the optical transceiver. LOCAL_BEAM_PERMIT which controls the opening and closing of the loop is also transmitted by the matrix as a differential signal. This appears on a rear connector of the VME chassis, it can be directly implemented as a USER_PERMIT input allowing the tree structure to be realised.

4.4.2 Masking and the Safe Beam Flag

A section of the USER_PERMIT signals can also be masked when a flag indicates that the energy and intensity of the beam in the machine is below damage thresholds. This Safe Beam Flag is transmitted to the Manager from the Safe Machine Parameters Receiver via the patch-panel and extension boards using RS485, a differential receiver gives an indication of the state of the flag via two signals SAFE_BEAM_FLAG and SAFE_BEAM_FLAG_FAULT which must both be taken into consideration to determine whether the safe beam flag should be considered TRUE or FALSE.

For flexibility the flag can also be input to the system by front panel connectors, the flag source has to be hardcoded as either rear or front, the monitor FPGA can read-back this coding to ensure the source is correct.

The MASK that is to be applied to the USER_PERMIT signals can be read and written remotely, this gives operators flexibility when operating the machine at low intensity and energy. To implement this seven MASK bits are sent from the monitor FPGA to each matrix CPLD. The key signals for the complete implementation of the Safe Beam Flag are shown in Figure 4.41, feedback signals to the monitor are not shown.

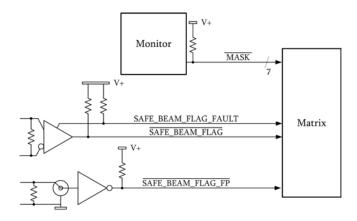


Figure 4.41: Routing of the Safe Beam Flag Signals in the CIBM

4.4.3 Latching and Arming

When the Beam Interlock System is implemented in a ring structure the LOCAL_BEAM_PERMIT is held FALSE after a transition from TRUE to FALSE (LATCHING), it must be forced to rearm after each operation. This is implemented so that the beam permit loops cannot be automatically rearmed, and that the BEAM_PERMIT cannot spuriously switch between TRUE and FALSE. On the other hand, when the system forms a tree structure the LOCAL_BEAM_PERMIT output usually takes the form of a series of TRUE windows only some milliseconds in length, in these cases the signal is not latched and is free to oscillate from TRUE to FALSE as a simple function of inputs.

Three signals are generated by the Manager and sent to each matrix concerning this process, these are:

- 1. LATCH_INIT this is set when the board is first powered, it can only be released once the position of the jumpers and configuration is verified. A rising edge on this signal triggers the matrix to start operation, once this signal has transitioned to TRUE it is ignored until the board is power cycled.
- 2. LATCH_ENABLE this bit informs the matrix whether it should wait for a rearm command before allowing LOCAL_BEAM_PERMIT to transition from FALSE to TRUE.
- 3. LATCH_REARM the rising edge of this signal is used to rearm the latch in the matrix. If the latch is not enabled then this signal is ignored.

These are transmitted via three signal lines shown Figure 4.42.

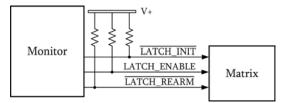


Figure 4.42: Routing of the Latch Signals in the CIBM

4.4.4 Fail-Safe Programming of the Critical Signals

The three Figures, 4.40 on page 72, 4.41 on the previous page and 4.42 show the implementation of the critical signals in the Manager board that are sent as DC flags, the polarity of these signals has been chosen to ensure that they are fail-safe.

	Polarity	Failure Logic	Description
Signal Name	· ·	0	-
	[High / Low]	[TRUE / FALSE]	of Default
USER_PERMIT	Active Low	FALSE	No Permit
USER_PERMIT_FAULT	Active High	TRUE	Fault
USER_DISABLE	Active Low	FALSE	Enabled
SOFTWARE_PERMIT	Active Low	FALSE	No Permit
SOFTWARE_DISABLE	Active Low	FALSE	Enabled
LATCH_INIT	Active Low	FALSE	Initialisation Fail
LATCH_ENABLE	Active High	TRUE	Latch Enabled
LATCH_REARM	Active Low	FALSE	No Rearm
MASK	Active Low	FALSE	User is Un-Masked
SAFE_BEAM_FLAG	Active Low	FALSE	Beam is dangerous
SAFE_BEAM_FLAG_FAULT	Active High	TRUE	Fault
SAFE_BEAM_FLAG_FP	Active Low	FALSE	Beam is dangerous
LOCAL_BEAM_PERMIT	Active Low	FALSE	No Permit

Table 4.14: Polarities and Failure Modes of the CIBM Critical Signals

The Beam Permit Loop signals LOOP_IN and OUT are frequencies when they are TRUE, this

means that the relevant signals do not need to be programmed to have a failure polarity as a stuck-at level will always be considered FALSE.

4.4.5 Matrix CPLDs

The basic electrical diagram of the matrix is shown in Figure 4.43, in addition to the signals that have already been presented are those less critical signals shown in green which serve non-critical functions of the matrix. The A and B matrices both have the same function, so the circuits shown here are doubled on each Manager board.

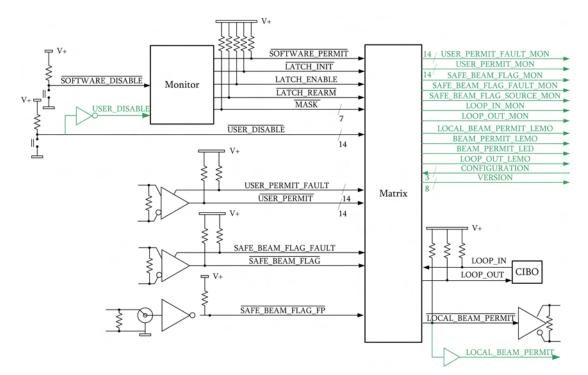


Figure 4.43: Matrix Electrical Block Diagram

The functionality of the matrix is is described in Very High Speed Integrate Circuit Hardware Description Language (VHDL) which is then synthesised and converted to a configuration bit stream that can be loaded into the CPLD through a serial connection (JTAG). In total the matrix has over 100 connected signals, of these only around 60 are considered critical for the operation of the Manager.

The device used to implement the matrix is an XC95288XL CPLD from Xilinx, having 5 Volt tolerant input and output structures. This device has a very high Mean Time Between Failures (MTBF) [98] and a very good resistance to the effects of atmospheric neutrons [99], both of which are important for safety critical design.

In addition to the fail-safe implementation of the differential transceiver sections, the design is implemented so that spare device pins ensure fail-safe due to short circuits. Shorts between neighbouring pins that can appear due to foreign conductive material touching the device will always lead to a safe state. It has already been observed that foreign conductive material can lead to short circuits between device pins [100] and the use of lead-free components infers a phenomena called 'Tin Whiskers' that can lead to short circuits naturally occurring due to tin growth between neighbouring pins [101].

To demonstrate the effectiveness of the fail safe pinning, consider Figure 4.44 on the following page showing three USER_PERMIT signals programmed onto even numbered pins with V^+ programmed on odd pins. Any short across these pins results in USER_PERMIT being logic '1', i.e. FALSE. This would create a large fault current if the pin was being driven low by the MAX3440E transceiver, this current would not pass through the matrix, but could potentially destroy the transceiver. Despite the destruction, this failure is safe in that the Beam Interlock System could not issue an erroneous BEAM_PERMIT TRUE signal.

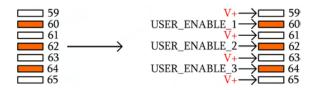
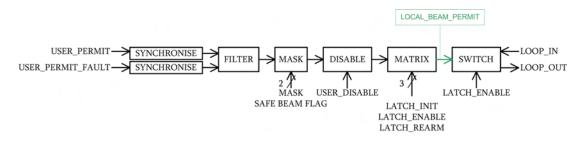


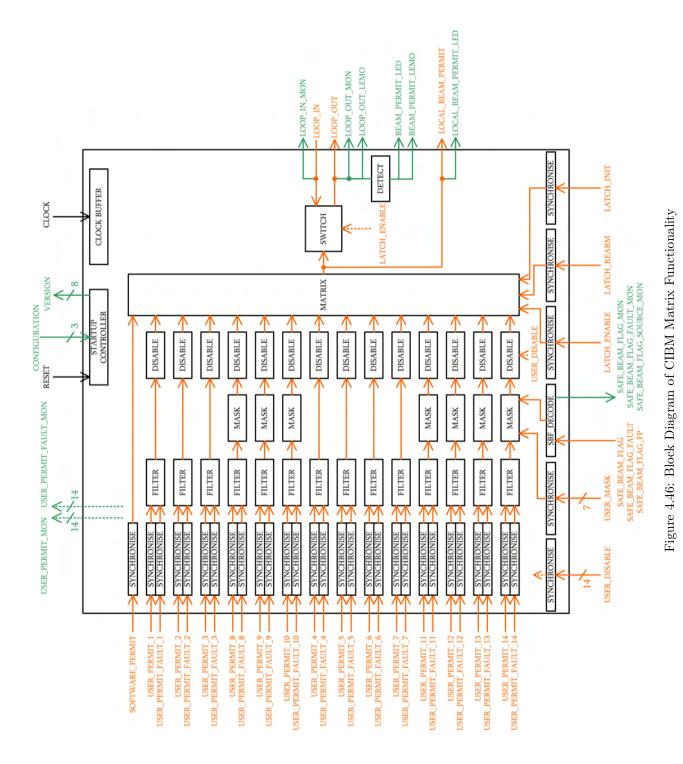
Figure 4.44: An Example of Fail Safe Routing in an XC95288XL

These principles have been applied to the whole device, with spare pins programmed so that shorts lead to the fail safe conditions defined in Table 4.14 on page 74. A so-called Flat Pack chip has been chosen (HQ208) Ball Grid Array (BGA) technology is available as an alternative, but the two-dimensional layout means protection against neighbouring shorts using this technique is unfeasible.

Deriving LOCAL_BEAM_PERMIT

The fundamental conversion of USER_PERMIT and USER_PERMIT_FAULT into LOCAL_BEAM_PERMIT is done in five very simple stages, with the sixth stage being the beam permit loop switch, Figure 4.45 shows these.




Figure 4.45: Six Stages Inside the Matrix CPLD

Considering all of the USER_PERMIT channels leads to Figure 4.46 on the next page showing a complete block diagram of the matrix internal architecture.

The critical signals are shown in orange, non critical are green and system-level signals are shown in black. Note that the failure of RESET cannot lead to an unsafe state, but the failure of CLOCK is quite peculiar. If the system clock should stop oscillating then the matrix will operate with the last input values it had, since the SWITCH block is purely combinational LOCAL_BEAM_PERMIT would stick, and the SWITCH block would either maintain the beam permit loop closed or open. It could be considered that reclocking the beam permit loop frequency would remove this potential error, but that would have two dangerous side-effects:

- 1. Jitter The global clock operates at 40MHz, oversampling the 10MHz permit loop frequency only four times. Since the phase alignment of the sampling clock and the permit loop frequency cannot be predicted the retransmission of the 10MHz could incur an error of 25ns in every repetition stage, unacceptable considering the LHC may have seventeen stages. An oversampling many orders of magnitude higher would need to be implemented if the beam permit loop were to be synchronised at each stage, such a high-speed is unrealistic in a CPLD structure.
- 2. Single Generator The principle of the beam permit loops relies on a single source of frequency for the whole loop, implementing a local resynchronisation at each stage breaks this rule somewhat. Having a clock in control at every matrix, despite the fact it is a different frequency to the beam permit loop, must be considered to lead to more dangerous failure modes involving multiple controllers.

To protect against this the monitor FPGA observes the behavior of the matrices, and simulates their operation. If the CLOCK were to stop oscillating this would be detected. The supervision software would read the mismatch between predicted and actual values and alert operators via the supervision screens.

The five stages of the conversion from USER_PERMIT to LOCAL_BEAM_PERMIT are all designed to be small and effective, the following sections detail the operation of each.

Synchronise

The design of the matrix is fully synchronous, every black-box shown in Figure 4.46 on the preceding page is registered. The first stage is a simple synchronisation that samples the input signal with the CLOCK, as the resources of the CPLD are limited this stage is a single D-Type flip-flop. Metastability issues usually require up to three successive register stages to be implemented [102], it is impractical to use such a large portion of the CPLD resources simply for this, as the delay of an input by a single cycle is not dangerous for the operation of the machine. This 'synchronise' block converts all of the active low signals to active high, so designers can consider all internal signals as active high.

Filter

The 'filter' has two stages, the first is combinational, considering USER_PERMIT and USER_PERMIT_FAULT to determine whether the user permit channel should be considered TRUE or FALSE. A transition from TRUE to FALSE triggers a six bit down-counter, which runs for 64 ticks of the 40MHz clock. Whilst the counter is running the output of the FILTER is forced to TRUE, this means that any transition lasting less than $1.6\mu s$ will be filtered. Using a down-counter and a value of 2^n for the terminal count creates a more resource effective circuit for CPLD implementation. The counter is retriggerable, so any frequency or transition bursts can result in the filter being active indefinitely. This is a potentially dangerous effect. To combat this both the number of glitches and the glitch rate is recorded in the monitor, supervision software reads these values and alerts operators to unusual characteristics.

Mask

The filtered USER_PERMIT is then passed through a 'mask' block where the signal is forced to TRUE when the relevant mask is TRUE and the Safe Beam Flag indicates that the beam in the machine is not dangerous. The mapping of the MASK bit to the USER_PERMIT is quite particular. A partition of both the signals from User Systems interlocking the LHC beams independently (i.e. single-beam users) and those that interlock the beams simultaneously (both-beam users) are maskable.

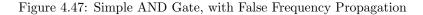
USER_PERMIT	User System Input	Maskable?	MASK Bit
Channel	Type and Number		
1	single beam 1	NO	-
2	single beam 2	NO	-
3	single beam 3	NO	-
4	both beam 1	NO	-
5	both beam 2	NO	-
6	both beam 3	NO	-
7	both beam 4	NO	-
8	single beam 4	YES	1
9	single beam 5	YES	2
10	single beam 6	YES	3
11	both beam 5	YES	4
12	both beam 6	YES	5
13	both beam 7	YES	6
14	both beam 8	YES	7

Table 4.15: Mapping a MASK to a USER_PERMIT

4.4. THE MANAGER BOARD

Disable

The 'disable' block forces a USER_PERMIT to be considered TRUE when the relevant USER_DISABLE bit is set, this can be implemented as either a simple two-input gate, or multiplexer structure.


Matrix

The 'matrix' block is the central function of the matrix, it considers the fourteen USER_PERMIT signals from the 'disable' blocks along with the SOFTWARE_PERMIT signal. Essentially, if all are TRUE then LOCAL_BEAM_PERMIT is set to TRUE. A small structure uses LATCH_INIT to force the LOCAL_BEAM_PERMIT to FALSE until the power on verification is signalled as complete by the monitor FPGA, the signals LATCH_ENABLE and LATCH_REARM are also used to configure the 'matrix' as either free running, or dependent on the monitor FPGA for a rearm after each trigger.

Switch

The 'switch' block either permits or inhibits the propagation of frequency on the beam permit loop, it also ensures that the inversion of the permit loop signal is carried out. If LATCH_ENABLE is TRUE then the switch is a simple AND gate, however if LATCH_ENABLE is FALSE the switch becomes an edge triggered memory element. The implementation of the memory element is required to prevent an oscillating LOCAL_BEAM_PERMIT from creating a frequency on the permit loop. The simple AND-gate is shown in Figure 4.47, the more complex memory element consists of a pair of D flip-flops and three XOR gates, this is shown in Section 5.4.2.

The memory element cannot change state unless the beam permit loop does so. It has the drawbacks of being much larger, and having higher jitter than the simple AND gate, both of which are exacerbated by its implementation in a CPLD. The conclusions of this thesis discuss whether the memory element switch should be replaced by the simple AND gate in the understanding that the beam permit loop might be seen to change state as a function of the LOCAL_BEAM_PERMIT signal.

Decoding the Safe Beam Flag

The Safe Beam Flag that is used in the 'mask' block is received from either a front or rear connection to the Manager board, to select the source the CPLD is hardcoded, a signal SAFE_BEAM_FLAG_SOURCE_MON informs the monitor of the programmed source.

SAFE_BEAM_FLAG_SOURCE_MON	Safe Beam Flag is taken from
Logic '1'	Front panel
Logic '0'	Rear differential connection

Table 4.16: Decoding the Source of the Safe Beam Flag

When the flag is read from the differential connection at the rear of the chassis the condition of both SAFE_BEAM_FLAG and SAFE_BEAM_FLAG_FAULT have to be considered to determine the logical value of the flag. The monitor FPGA receives a copy of both the flag and the fault signal. If the source is programmed as the front panel then the fault signal sent to the monitor is always FALSE, as there is no fault detection possible when using the single-ended front panel connection.

Reset, Configuration and Version

The final sections of the CPLD design to be discussed are those that consider the configuration of the matrix. Three CONFIGURATION bits are implemented to indicate the expected matrix function, if the programming implemented in the device does not match the CONFIGURATION bits programmed on the card the matrix is forced into the reset state. Eight VERSION bits are also implemented, this allows the monitor FPGA to determine the matrix type and revision.

VERSION Bit	7	6	5	4	3	2	1	0
Value	M	atrix	к Ту	pe	Ma	atrix	c Re	vision

Table 4.17: Breakdown of the VERSION Bus

The various types are shown in Table 4.18.

Value	Type
x0	Generator
x1-xC	Normal
xD	Extraction Master
xE	Permit Loop Verifier
xF	FAULT

Table 4.18: Valid Values of the Upper Nibble of the VERSION Bus

Zero-Ohm resistors set the relevant CONFIGURATION bits to '0', open circuit leaves the bit at '1'. The eight combinations are shown in Table 4.19.

CONFIGURATION Type	Bit 2	Bit 1	Bit 0	
Normal	1	1	1	None mounted
Generator (generic)	1	1	0	R0 mounted
Extraction Master	1	0	1	R1 mounted
Permit Loop Verifier (generic)	0	1	1	R2 mounted
Generator (beam-1)	1	0	0	R1 and R0 mounted
Generator (beam-2)	0	1	0	R2 and R0 mounted
Permit Loop Verifier (beam-1)	0	0	1	R2 and R1 mounted
Permit Loop Verifier (beam-2)	0	0	0	R2, R1 and R0 mounted

Table 4.19: CONFIGURATION of the Expected CIBM Matrix Type by Soldered Resistors

Beam-1 and beam-2 devices are used in the LHC, whereas the generic devices can be used anywhere in the CERN accelerator. If the CONFIGURATION does not match the programmed mode then the the upper nibble of VERSION changes to x'F', the lower nibble shows the programmed operational mode that was expected. This cross-check of programmed version and resistors is carried out by the reset controller circuit in the matrix, essentially this holds the reset of the matrix TRUE if there is any problem with the CONFIGURATION. The reset controller also synchronously released the asynchronous reset to the whole of the device, eliminating some sporadic problems that are possible when asynchronous reset is used [103].

Frequency Detection and Outputs

For local diagnostics a 'frequency detection' block is also implemented to determine whether BEAM_PERMIT is TRUE or FALSE. This detector uses the FAST_DETECT parameters that were described in Section 4.2.7 on page 59. This drives both LEDs and front panel outputs allowing local supervision and diagnostics to be carried out without invasive probing of signals on the Manager board. The special case of LHC BEAM_PERMIT being required as an input to another controller can also be achieved using this front panel BEAM_PERMIT output. The creation of BEAM_PERMIT_INFO can either be done by the monitor FPGA using these signals directly, or by independent 'frequency detectors' implemented in the monitor FPGA using the beam permit loop frequencies.

4.4.6 Monitor FPGA

The monitor FPGA is the only device in the Beam Interlock Controller that has a VME bus interface, making it the centre for remote supervision and testing of the controller. The basic function of the monitor FPGA is to supervise the operation of the matrices, and to log events in a history buffer synchronised to the CERN General Machine Timing. The block diagram of the monitor FPGA is shown in Figure 4.48.

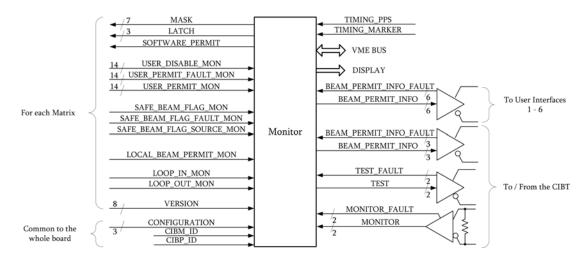


Figure 4.48: Input and Outputs of the CIBM Monitor

Internally the design of the monitor FPGA is relatively simple, it contains four main sections:

- 1. A VME Bus Interface a simple interface without interrupt capability. For more information concerning the implementation of the VME bus consider references [104] and [105].
- 2. Interface to the Manager board (CIBM Interface) translating the signals from the board and storing them in the internal memory, it also drives various output signals corresponding to values stored in the status memory. Some more complex functions are included here, such as frequency detection and matrix simulation to provide a more detailed account of the controller operation.
- 3. Interface to the Test & Monitor board (CIBT Interface) consisting of a parallel to serial encoder and serial to parallel decoder making a redundant, full-duplex communications link between Manager and Test & Monitor boards.
- 4. **History Buffer** storing a log of events timestamped to within one microsecond of the CERN timing system.

Figure 4.49 on the following page shows the internal layout of the monitor FPGA

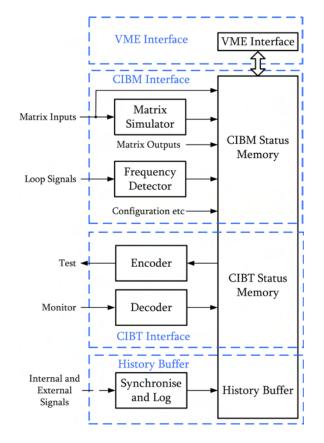


Figure 4.49: Basic Block Diagram of the Monitor FPGA Internal Architecture

Figure 4.50 shows a detailed view of the interface to the Manager board that is implemented in the monitor FPGA.

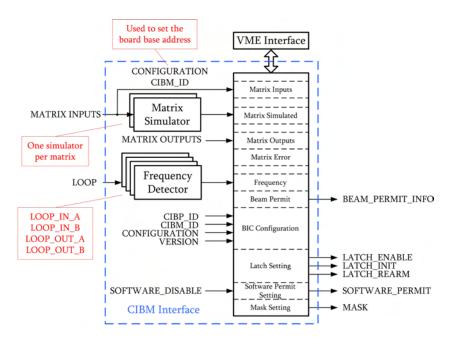


Figure 4.50: Basic Block Diagram of the CIBM Status Memory

The statuses of all supervised input and output links connected to the board are stored and can be read, this includes all of the matrix input and output signals, as well as the serial and DC links between the components that make up the controller. The VHDL code versions of the two matrices, the monitor FPGA and the two FPGAs that are implemented on the Test & Monitor board (see Section 4.5 on page 87) are also available.

Setting the VME Address

Before any software can access the board it must have an address. Address selection has to be consistent to ensure that different combinations of Manager boards can operate in the same VME chassis without conflicting. The CONFIGURATION bus, and a hardcoded status bit indicating the position of the Manager board (CIBM_ID), are used to determine the board address.

Туре	CONFIGURATION	CIBM_ID	Base Address
Normal	111	1 (LEFT/Beam-1)	x120000
Normal	111	0 (RIGHT/Beam-2)	x140000
Extraction Master	101	1 (LEFT/Beam-1)	x160000
Extraction Master	101	0 (RIGHT/Beam-2)	x180000
Generator (Generic)	110	x	x1A0000
Generator (Beam-1)	100	x	x1C0000
Generator (Beam-2)	010	x	x1E0000
Permit Loop Verifier (Generic)	011	x	x200000
Permit Loop Verifier (Beam-1)	001	x	x220000
Permit Loop Verifier (Beam-2)	000	x	x240000

Table 4.20: Define the Monitor FPGA Base Address

Any valid combination of boards implemented in a VME chassis will be automatically accommodated as the address selection is completely automated. There is an extra device that has access to the VME bus embedded on each Manager board, this is a small CPLD used for remote reprogramming of the monitor FPGA, it also obtains an address from these bits.

Matrix Simulation

Both the input and output signals of the matrices are stored in memory, simulation of the matrix behaviour is implemented to verify the matrix operation in real-time. A flag is set if there is any discrepancy between the simulator and actual value, software can then alert operators to the mis-match.

Permit Loop Frequency Detection and Monitoring

The beam permit loop frequencies on LOOP_IN and _OUT for _A and _B are monitored by detector circuits. In addition to determining the logical value of BEAM_PERMIT, the detectors record some basic frequency statistics. The loops are monitored, giving the average frequency, shortest and longest period observed. The number of glitches that have occurred since the board was powered is also recorded, this is interpreted by the supervision software to give the Bit Error Rate of the beam permit loops, and is ultimately used to determine whether they are operating within specification. This part of the monitor FPGA also determines whether the frequency on the beam permit loop is correct by giving two signals, FAST_DETECT and SLOW_DETECT.

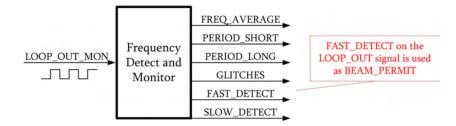


Figure 4.51: Frequency Detection and Monitoring Block Inside the CIBM Monitor

Driving BEAM_PERMIT_INFO

The FAST_DETECT outputs of the frequency detectors on LOOP_OUT_A and _B are considered together to give BEAM_PERMIT_INFO. These are transmitted from the Manager board to the

single-beam User Interfaces (see Table 4.15 on page 78) and are sent to the Test & Monitor board using Triple Mode Redundancy (TMR). These three signals labelled _A, _B and _C are increase the availability of the system at virtually no cost - the extra pins would otherwise be left unused. The termination of the RS485 links has been implemented so that both Test & Monitor boards installed in a single chassis can use these same signals without any signal integrity issues.

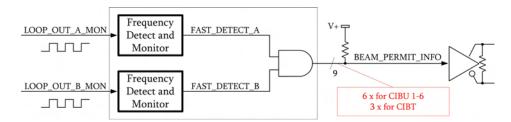


Figure 4.52: Driving the BEAM_PERMIT_INFO signals

BEAM_PERMIT_INFO can also be forced from FALSE to TRUE (but not vice-versa) by a software command, this allows the BEAM_PERMIT_INFO links to be completely tested on demand.

Latching

Three bits of information are written into the monitor FPGA to set the latches for each matrix: LATCH_ENABLE, _INIT and _REARM.

LATCH_INIT is set by the supervision software after the versions, configurations and local jumper settings have all been verified as correct by comparing them to expected settings stored a database.

LATCH_ENABLE is set as a function of the Manager board and patch-panel types. The patch-panel is identified by a single bit (CIBP_ID) hardcoded into the used defined pins of the VME bus. The 'normal' Manager board has LATCH_ENABLE set to TRUE only when the device is attached to an LHC patch-panel.

LATCH_REARM is set and reset by the supervision software, every version of the Manager can have this value written, but only the 'normal' Manager in the LHC and the generator boards use LATCH_REARM.

Software Permit and Masking

SOFTWARE_PERMIT can be set and reset via the VME Bus, but if the SOFTWARE_DISABLE jumper is TRUE then the value written to the Manager through the VME is ignored and the SOFTWARE_PERMIT is always set to TRUE. The MASK bits can also be set and reset via the VME bus.

Test & Monitor Status Memory

Figure 4.53 on the facing page shows the status memory concerning the Test & Monitor board. In this case the upper half of the memory is written to by the VME, containing TEST information that will be encoded and sent to the Test & Monitor board. The lower half contains MONITOR data that is decoded from the Test & Monitor board and is then made available to be read through the VME.

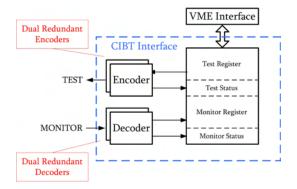


Figure 4.53: Block Diagram of the CIBT Status Memory

Four full duplex serial links are implemented between the Manager and the Test & Monitor board. Two TEST channels, A and B, pass TEST data, similarly two MONITOR channels A and B transmit MONITOR data, the A and B links are dual redundant. Decoder circuits can detect decoding errors or a broken channel and can switch between the two, when this happens a flag is set in the monitor FPGA which can be read back by supervision. Two separate and coherent bytes of data must be written into two separate addresses in the Manager to start a TEST, the encoders read all the TEST registers, continually encoding the data and transmitting it to the Test & Monitor board.

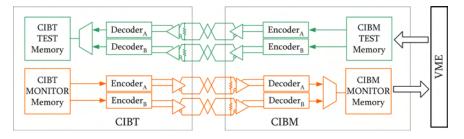


Figure 4.54: Dual Redundant TEST and MONITOR Links Between the CIBM and CIBT

History Buffer

Figure 4.55 shows the basic layout of the History Buffer. A small circuit timestamps changes to $1\mu s$ precision and logs them in a memory.

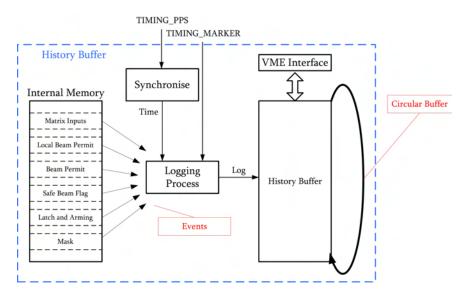


Figure 4.55: Block Diagram of the History Buffer

There are several events that can create a log in the history buffer:

- 1. Matrix input changes the matrix simulators implement the glitch filters in exactly the same way as the matrix CPLDs. A change in the USER_PERMIT value that occurs after these is logged.
- 2. Local beam permit changes the value of LOCAL_BEAM_PERMIT is read back from the matrices, if this changes then a log is created.
- 3. Beam permit changes the FAST_DETECT and SLOW_DETECT outputs of the frequency detect circuits trigger a log when they change.
- 4. Safe Beam Flag changes any change in the SAFE_BEAM_FLAG creates a log, this includes the _FAULT signal.
- 5. Mask changes any changes in the MASK setting are logged.
- 6. Latch changes operator requests for a _REARM or setting of _INIT are logged.

There are almost one hundred different records that can be created by the logging process, these are described in Appendix D. In the LHC the generation of logs will be extremely slow, as the Beam Interlock System will only record events at the start and end of a mission when the system is being armed and disarmed. A large 4096-byte buffer is implemented, this is required for the transfer line applications where some hundreds of records can be created per cycle as the Beam Interlock System toggles BEAM_PERMIT TRUE and FALSE. The monitor FPGA has to be able to assemble the record of changes synchronised to the microsecond so parallelism is used to create the history buffer.

These logged events are the minimum required for the supervision of the system by operators, there are also some other events that can be logged but are not useful for basic operation, only for advanced diagnosis.

4.4.7 Manager Display (CIBMD)

The monitor FPGA also connects around 40 signals to a perpendicular front panel display. The display shows the current status of the Manager board inputs.

- USER_PERMIT signals are shown as either a red or green LED, these are triggered by a monostable so that even a small glitch results in the LED flashing for at least 100ms.
- The MASK setting is also shown, with an orange LED illuminating beside the relevant USER_PERMIT when the MASK is active.
- SAFE_BEAM_FLAG A and B are both shown as green LEDs, illuminated when TRUE.
- A single orange LED illuminates when the VME signal 'data acknowledge (DTACK)' is TRUE, this happens when the board is being accessed. This is also fitted with a monostable to ensure that the LED is illuminated long enough to be visible.

The small display has 70 LEDs to show all of these signals, a basic outline is shown in Appendix M.

4.5 Test & Monitor Board (CIBT)

The Test & Monitor board is used primarily to provide remote testing and monitoring of the User Interfaces connected to the Beam Interlock Controller. It also drives BEAM_PERMIT_INFO for a sub-set of the User Interfaces. The Test & Monitor board transmits serialised information between itself and the Manager and User Interfaces, using full-duplex Manchester encoded data channels called TEST and MONITOR. Figure 4.56 shows the set-up of these links, orange signals are related to MONITOR data and green to TEST data.

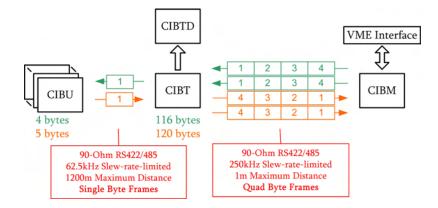


Figure 4.56: Communication Link Parameters for CIBT Channels

The long distance links use single byte frames at 62.5kHz, framing, synchronising and parity leads to a bandwidth significantly less than this, as only five bytes of information need to be transmitted at an interval of around one Hertz it is more than adequate. The short links use quad byte frames at a fundamental frequency of 250kHz, again this is more than required, as just 120 bytes are transmitted at an interval of two or three Hertz.

A display is driven by a 'display driver FPGA' and a 'serial communications FPGA' carries out the more important TEST, MONITOR and BEAM_PERMIT_INFO functions.

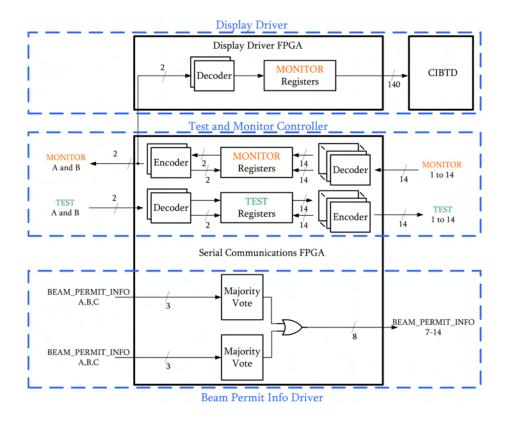


Figure 4.57: Expanded Block Diagram of the CIBT

4.5.1 Manchester Encoded Frame Format in the Beam Interlock System

Manchester encoded frames are used throughout the Beam Interlock System, encoder and decoder circuits have been designed that provide a robust communications channel with only a small amount of logic. Manchester encoded frames use a two bit edge based encoding, with a rising or falling edge representing a transmitted logic '0' or '1', this effectively reduces the link bandwidth to half of the encoding frequency, but has the advantage of good clock recovery and decoding. Figure 4.58 shows the bit format used in the Beam Interlock System.

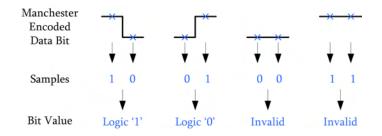


Figure 4.58: Transmission Through the CIBT

The quad or single byte frames are based on the same structure, with the payload being increased for the quad byte version. Single and quad frames are shown in Figures 4.59 and 4.60.

Figure 4.59: Single Byte Manchester Encoded Frame

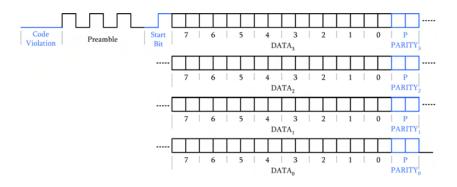


Figure 4.60: Single Byte Manchester Encoded Frame

The basic transmitted frame breaks down into four sections:

Name	Size [ME Bits]	Value [Logic]	Purpose
Code Violation	1.5	line low	Framing synchronisation
Preamble	3	$1,\!1,\!1$	Receiver sampling clock synchronisation
Start Bit	1	0	Receiver sampling clock synchronisation
Payload	9 or 36	DATA & PARITY	1 or 4 Bytes of DATA with PARITY bits

Table 4.21: Manchester Encoded Single / Quad Byte Frame Format

Encoder

The encoder is based on loadable shift register which has been optimised to fit neatly into the limited resources of CPLDs. A generic block has been developed that allows the number of bytes in the payload to be selected during synthesis, this generic takes any positive integer value, so for

the single byte transmission it is set to one, for quad byte to four, and so on. A second integer generic sets the encoding frequency as a function of the device clock frequency, this determines the interval for the shift. Figure 4.61 shows the implementation of the encoder.

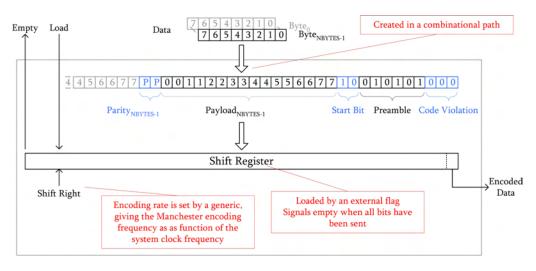


Figure 4.61: Manchester Encoder Block Diagram

The input bytes are converted into Manchester encoded data with parity by a simple combinational path, this is loaded into the shift register when a flag goes high, the register sets a second flag when it is empty.

Decoder

The decoder consists of a simple state machine which controls the decoding process by aligning the decoder clock, sampling the incoming data and validating it, and a shift register which stores the decoded data. The number of bytes in the incoming data packets is set by a generic, as is the encoding frequency.

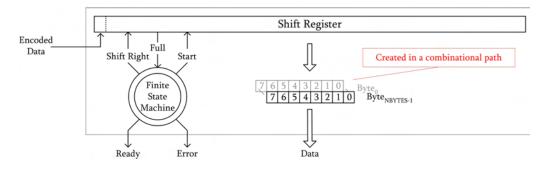


Figure 4.62: Manchester Decoder Block Diagram

To start with the circuit waits for the code violation, preamble and start-bit to appear consecutively on the link, during this time it synchronises the sampler to the centre points of the incoming data. Following this the sampler runs freely, storing incoming data bit by bit into a shift register. Once the register is full the data is checked for code violations and parity errors, if the validation is successful a ready flag is set, if not an error flag is raised.

Simulations and VHDL for the Manchester encoder and decoder can be found in Appendix L on page 219.

4.5.2 BEAM_PERMIT_INFO

The Test & Monitor board receives three BEAM_PERMIT_INFO signals A, B and C as DC flags from each of the Manager boards. The RS485 receivers are implemented as shown in Figure 4.63 on the following page.

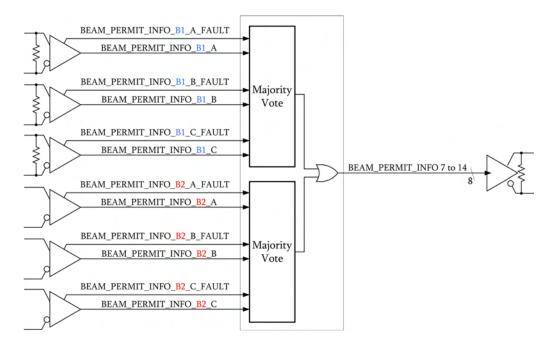


Figure 4.63: Implementation of the CIBT BEAM_PERMIT_INFO Circuits

A simple circuit decodes the logic BEAM_PERMIT represented by each set of three flags by majority vote.

А	В	С	Output
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	FALSE	FALSE

Table 4.22: Majority Voter Truth Table

The BEAM_PERMIT for the beam-1 side is 'OR'ed with that of the beam-2 to give the value of BEAM_PERMIT that is to be applied to the User Interfaces. Only the beam-1 BEAM_PERMIT_INFO signals are terminated, the multidrop nature of RS485 is exploited to give the correct termination in both the SPS and LHC chassis. Appendix I on page 199 details the differences in the implementations.

4.5.3 Serial Communications FPGA

The Serial communications FPGA carries out the main function of the Test & Monitor board, multiplexing and demultiplexing serial data transmitted between the Manager and User Interfaces. The FPGA receives a pair of signals TEST_A and _B from the Manager, containing Manchester encoded TEST data which is parsed and written to a memory. This is then read out by fourteen Manchester encoders, each connected to a User Interface.

MONITOR data is received from each User Interface, this is decoded and placed in memory which is in turn re-encoded and sent to the Manager via MONITOR_A and _B as a dual-redundant link.

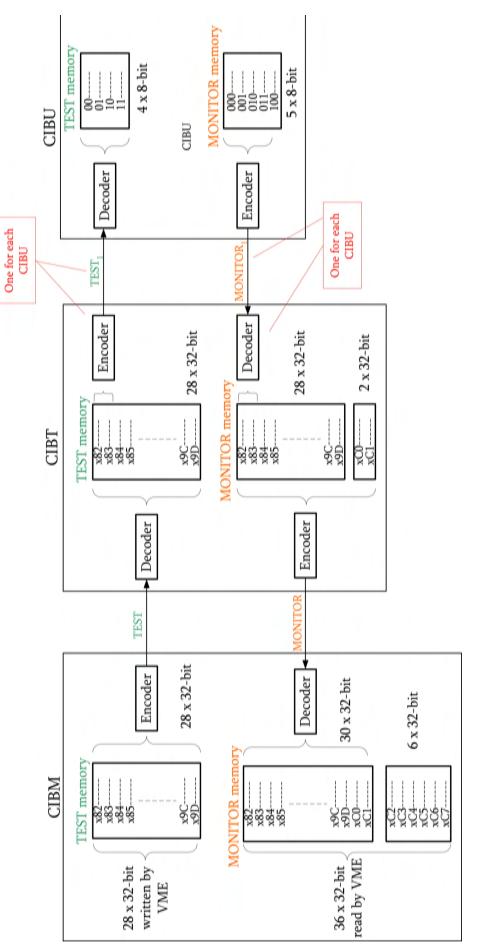
Matched encoder and decoder circuits are implemented in the User Interface and Manager, all based on the same Manchester encoded data, running with either single or quad byte transmission, at either 62.5 or 250kHz. Figure 4.64 on page 92 shows the basic function of the serial communications FPGA with the paths of the TEST and MONITOR links.

4.5.4 TEST Data

The User Interface has TEST data written to it that can put it into three different modes of operation:

- 1. Operation No testing is being requested
- 2. **Test** Either USER_PERMIT _A or _B can be forced TRUE, the channel that is not forced TRUE is forced FALSE.
- 3. Reset The programmable logic on the CIBU is reset, this doesn't interrupt operation.

Two four-byte TEST frames are sent from the Manager to the Test & Monitor board for each User Interface. The data is restructured and is sent as four single-byte frames to the User Interface. The Test & Monitor board simply relays the TEST data given by the Manager board to the correct User Interfaces, the actual transmission path is simple as shown in green in Figure 4.64 on the next page. More information concerning the actual structure of the TEST frames can be found in Appendix D on page 161.


The TEST philosophy is very simple, only one of the channels 'A' and 'B' can be set to TRUE at any one time, the other channel is forced FALSE. This allows a complete testing of the Beam Interlock System from every USER_PERMIT through to BEAM_PERMIT. The final connection to the User System is to be tested using an external software that is capable of forcing USER_PERMIT at the User System level.

4.5.5 MONITOR Data

MONITOR data is handled in a similar way to that of the TEST data, this time the source of information is the User Interface, with the Manager being the ultimate destination. The Test & Monitor board acts as a relay for this information, simultaneously receiving MONITOR data from up to fourteen User Interfaces, and retransmitting this to the Manager. The internal status of the Test & Monitor board is also transmitted to the Manager, combining this status registers in the Manager itself gives a complete supervision for all the RS485 links implemented in the Beam Interlock Controller.

4.5.6 Display Driver FPGA and Test and Monitor Display (CIBTD)

The second FPGA on the Test & Monitor board is dedicated to running a small display that is fixed to the front of the board. The display consists of twenty rows each having seven LEDs, making 140 in total. Each LED is driven by an output of the FPGA who simply decodes the monitor data and displays it. The MONITOR information from the fourteen User Interfaces is displayed, as are the statuses of the BEAM_PERMIT_INFO, TEST and MONITOR links to and from the Manager boards. The layout of the display is shown in Appendix M.

4.6 The Interface to the User Systems (CIBU)

The User Systems are given a User Interface (CIBU) to connect to the Beam Interlock System. A single homogeneous interface is used to connect to the numerous types of User System having different hardware platforms and various operating Voltages. This approach leads to a system that is easy to install and maintain, as no differentiation has to be made between User System types, only in their interlocking architecture. Those User Systems that interlock the LHC beam's independently are given a Double-Interface (CIBUD). The User Systems that interlock both LHC beams simultaneously are given a Single-Interface (CIBUS). In addition to the LHC both-beam systems, the Single-Interface is used in all the situations where only a single beam is to be interlocked.

Using the Double-Interface decreases the overall complexity of the system, as only a single hardware unit is supplied to the User Systems, and it allows for the beam-1 and beam-2 connectors to be different. The descriptions following in this section relate to the design of a Single-Interface, interlocking a single beam. A block diagram of this is shown in Figure 4.65.

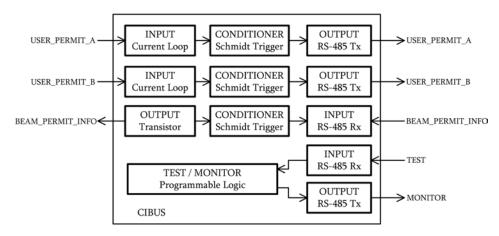


Figure 4.65: Block Diagram of the User Interface (CIBU)

The Interface relays three Boolean signals from User System to Beam Interlock Controller: USER_PERMIT_A, _B and BEAM_PERMIT_INFO. The key platforms and operational voltages of the User Systems as shown in Table 4.23.

User System Basis	Operating Voltage [Volts]	Speed of Response [Relative]	Permit Change Time	
PLC	24	Slow	$\approx 1-10$ ms	
VME	5	Fast	$\approx 1-10\mu s$	

 Table 4.23: Basic Categories of User System in the CERN Accelerator Complex

To connect to these User Systems, a simple current loop has been implemented for the input circuits, and BEAM_PERMIT_INFO is repeated back to the User System via a simple optocoupler with a transistor output. The signals passed through the User Interface are internally conditioned by adding a small hysteresis to the edges, this reduces the chances of spurious changes and noise whilst input voltages cross through undefined regions. The interconnection from controller to Interface is entirely based on RS485 differential signal transmission, this provides fail-safe communications up to 1200m. A full-duplex RS485 link, TEST and MONITOR, is established with a dedicated Programmable Logic Device to allow for remote supervision and testing. A Xilinx XC9500 CPLD has been used to interface the TEST and MONITOR link, this gives 5V voltage compatibility [106], a high reliability [98] and has been proven to have a high radiation tolerance [107].

4.6.1 USER_PERMIT

The redundant USER_PERMIT signals _A and _B are generated by two separate current loops established within the User System, for each of the two current loops the following applies:

Loop Current	USER_PERMIT	
[mA]	[Boolean]	
< 1	FALSE	
> 9	TRUE	

Table 4.24: USER_PERMIT Current Loop Specification in the CIBU

Essentially this means that the USER_PERMIT is guaranteed FALSE if the loop current is less than 1mA, a loop current greater than 9mA is guaranteed to switch USER_PERMIT to TRUE. A value of current between 1 and 9mA could be either level, the loop current is regulated by a transistor pair installed in the CIBU, as shown in Figure 4.66.

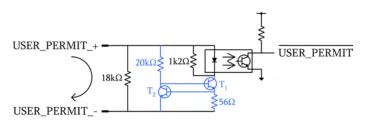


Figure 4.66: USER_PERMIT Current Regulation in the CIBU

The current loop regulation uses two cross connected transistors which self regulate to maintain the current through the optocoupler [108] [109]. Considering that T_2 will switch completely on when it has a base-emitter voltage around 0.7V, leads to a current of 12.5mA being drawn through the optocoupler. The 1k2 Ω resistor prevents the optocoupler from spurious activation at low voltages, the 18k Ω resistor prevents an open circuit from floating and generating spurious switches.

The output of the optocoupler is conditioned with a pair of Schmidt triggers and used to drive a MAX3440 transceiver, this is shown in Figure 4.67.

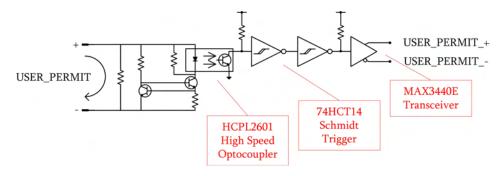


Figure 4.67: USER_PERMIT Current Loop to Differential Conversion in the CIBU

Any disconnection or short on this link leads to $USER_PERMIT = FALSE$.

4.6.2 BEAM_PERMIT_INFO

The BEAM_PERMIT_INFO signal is transmitted to the User System from the Beam Interlock Controller, the User Interface drives an optocoupler with this signal allowing various circuits to be implemented in the User System. Figure 4.68 on the next page shows the reception and conversion of this signal.

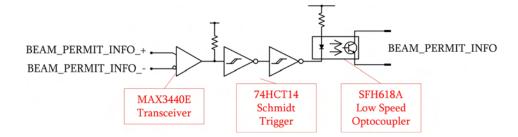


Figure 4.68: BEAM_PERMIT_INFO Differential to Current Loop Conversion in the CIBU

Any disconnection or short on this link leads to BEAM_PERMIT_INFO = TRUE.

4.6.3 TEST and MONITOR

A full-duplex Manchester encoded serial link is established with the User Interface, using two channels, TEST and MONITOR. These channels are connected to a CPLD which is responsible for interpreting the TEST commands, and sending MONITOR data. The full duplex link is established by using a single MAX488E component, which has the same characteristics as the MAX3440E only without the FAULT signals. The use of encoded frames means that it's automatically evident when a link is malfunctioning, as the decoding circuits will detect errors. Figure 4.69 shows the basic layout of the TEST and MONITOR with CPLD in the User Interface.

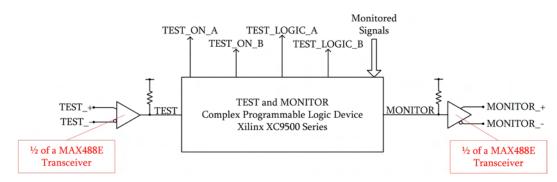


Figure 4.69: TEST and MONITOR Channel Implementation in the CIBU

Test Data

TEST data originates in the Manager board, it's then passed to the Test & Monitor board before being retransmitted to the User Interface, it consists of four data frames which can force the Interface into one of three modes, 'test', 'reset' and 'operation', TEST and MONITOR are Manchester encoded frames, Appendix D on page 161 presents the definitions and frame structures for the transmissions between User Interface and the Test & Monitor board.

The User Interface receives four frames and only changes mode if they are consistent. The test data is repeated in two frames, the values have to be identical in order to switch into TEST mode, this repetition and redundancy of information is part of a series of measures implemented to ensure that the User Interface cannot be put into test mode accidentally. Firstly, the TEST data is duplicated on the links, to spuriously switch into 'test' mode would requires multiple transmission error. Secondly, the reception of the TEST data frames is timed, two frames must arrive within eight milliseconds of one another to be validated. Thirdly, the transition from 'operation' to 'test' is inhibited by hardware if the BEAM_PERMIT_INFO is TRUE. Considering these protection methods means that the Bit Error Rate of the TEST channel can be disregarded as errors in this case are very unlikely to lead to loss of availability.

The Interface decodes TEST_ON (ON), TRUE_FALSE (TF) and CHANNEL_A_B (AB) to drive four signals, TEST_ON_A, TEST_ON_B, TEST_LOGIC_A and TEST_LOGIC_B. Table 4.25 on the following page shows the truth-table for these signals.

TEST Data		CPLD Response				
ON	TF	AB	TEST_ON_A	TEST_ON_B	TEST_LOGIC_A	TEST_LOGIC_B
0	x	x	0	0	0	0
1	0	0	1	1	1	0
1	0	1	1	1	0	1
1	1	0	1	1	0	1
1	1	1	1	1	1	0

Table 4.25: Converting TEST Data into Signals Within the CIBU

TEST_LOGIC_A is derived with an XOR, TEST_LOGIC_B with and XNOR, these are very simple circuits, ideally suited to CPLD structures, note that there are only two different patterns that can be activated for the test, setting one channel to TRUE simultaneously sets the redundant channel to FALSE.

Monitor Data

The CPLD reads both internal and external status registers, encodes them, and sends back five bytes of MONITOR data. Figure 4.70 shows the internal and external sources of MONITOR data.

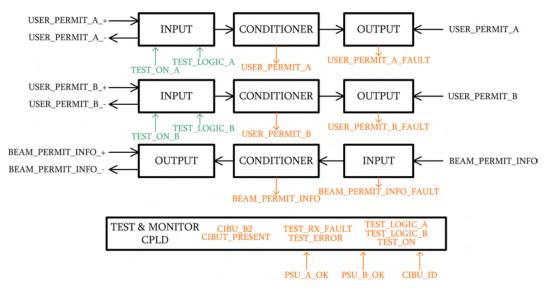


Figure 4.70: External and Internal Sources of MONITOR Data

This data is sent to the Beam Interlock Controller at least twice per second, the transmission of five Manchester encoded frames takes less than 2.5 milliseconds, so the encoder circuits are idle more than 99% of the time, transmission is also triggered after the successful reception of TEST data, if the encoder is idle at that moment.

4.6.4 Implementing the TEST and MONITOR Links

The programmable logic of the User Interface is very simple, it consists of a decoder circuit linked to a TEST register, and an encoder linked to a MONITOR register. The TEST register is used to drive the TEST_ON and TEST_LOGIC signals, the MONITOR register is filled with the external and internal signals that are remotely supervised. Figure 4.71 on the facing page shows the basic structure of the CPLD:

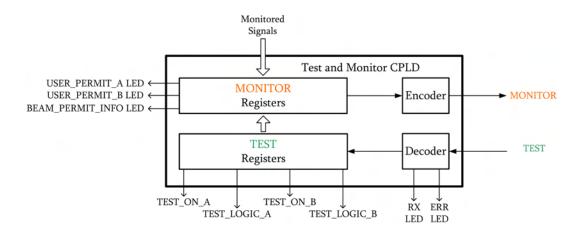


Figure 4.71: CIBU CPLD Internal Architecture

The decoder triggers green and red front panel LEDs RX and ERR in response to the reception of valid and invalid data frames. The contents of the MONITOR registers are used to drive three tri-color LEDs, one each for USER_PERMIT_A, _B and BEAM_PERMIT_INFO.



Figure 4.72: CIBU Front Panel LEDs

Each User Interface has a ten-bit unique identifier (CIBU_ID) which is formed by soldering zero-ohm resistors to the board, giving a number from 1 to 1023 that can be read back at distance.

Monitoring the USER_PERMIT and BEAM_PERMIT_INFO links

Expanding the USER_PERMIT link to include testing and monitoring leads to the circuit in Figure 4.73

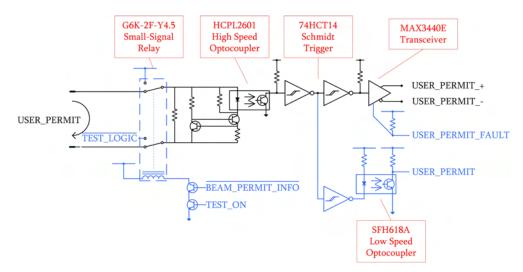


Figure 4.73: USER_PERMIT Circuit with TEST and MONITOR in the CIBU

The test is activated when the CPLD sets TEST_ON to logic '1' and when BEAM_PERMIT_INFO

is FALSE, activating the test moves the USER_PERMIT current loop from external circuits to internal ones, where TEST_LOGIC is inverted, and used as a switch. The selection of internal and external circuits is carried out using a small signal relay, the input to the USER_PERMIT circuit switches to FALSE for some milliseconds during the transition, as the input is effectively open. This ensures that any change into 'test' mode automatically forces the USER_PERMIT FALSE.

Two points on the USER_PERMIT link are monitored, the actual value of USER_PERMIT is read back by the CPLD after passing through an optocoupler, This galvanic isolation ensures that a problem with the CPLD cannot effect the operation of the USER_PERMIT link. The RS485 FAULT signal is also read-back by the CPLD, providing a remote diagnostic of the link operation.

BEAM_PERMIT_INFO is implemented in a very similar manner, as shown in Figure 4.74

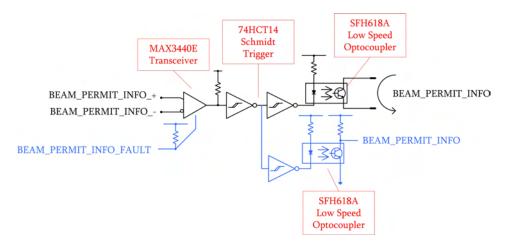


Figure 4.74: BEAN_PERMIT_INFO Circuit with TEST and MONITOR in the CIBU

The local value of BEAM_PERMIT_INFO is read, as is the BEAM_PERMIT_INFO_FAULT, so that the integrity of the whole link can be remotely verified. Galvanic isolation ensures that erroneous CPLD operation cannot force the BEAM_PERMIT_INFO state.

Monitoring the Power Supplies

The User Interface is equipped with a pair of redundant power supplies, this redundancy is needed to reach the availability levels specified for the Beam Interlock System. The two DC supplies (CIBD_A and _B) work in parallel, they are isolated with a power rectifier diode, ensuring that the failure of a single supply cannot cause the second supply output to short circuit. Two signals PSU_A and _B are returned to the CPLD, and three green LEDs are driven, giving a visual indication of the system operation. Figure 4.75 shows a basic diagram.

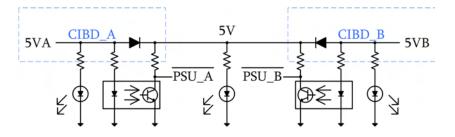


Figure 4.75: Power Supply Circuits with MONITOR in the CIBU

4.6.5 Single and Double User Interfaces (CIBUS and CIBUD)

The Interface that has been described in this section can be implemented as a Single-Interface having a single connection from User System to controller, or a Double-Interface containing two

circuits, with different gender connectors. The Single-Interface is used throughout the CERN accelerator complex, for connection to either LHC both-beam or any SPS-beam system. The Double-Interface is only found in the LHC, it has one circuit for connection to LHC beam-1, and one for connection to LHC beam-2, it's given to User Systems interlocking LHC beams independently.

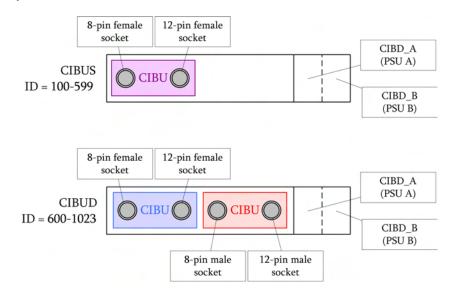


Figure 4.76: Single and Double User Interfaces, CIBUS and CIBUD

Both versions of the interface have redundant power supplies, and a unique programmed identification (CIBU_ID). When a system is connected through a double User Interface both the beam-1 and beam-2 sides will have the same identification number, and the same power supply status information. The identification can be directly used to determine the type of User Interface that is present, the value breaks down into the three ranges shown in Table 4.26.

CIBU_ID Value	CIBUx Type	Range
0 - 99	Prototype CIBUS or CIBUD	100
100 - 599	Production CIBUS	500
600 - 1023	Production CIBUD	424

Table 4.26: Using CIBU_ID to Determine CIBUx Type

4.6.6 Fibre Optic Extension of the Controller to User Link (CIBFx)

The distance from the Beam Interlock Controller to the User Interface is limited to around 1200m as RS485 is only specified for cable runs of this length. To overcome this limitation a pair of Fibre Extenders (CIBFx) can be used, that convert electrical signals to optical, and vice-versa. One device has to be implemented at the user side (CIBFU), the other at the controller side (CIBFC), together these devices form a link capable of transmission over at least six kilometers, sufficient for any conceivable requirement of the Beam Interlock System. Each Fibre Extender is equipped with redundant power supplies, a full monitoring of the link is implemented allowing supervision to observe the performance of the individual parts. Figure 4.77 on the next page shows the basic layout of an extended link from User Interface to Beam Interlock Controller.

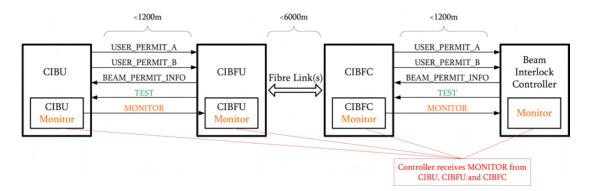


Figure 4.77: Extending the CIBU to Controller Link Length

Appendix D details the data that can be read from each Fibre Extender.

4.7 Electrical Analysis of the System

Electro-Magnetic Compatibility and signal integrity are big challenges for interconnecting distributed hardware in industrial environments. Analysis of these has been carried from component to system level with both simulations and practical experiments, as part of the Beam Interlock System design. The Beam Interlock System has been shown to have excellent characteristics in terms of both signal integrity and Electro-Magnetic Compatibility.

The analysis of signal integrity and Electro-Magnetic Compatibility are very closely related:

Signal Integrity

Analysis of signal integrity has been carried out throughout the design, ensuring wavelengths and rise-times do not adversely effect circuit operation and that in the worst case the system still functions, key points to consider are:

- Signal frequency
- Circuit impedance
- Wave characteristics of signals
- Cross-talk between signals

Electro-Magnetic Compatibility

Testing for compatibility ensures that the system is not susceptible to external fields and that critical functions are maintained throughout periods of external interference. It is also important that the Beam Interlock System does not perturb the operation of other neighbouring systems, key points to consider are:

- System shielding
- Grounding, both on-board and inter-system
- The appropriate use of differential signalling
- The possible use of slew-rate limited signals
- System testing to ascertain performance levels

4.7.1 Different Types of Link in the Beam Interlock System

For the analysis the Beam Interlock System has been split into five types of link; three considered at the system level, two at the controller level. The three types of link at the system level are

- 1. Current loops from User System to User Interface.
- 2. RS485 signal from User Interface to controller.
- 3. Fibre optic signals from controller to controller.

These are shown in Figure 4.78 on the following page.

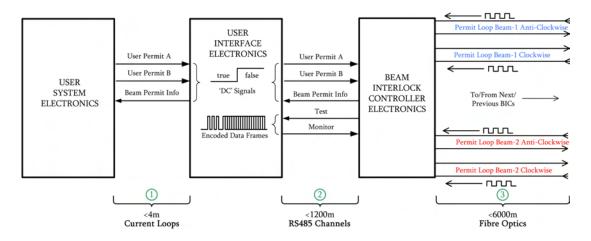


Figure 4.78: Three Types of Cabled Links at the System Level

The links within the controller can be generalised into two types, the first is board-to-board, where a signal passes from one board in the VME chassis to another. A typical example of this type of link is one of the communications channels from Manager to Test & Monitor board, as shown in Figure 4.79.

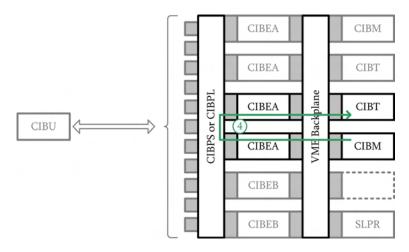


Figure 4.79: Typical Board to Board Link at the Controller Level

The second is on-board, where a signal passes from one Integrated Circuit (IC) to another situated on the same circuit board. Consider the simple block diagram of the Manager board as shown in Figure 4.80 on the facing page.

The different characteristics of these links are summarised in Table 4.27.

Link Type	Maximum Link Length [m]	Link Technology	Operational Frequency [Hz]
1	4	Current Loops	$DC \rightarrow \approx 10M$
2	1200	Very Slow RS485	$DC \rightarrow \approx 62.5 k$
3	6000	Single Mode Optical Fibre	$DC \rightarrow \approx 10M$
4	1	Slow RS485	$DC \rightarrow \approx 250 k$
5	0.15	LVTTL/TTL	$DC \rightarrow \approx 100M$

Table 4.27: Summary of Different BIS Link Types Analysed for Integrity and EMC

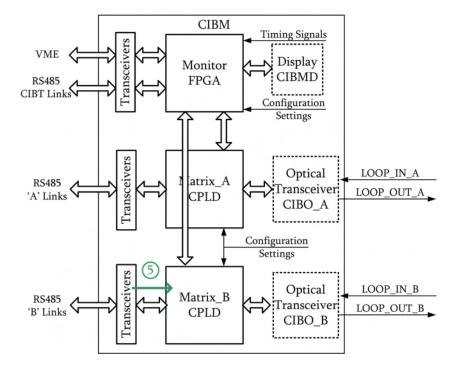


Figure 4.80: Typical On-Board Link at the Controller Level

4.7.2 General Rules

The design and realisation of the Beam Interlock System has followed some general rules to give a solid basis for the signal integrity and Electro-Magnetic Compatibility.

Layer Stack-Up and Powering

The layer stack-up and powering of each board in the system provides a solid base for resistance to external events and to good signal integrity.

The differential signals carried in the cables of the Beam Interlock System are routed differentially on the circuit boards in the User Interface and the Beam Interlock Controller. This ensures that coupling is restricted to related pairs, with equal and opposite currents flowing in neighbouring wires [110]. In general the differential impedance of links has been maintained at 50-200% of that of the cable connecting User Interface to Beam Interlock Controller, using slew-rate limited transmission with these impedances leads to a signal integrity that is within all specifications.

Circuit boards that have active components have a power and ground plane, in accordance with the "5/5 Rule" that states if any signal has a speed >5MHz, or a rise time <5ns, then ground and power planes must be used [111]. A typical four layer stack-up of an active PCB is shown in Figure 4.81 on the following page. Power supply decoupling has been given appropriate filtering to ensure that the voltages received by the active circuits meet specifications, and that return currents through ground create a very small potential, giving a tolerable voltage change during operation.

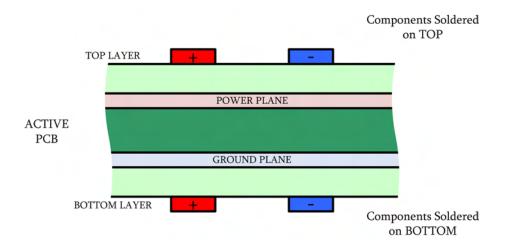


Figure 4.81: Typical Active PCB Cross-Section

All PCBs that have high speed signals have the "3W Rule" applied meaning that traces are separated (centre-to-centre) by at least three times their width, ensuring that crosstalk between unrelated signals is minimised [112].

Throughout the Beam Interlock System differential striplines have been used to carry differential signals, improving noise immunity [113]. The extension boards and patch-panels have ground planes applied on both the top and bottom layers, encasing the circuit, and they only has through-hole connectors. This allows signals to remain buried within the material, without vias being required to swap the signal from one layer to another, a typical interconnecting PCB is shown in Figure 4.82.

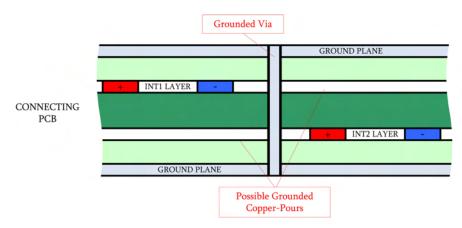


Figure 4.82: Typical Interconnecting PCB Cross-Section

Unused areas of PCBs have been filled with grounded copper pours and have had the grounds on different layers stitched together with vias at regular intervals, this increases noise immunity, can improve characteristic impedance and provides a cleaner ground for the system [114].

Electrical Length Limitations

A key parameter in the analysis of an interconnection is the electrical length, this relates the signal wavelength that can be found on the link with the physical link length. If this ratio is high, then the interconnection must be treated as a high frequency design, with impedance and termination values considered, a low-frequency analysis is sufficient if this ratio is small [115]. Table 4.28 on the facing page shows a simple look-up table that has been used to define the maximum link lengths to ensure that the links can be considered as low-frequency.

Rise Time	Equivalent Frequency	Equivalent Wavelength	Maximum Trace Length
[ns]	[MHz]	[m]	[cm]
0.5	637	0.28	1.41
1.0	318	0.57	2.83
1.5	212	0.85	4.24
2.0	159	1.13	5.65
2.5	127	1.41	7.07
3.0	106	1.70	8.48
3.5	91	1.98	9.90
4.0	80	2.26	11.31
4.5	71	2.54	12.72
5.0	64	2.83	14.14

Table 4.28: Low Frequency Design Limits Due to Electrical Length

A typical electrical length calculation is presented in Appendix G on page 175.

Differential Signals, Shields and Ground

Balanced differential signals are used wherever electrically long distances are to be covered, with slew-rate limited drivers being used to reduce high-frequency effects. Bi-directional Transient Voltage Suppressors are used on every wire that passes outside of the controller, where it could be exposed to external influence, this prevents high-energy transient effects, such as lightening, or high-voltage short circuit from damaging the circuits. Shielded twisted pair is used when a cable is required, with the shields grounded at both ends, and with spare wires grounded at both sides, these increase the system's resistance to EMC issues, decrease the chance of the system being a source of perturbation for other systems and help the signal integrity [116] [117] [118] [119] [120] [121] [122] [123].

Figure 4.83 shows the principle of a single ground, with connected shields and balanced differential signalling. 'Earth', 'ground', 'zero-potential' and 'chassis' are all considered as one and the same, a 'system ground'.

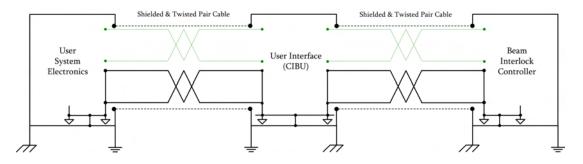


Figure 4.83: Balanced Differential Signalling, Shields and Ground

The ground connections are made using the largest possible conducting surfaces, with the shortest possible links made between grounds at each point, this conforms to modern design practices, advocated by industry professionals [124] [125] [126] [127].

The use of 'pig-tail' connections for shielding is completely prohibited in the system, only 360° shield connections are allowed, again in accordance with modern EMC practices [128].

This form of EMC focussed design practice is relatively new, some legacy systems from the LEP era that are used in the machine are implemented in a different manner, with either open shields, or shields that are AC coupled. Whilst this makes the individual system performance good, the effect on the complex as a whole can be non-ideal, some User Systems are reluctant to implement a full shielding, but EMC tests prove conclusively that the implementation of the link to Beam Interlock System requires this kind of shielding for the best conformity.

4.7.3 Signal Integrity Analysis

All of the signals, from type-1 to type-5 have been analysed for integrity which showed them to be sound, a breakdown of the results can be found in Appendix G.

4.7.4 System Level Electro-Magnetic Compatibility Analysis

The long distance cabled connections, type-1 and type-2 have been tested to IEC-61000-4-4, by injecting a burst or interference into the cables. Table 4.29 shows the defined test levels for the IEC 61000:

Severity Level	Power and Grounds
1	$0.5 \mathrm{kV}$
2	$1.0 \mathrm{kV}$
3	$2.0 \mathrm{kV}$
4	$4.0 \mathrm{kV}$

Table 4.2	29: IEC	61000	Severity	Levels
-----------	---------	-------	----------	--------

Level 3 is defined as a regular industrial environment, level 4 is a heavy industrial environment, at least level 3 is required for the Beam Interlock System, although tests up to 4.0kV have also been carried out.

All of the tests looked to see if the USER_PERMIT signals were perturbed when an external generator was connected to the cables between User System and User Interface, and User Interface and Beam Interlock Controller. Different configurations of ground and shielding were tested to directly compare the validity of the different shielding techniques. Test results are split into four categories as shown in Table 4.30.

Test Result	Description	Example			
A No noticeable fault		No signals are seen to be perturbed			
В	Corrected fault	Critical error occurs, and is filtered			
\mathbf{C}	Fault	Critical error occurs, it is not filtered			
D	Complete failure	Loss of power or control			

Table 4.30: EMC Test Result Classification

Tests were initially made with USER_PERMIT held TRUE, tests were then repeated with USER_PERMIT held FALSE to see whether external events could force the permit to the opposite value. With correctly implemented shielding the Beam Interlock System achieved a grade A in 4.0kV testing. The weak point of the system is the Power PC embedded in the VME chassis, which failed during the level 4 tests of the User Interface power supply.

Cables from User System to User Interface

The cables from the User System to the User Interface are one of the key links in the Beam Interlock System. The SPS and CNGS experiments have given an insight to the approach adopted by User Systems. Various different cabling strategies have been implemented, notably in the shielding, EMC testing of these different configurations has given conclusive arguments for the choice of the 360° implementation over the others.

The recommended implementation is shielded twisted pair, with the shield fully connected at both sides. It is also recommended that a pair of wires in the cable be connected to ground at both sides, this is shown in Figure 4.84 on the next page.

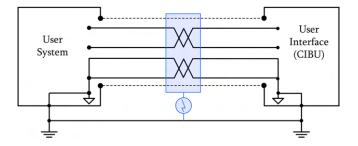


Figure 4.84: Recommended User System to User Interface Cable

This link showed the best performance at the highest levels of testing, without any perturbations being recorded, as shown in Table 4.31.

Full connector, grounded wires	d wires Severity Level			
USER_PERMIT Setting	$0.5 \mathrm{kV}$	$1.0 \mathrm{kV}$	2.0kV	4.0kV
TRUE	А	А	А	A
FALSE	Α	Α	А	A

Table 4.31: E	EMC Test	Results of	Circuit	in Figure 4.84
---------------	----------	------------	---------	----------------

Cables from User Interface to Controller

The cables from the User Interface to the Beam Interlock Controller have full shielding, and a pair of ground wires connected at both ends, as shown in Figure 4.85.

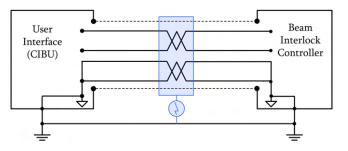


Figure 4.85: User Interface to Controller Cable

There were no problems with this link at any of the voltage levels.

Power Supply Testing

The Beam Interlock Controller has a switched mode power supply, this was also tested according to the IEC-61000, with a simple layout as shown in Figure 4.86.

Figure 4.86: EMC Testing of the VME Power Supply

These devices are designed to be used in industrial environments, so it has to be noted that they have already been tested to the IEC 61000 levels by the supplier [129], however no mention is

given regarding the level of performance achieved during manufacturer testing. The VME power supply showed no ill effects at any of the tested voltage levels. The DC supply for the User Interface (CIBD) was tested in much the same way as the VME Power Supply, using the same set-up as shown in Figure 4.86 on the preceding page. This is an enclosed power supply from Tracopower, which has been manufacturer tested and is certified as withstanding 1.0kV interference [130], to increase the protection level the supply has been encased a second time, and has a mains supply filter fitted with slow-fuse. The results showed that problems occurred during testing at 4.0kV, the highest level. Conducted radiation caused the Power PC of the VME chassis to fail, it needed a power cycle to be restored.

4.8 Failure Modes, Effects and Criticality Analysis

The design and realisation of the Beam Interlock System has been motivated by safety requirements. Failure Modes, Effects and Criticality Analyses (FMECA) have been carried out throughout the design evolution, determining the safety level of the system, with improvements that could augment the level.

Key design choices throughout the development of the system have been based on the results of preliminary FMECA, which can give a relative indication of the safety of one architecture over another. An example of this is the implementation of a complete redundancy all the way from User System, a FMECA showed that the benefits of this were great, as both the safety and capabilities for testing were improved, the FMECA also showed that the system is statistically less reliable when full redundancy is implemented, which in turn required the addition of dual-redundant power supplies for operation to reach the required availability.

Although the FMECA formed a very large and complex part of the design of the system, it does not pertain well to a description within a concise thesis such as this, it is mostly a statistical analysis involving many tables and values. A small overview of the FMECA method is presented, then the global results are shown, giving the relative system dependability in its different forms, and showing the key effects due to the system improvements which have been conditioned by the FMECA.

The reader must understand that the LHC is the focus of these FMECA investigations, it is the LHC that needs the most dependable protection system, having the most costly ramifications in the case of failure, above all, it's presumed that a system that meets the stringent requirements of LHC safety can be readily applied to the LHC injector chain, with little or no loss of safety due to the changing architecture.

4.8.1 Procedure for Performing a FMECA

Methodologies for performing a reliability analysis are usually related to applications that risk human life in the case of failure. In these cases the consequences of equipment failure can be generalised not only by dollar-value, but also by potential loss of life. Whilst the LHC is an expensive machine, one must understand that the loss of human life is not a consequence of the failure of the Machine Protection System. If this were the case the development and application of the complete Machine Protection System, including the Beam Interlock System, would be subject to governmental regulation. To this end the safe operation of the Protection system has been categorised, not following the limitations of the loss of human life, but the cost of failure in terms of repair time and swiss-francs.

The consequences of system failure have been split into four different categories.

No Effect Failures - Having no effect on the performance of the system, an example is a decoupling capacitor failing open circuit, this will not stop the system operating.

Maintenance - These failures allow the current LHC mission to be completed, but the system must be repaired to return to the specified dependability. An example of this would be the failure of a redundant power supply, the Machine Protection System can be operated without this, but the chances of a False Dump are increased if it is not repaired.

False Dump - A failure in the system which results in loss of safety, or critical functionality causes the current mission to be aborted. These failures are referred to as False Dumps, as the machine was not in danger and the Dump Request results from a failure in the Machine Protection System itself. An example would be the failure of an RS485 transceiver carrying a critical signal, this is detected, and a beam dump request is automatically issued.

Blind Failure - The most serious type of failure is a blind failure, here a circuit fails and leads to erroneous information being transmitted, for example, if a USER_PERMIT is FALSE, a blind failure would lead to it being decoded as TRUE.

A mission is considered to be ten hours long, as this is the expected length of an LHC run from pre-injection to planned dump request, some 400 missions are scheduled annually. Before each mission it is expected that the Beam Interlock System is completely tested, to be considered As Good As New (AGAN), this means that only failures within the ten hour window are considered with the consequences shown above. Altogether the FMECA shows that the system meets the specification, even when a pessimistic view is taken.

US military handbooks and standards have been used as a basic for the FMECA, with four documents playing crucial roles in the analysis:

- 1. MIL-HDBK-217F Reliability Prediction of Electronic Equipment [131]
- 2. MIL-HBDK-338B Electronic Reliability Design Handbook [132]
- MIL-STD-1629A Procedures for Performing a Failure Modes Effects and Criticality Analysis [133]
- 4. FMD 97 Failure Mode/Mechanism Distributions [134]

The MIL-STD-1629A defines the methodology for performing a FMECA, but it is completely based on a military application, with clear guidelines for defining operational requirements. It has been loosely used as the basis for the Failure Modes, Effects and Criticality Analysis, the classification of faults and consequences have been changed to match those defined for the operation of the LHC Machine Protection System.

The Beam Interlock System has been separated into its sub-systems, and a criticality worksheet has been derived for each, the worksheet is made in the following series of steps.

- 1. List the components used in the sub-system
- 2. Determine the component failure rate according to MIL-HDBK-217
- 3. Determine the component failure modes according to FMD-97 and MIL-HBDK-338
- 4. Analyse the circuit diagrams, and determine the consequences of each failure mode
- 5. Sum the hourly rates for each component by mode

A typical criticality worksheet has the following layout:

Part ID	Failure Rate	Mode	Ratio	Effect	Probability
[Ref Des]	$[/10^{9}h]$	[FMD-97]	[FMD-97]		[/h]
D10	13.26	Open/Drift	0.95	BF	1.49E-08
R10	15.20	Short	0.05	FD	7.83E-10

Table 4.32: Sample from a Criticality Worksheet

Throughout the calculations pessimistic failure rates are used, along with pessimistic views failure effects. The criticality worksheet for the Double User Interface can be found in Appendix H.

4.8.2 Results of the BIS FMECA

The raw sub-system FMECA results were then multiplied by the quantity of each sub-system present in the machine, giving the following hourly failure rates and modes for the sub-systems.

Not every sub-system exhibits all failure modes, the number of Blind Failures is very small as iterations through the FMECA revealed weaknesses which were progressively designed out of the system. Of course a blind failure here means that both redundant channels simultaneously fail in similar ways, leading to a complete blind failure for a single user. Combining the Blind Failures and cross-correlating for failures within different sub-systems leads to the following table for all of the LHC:

BIS Probability of Failure	NE	Μ	FD	BF
per Hour	1.31E-03	2.70E-03	9.12E-04	3.27E-09

Table 4.33: Cross-Correlated FMECA Results

Nomenclature	Decemintian	Но	urly Probab	oility of Fail	ure
Nomenciature	Description	NE	Μ	FD	BF
CIBD	DC Power Supply	4.78E-05	1.13E-03	2.41E-09	
CIBUS	Single User Interface	3.89E-04	2.34E-04	2.67 E-04	3.80E-11
CIBUD	Double User Interface	4.54E-04	2.61E-04	2.98E-04	2.36E-11
CIBPL	Patch Panel for the LHC	1.40E-06	2.80E-06	1.97E-05	
CIBEA	Extension Type-A		5.61E-06	5.61E-06	
CIBEB	Extension Type-B	2.80E-06		2.80E-06	
CIBT	Test and Monitor Supervisor	9.08E-05	$9.05 \text{E}{-}05$	4.59E-07	
CIBTD	Test and Monitor Display	4.90E-05	1.80E-06		
CIBM	Manager	1.59E-04	1.59E-04	2.39E-04	1.37E-12
CIBMD	Manager Display	9.50E-05	4.62 E-07	1.33E-05	
CIBO	Optical Repeater	1.42E-05		5.98E-05	5.08E-14
CIBG	Loop Generator	2.91E-06	2.91E-06	6.40E-06	
CIBFAN	VME Fan Tray		4.92E-04	7.57E-09	
CIBPSU	VME Power Supply		3.20E-04	3.20E-09	

This figure is within the SIL-4 range specified in table 2.4 on page 26. This considers that the system is completely redundant, it is relatively easy to manipulate the results to give an indicative value of the effects of changing redundancy strategy, this is shown in Figure 4.87.

Table 4.34: Results of the BIS Failure Modes, Effects and Criticality Analysis

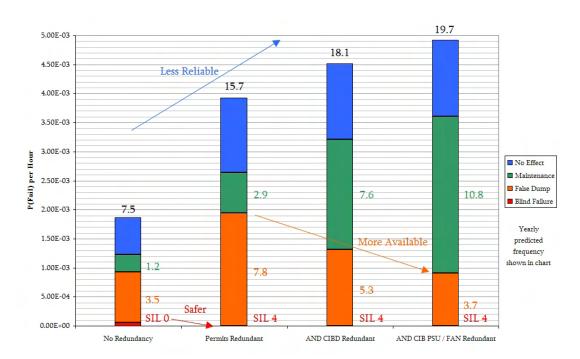


Figure 4.87: Development of the System Dependability to Meet Operational Requirements

Trade off in failure modes has been made, making the system more available and meeting both the safety and availability requirements specified for the system.

The left hand column shows the expected operation with no redundancy at all, where expected failure rates and modes lead to a system which does not achieve any Safety Integrity Level. The second column shows the system characteristic once the redundancy _A and _B is implemented throughout the system, this increases the safety, but the reliability and availability of the system gets worse. The third and final columns show that making User Interface power supplies, VME power supplies and VME fan trays redundant increases availability leading to a system mathematically matching the whole specification.

It's important to understand why one cannot say that the system *will* meet the specification, this is because of the methods used in reliability prediction. One can never be absolutely sure of a component failure rate, or failure mode, so one uses mathematical models and high-temperature

tests to build a prediction concerning the operation of the system. Hence, one can only say that mathematically, or statistically, the system should match the prescribed requirements. Safety analysis in this manner is not a defined science with a clear TRUE or FALSE, YES or NO answer, and it cannot be taken as such.

Some conclusions can clearly be drawn from this diagram without philosophical debate of the nature of the analysis. Firstly, a single VME chassis to house two controllers not only saves money, but also decreases the overall complexity of the system compared to one having a VME Chassis per controller. Thus, this increases the overall reliability. The same can be said for the Double User Interface, which allows independent User Systems to make a pair of beam-1 and beam-2 connections through a single device, this again decreases the overall system complexity, whilst maintaining the overall function.

The dual-use components are very successful in making a system more reliable, but in fact have no effect on the system safety. To reach required safety level the FMECA showed that the system had to be made completely redundant. The blind failures rate shown in the table considers the redundancy of the Beam Interlock System, the probability shown is of both redundant critical paths failing in the same way for the same User System, in the same mission. The cross correlation between different sections of the system is also taken into consideration for this figure.

4.9 Testing, Commissioning and System Diagnosis

Testing, commissioning and diagnosis are all closely related, a **system level commissioning** of the Beam Interlock System can be carried out by performing a full system test, whereas a **complete commissioning** can be done by testing the inter-system operation through a sequencer program which includes the User Systems and the Beam Transfer or beam dump systems. The Beam Interlock System can only be considered as ready for operation once the complete commissioning has been carried out.

A passive observation of the system health can be carried out within some seconds, by considering MONITOR data from each controller. Every DC RS485 link in the system has monitoring implemented at the electrical level and every encoded RS485 link has a link level monitoring detecting the loss and possible corruption of encoded information. An active investigation of the Beam Interlock System can be carried out by using the internal TEST functions, which verify that the Beam Interlock System is functioning within design parameters, giving an indication of the system's readiness for operation. The Beam Interlock System test and commissioning is broken down into three stages.

- 1. **Controller Testing** Each controller in the Beam Interlock System can be checked to ensure that it is configured correctly, this includes the User Interfaces and interconnecting cables. Passive monitoring and active testing ensures that the functionality of the system is correct.
- 2. System Testing Once the operation of each controller is known to be correct the links between controllers can be verified. Beam permit loop response times and propagation paths can be tested and verified, to ensure that the system is performing to design specification.
- 3. Inter-System Testing The links between the User Systems, Beam Interlock System and Beam Transfer System can be checked once the Beam Interlock System has passed the system testing. Links between User Systems and Interlock System can be verified by remotely setting and unsetting USER_PERMIT channels, links between the injection, extraction or beam dumping systems and the Beam Interlock Systems can be verified by setting and unsetting BEAM_PERMIT.

Active testing is always carried out in a completely safe manner as both links 'A' and 'B' cannot be simultaneously activated during a test. The implementation of two completely isolated channels from USER_PERMIT to BEAM_PERMIT is fundamental to this, online testing is a very motivating factor for the development of completely redundant links.

If a test fails, the implementation of complete supervision makes fault localisation fairly simple. The electrical integrity of RS485 links gives an instant indication of problem areas, making repairs fast and effective. Preventive maintenance is also possible through such things as the remote monitoring of redundant power supplies. The failure of a single supply will not cause the current mission to be aborted, before the next mission an intervention can scheduled to restore the system to full operation, with the full complement of redundant power supplies.

4.9.1 Controller Testing, Commissioning and Diagnosis

Testing of the controller is split into two steps, the first step involves a passive examination of the electrical integrity of the system, and the system configuration by using MONITOR data. The second step uses the built in 'test' mode of the system to verify the integrity of all of the links in the system.

Passive Examination - Monitor Data

The first step towards analysis of the operation of the controller is to look at MONITOR data, this can be broken down into three levels of supervision.

1. Electrical Level - RS485 FAULT signals determine whether the differential links are electrically correct, this kind of error detection is implemented in every DC link that is used in the system, and at least one end of every encoded link.

- 2. Link Level Both DC and encoded links can be checked for link integrity by checking the consistency of transmitted and received DC levels, by verifying that decoder circuits do not show any link errors and that glitch filters are not indicative of a link fault on critical DC levels.
- 3. Configuration Level The configuration of important components of the controller can also be read back. This includes VHDL versions, jumper settings and matrix configurations. This supervision does not usually indicate a component failure, rather a bad configuration requiring an intervention.

Every data link which is within the chassis of the Beam Interlock Controller has a remote diagnosis, this includes the links between Manager and the Test & Monitor board and the connections to the Safe Machine Parameters Receiver (SMPR), they are shown in Figure 4.88.

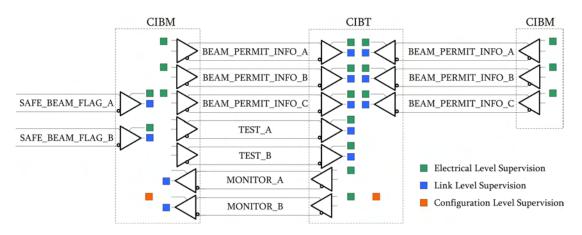


Figure 4.88: Diagnosis of Stand-Alone Controller Operation

All of the links have electrical level supervision, link level supervision can compare the transmitted with received values. The Manchester encoded links have integrity checks where any framing errors or timeouts can be used to indicate damaged or broken connections. Configuration level supervision ensures that the latest VHDL versions are being used and that the configuration of the Manager board and patch-panel is consistent with expected values, this includes the jumper settings and other elements, such as the source of the Safe Beam Flag. Combining the supervision at these different levels allows the whole controller to be passively verified.

A similar analysis can be carried out on the links between the controller and each User Interface, as shown in Figure 4.89.

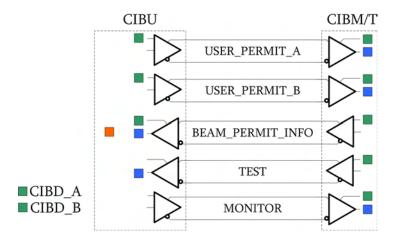


Figure 4.89: Diagnosis of Controller and CIBU Operation

The USER_PERMIT, BEAM_PERMIT_INFO, TEST and MONITOR links are all checked for electrical integrity by monitoring the RS485 FAULT signals, for the USER_PERMIT and BEAM_PERMIT_INFO signal both the source and destination FAULT signals are available in the MONITOR data. The two redundant power supplies in each User Interface can also be inspected

4.9. TESTING, COMMISSIONING AND SYSTEM DIAGNOSIS

for electrical performance, ensuring that both are functioning correctly. Link level integrity can be ascertained by looking for differences in the internally read and received values of USER_PERMIT and BEAM_PERMIT_INFO. Manchester decoding errors can be used to establish whether the serial communication channels TEST and MONITOR are coherent, for the USER_PERMIT signals both glitch counters and glitch rates can be used to check signal integrity. At the configuration level the User Interface Identification can be read and compared to ensure that the correct Interface is installed, and that it has the correct beam function. This passive snapshot gives an immediate indication of the performance of the connection between each User Interface and controller.

In the tree architectures the LOCAL_BEAM_PERMIT of one controller can be connected directly as a USER_PERMIT input to another. This link can be completely supervised just as a regular USER_PERMIT, even though this link may only be implemented a handful of times in the CERN accelerator complex. Both the sending and receiving end FAULT signals are available to check electrical integrity, for link level integrity the sent value of LOCAL_BEAM_PERMIT and received USER_PERMIT can be compared and the glitch counters and rates monitored. Figure 4.90 shows this simple interconnection.

Figure 4.90: Diagnosis of Slave-Controller to Master-Controller Link

The User Systems that are connected through both a User Interface and Fibre Extender kit can also be completely supervised. Electrical integrity can be verified by checking FAULT signals in all stages of the transmission, redundant power supplies can also be remotely verified. Finally, the integrity of all the links can be verified by checking for Manchester decoder errors, glitches and errors flagged in the fibre optic link, as shown in Figure 4.91.

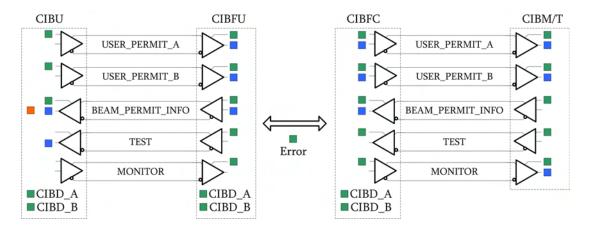
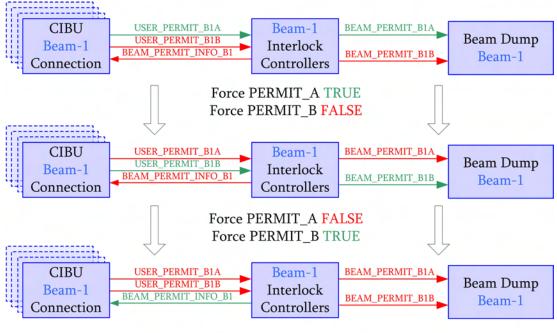



Figure 4.91: Diagnosis of an Extended Controller to User Interface Link

Active Examination - Test Mode

Testing the system in a stand-alone mode is the equivalent to a simple commissioning of the Beam Interlock System, where the internal structure and cabling is completely verified, this is done in three steps, all of which can be activated from the supervision software.

Force PERMIT_INFO TRUE

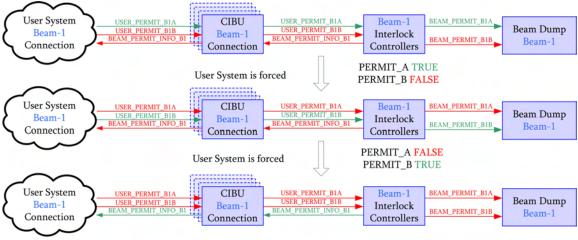
Figure 4.92: Testing the Beam Interlock System

The complete operation of the _A and _B redundancy can be checked by using test mode to force _A TRUE, _B FALSE and vice-versa, during each test the monitor data can be read-back and checked for consistency. More importantly, setting one signal to true allows the signal propagation to be traced back through User Interface and controller making sure that all the signals are coherent, and that they are routed in the correct paths without any short circuits. Electrical and link level supervision can be checked in both configurations to ensure that the Beam Interlock System architecture is correct, and that the system is performing to specification.

BEAM_PERMIT_INFO can also be forced to TRUE to check its integrity throughout the controller. The final step in commissioning a controller is to first force a User Interface into test mode, then subsequently to set BEAM_PERMIT_INFO to TRUE, this should result in the User Interface switching automatically to operation mode, as the test is hardware inhibited when BEAM_PERMIT_INFO is TRUE.

4.9.2 System Testing, Commissioning and Diagnosis

System level testing can begin once each controller has been verified. The beam permit loops are the focus of the testing and monitoring. Forcing every User Interface into test mode on the whole of one redundant channel forces all the LOCAL_BEAM_PERMIT signals for a single loop to be established. Generating the 10MHz then allows BEAM_PERMIT of the loop to be set, the propagation of the beam permit loop can then be checked for both electrical and link integrity. The generator can be forced to stop leading to BEAM_PERMIT changing to FALSE, the propagation of the frequency interruption around the machine can then be inspected, ensuring that the loop is coherent.


A more comprehensive test is possible by setting BEAM_PERMIT TRUE for a permit loop and then switching a User Interface to the opposite test mode. This breaks the permit loop frequency propagation at that point, this can then be traced around the machine, ensuring that response time requirements are met, and that the generator arming state machine is working correctly.

4.9.3 Inter-System Testing, Commissioning and Diagnosis

Once the individual system tests of the Beam Interlock System have shown that internally the system is operating correctly, focus can shift to the last link from User System to User Interface.

Testing at this level is carried out with the same three steps that were shown in Figure 4.92 on the preceding page. In this case the internal test mode of the Beam Interlock System is not used for testing the USER_PERMIT signals instead they are forced to change state at the level of the User System.

A sequencer is foreseen that will have a link to every User System, the Beam Interlock System and the extraction, injection and beam dumping systems. This sequencer will have direct access to the USER_PERMIT signals driven by the User Systems and the BEAM_PERMIT read by the Beam Transfer systems. On request, and if conditions allow, the sequencer will be able to switch specific USER_PERMIT signals from TRUE to FALSE and read back the relevant BEAM_PERMIT signal. This can be carried out in a completely safe manner by exploiting the _A and _B redundancy.

Beam Interlock System forces: PERMIT_INFO TRUE

Figure 4.93: Test and Commission of Beam Interlock System

Completing these steps is equivalent to a complete commissioning of the Beam Interlock System.

4.10 Software and Supervision

Once armed, the Beam Interlock System is designed to operate autonomously in a completely safe manner without intervention or control from operators or supervision systems. It's designed to be safe at hardware level, without software required for correct operation. The matrices controlling the critical functions do not rely on the operation of the monitor FPGA, however, supervision is still an important part of the Beam Interlock System, it provides operators with an instant overview of the machine operation, whilst also allowing machine interlock experts to quickly and accurately determine the health of the system. The software supervision is all based on the standard CERN Front-End Software Architecture (FESA) which allows front end accelerator controls to be integrated into a software architecture common to the whole machine.

The FESA operates at the level of the VME chassis, a FESA server runs in the Power PC of the VME chassis, it polls the Manager board every second, formatting the data stored there and making it available to be read by supervision software which runs as a Java client. This Java client is referred to as the supervision software, the software is realised to meet the requirements of both types of user, through two different screen types: Operator Screens and Specialist Screens.

The software is in a continuous state of development, only a few screens have been realised, the figures shown in this section are non-functional mock-up screens, functioning versions are shown in the next chapter where the prototyping and preliminary results are discussed. Strategically, the final implementation of the software will have to fulfill all of the needs for the operators and specialists, which view exactly the same hardware but in a completely different level of detail.

4.10.1 Operator Screens

The supervision is intended to give a quick visual representation of the Beam Interlock System, allowing views to be chosen that range from user level, through controller up to system level. Operators are not too concerned with the operation of the system at the electrical level, so a wide range of options is given for the specific view shown of the system operation.

Geographical View

The software has a 'System' tab which shows primary screens with the operation at the system level. The first tab extrapolates to one level higher, showing the operation of the seven Beam Interlock Systems simultaneously, based on the geographical layout of the accelerator complex. Figure 4.94 on the facing page shows a representation of what this could look like, where clicking on the tabs shows different systems.

The circles beside the system names represent the BEAM_PERMIT values of the Beam Interlock Systems. BEAM_PERMIT only switches TRUE for some milliseconds in the 'tree' systems, so when a BEAM_PERMIT window was detected by the software it causes the relevant sections to briefly flash green giving an indication of a window passing even though the actual read may have taken place just after the extraction. Clicking on any of the circles brings up the relevant system level window, relating to the specific Beam Interlock System.

Architectural View

The geographical view is complemented by an architectural view, this collects the User Systems by function, rather than location. It's possible to show the function of the whole system on a single screen, for example Figure 4.95 on the next page shows a possible hierarchical view of the LHC Beam Interlock System. In this case the Powering Interlock Controllers are not giving USER_PERMIT, the operators are immediately drawn to the red indicator, which when clicked could launch the relevant supervision and control software of the malfunctioning system for a more accurate debugging. Text logs are created to compliment this, the operator has a clear indication of the problem locations, which can quickly be used to start corrective action.

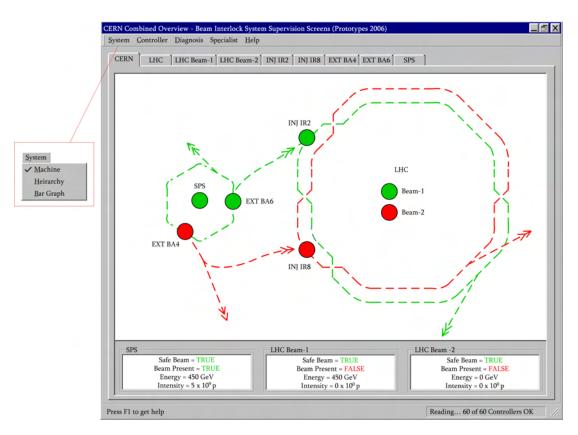


Figure 4.94: CERN-wide Supervision

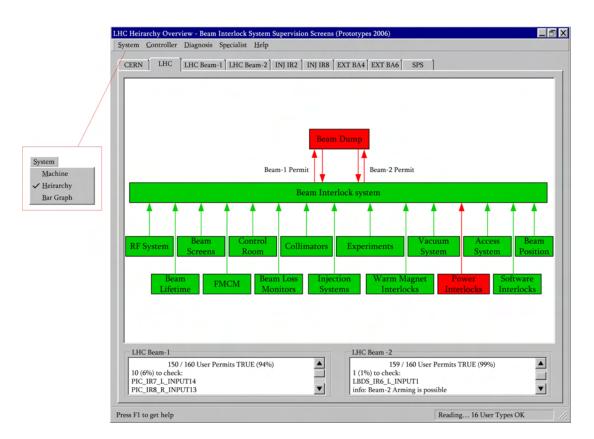


Figure 4.95: Architectural View of the LHC BIS Supervision

Injection and Extraction Specific Screens

The architectural and geographical views are excellent for the operation of the 'ring' systems, but they are not so accurate when it comes to the windowed extraction and injection systems. Bar graphs can be used to give a visual indication of the operation at the system level, this is especially useful for the extraction from SPS point 4, where the beam destination can be either CNGS, or the LHC. Figure 4.96 on the facing page shows a typical bar graph view at the system level for this extraction.

The relevant controllers are listed on the left hand side of the chart, with the final extraction permit signal at the top. The start of the machine cycle (SSC) and extraction signals (EXT) are marked as vertical bars on the horizontally scrolling bar chart. Various parts of the bar charts become greyed out when the beam destination indicates that they may be ignored, this gives a quick and simple overview of the operation of the system. A cycle log can also be kept, with any missed extractions being flagged, these can be investigated during down-time to ascertain the cause of the missed extraction.

These bar chart views can also be selected for each controller, by either selecting from the drop-down menus or clicking on the controller name on the system level bar-graph view. In this case a small floating window is created that automatically refreshes every second, this means that the bar graphs for all of the relevant extraction and injection controllers can be shown simultaneously, useful during commissioning and testing.

The 'Beam Mode' that is shown on these charts shows the destination for the beam in the machine, this value is one of the special User Systems of the Beam Interlock System for SPS Extraction in BA4. Note that the beam accelerated in SPS can only have one destination at a time.

Controller View

Descending deeper into the operation of the Beam Interlock System allows the inputs and outputs for a particular controller to be shown, a typical screen could be like the one shown in Figure 4.97 on the next page. The list of controllers is maintained as a tree structure on the left hand side, selecting a controller, (in this case BA6) brings up the basic structure of the controller. MASKING can be applied at this level by selecting and deselecting masks, if the Safe Beam Flag is FALSE these masks are ignored. A text log can also be shown indicating any thing that is out of the ordinary, in this case it is showing that the Beam Loss Monitor User System is not giving USER_PERMIT, however, as the channel is masked and the Safe Beam Flag is TRUE, operation is allowed to continue.

Any User System that is disabled is automatically greyed out, the supervision software compares the read-back disable switches and compares them to a database, any inconsistencies would be immediately highlighted for operator acknowledgment. An advanced view is possible which details all the redundancy within the Beam Interlock Controller, it is not expected that the operators would select this advanced view for day-to-day operation as it displays information which is not relevant for normal operation.

Operators can also select a hierarchical view at the controller level, in the same way as was shown at the system level, the final option displays the history buffer from the controller, this allows operators to establish a timeline of events, and to record the occurrence of specific events to microsecond precision. It is expected that the history buffers from many controllers could be merged, giving a system level view of operation, useful for debugging complex events.

The Beam Interlock Systems also serve as the first point of call for Post Mortem analysis, if the logs from all the Beam Interlock Systems are merged it is possible to show the chain of events that lead to the beam dump request.

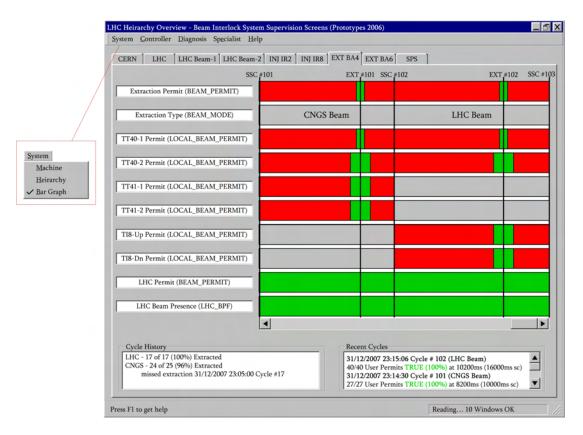


Figure 4.96: Bar Graph View of the BA4 Extraction BIS Supervision

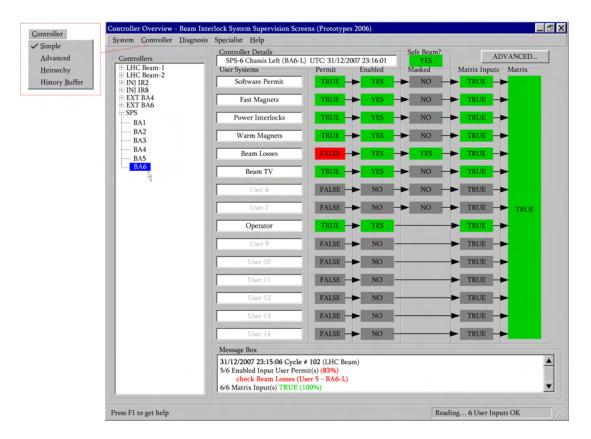


Figure 4.97: Controller Level Simple Supervision

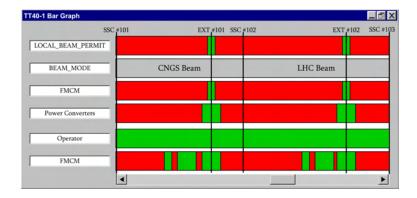


Figure 4.98: Controller Level Floating Bar-Graph

4.10.2 Specialist Screens

The diagnosis and specialist tabs are closely related, diagnosis shows the internal statistics of the system operation, these can be viewed at the system, controller or user level. These are useful for operators, as they show a reduced information related directly to the operation of the machine. Specialist screens expand the diagnosis view to show a more complete information that is directed towards machine specialists, particularly the operation of the Beam Interlock System.

Electrical Operation

A typical example of this is a specialist status screen which shows the electrical operation of the system at the user, controller and system levels, a typical output is shown in Figure 4.99 on the facing page where the RS485 links are shown from User System to Beam Interlock Controller. In this example there are only four User Interfaces connected to the controller, one of the User Interfaces is shown as an extended version, having a Fibre Extender kit installed for signal transmission.

A text log is also created showing the status of the system at the controller level, in this case it can be seen that one of the redundant power supplies of User Interface #144 (CIBU 144) is malfunctioning. A maintenance item is created, and the operator is clearly informed. The supervision software will inform operators of failures that allow operation to continue, as they do not effect system safety. A typical controller can have up to fourteen inputs, clicking the 'More...' button brings up a large screen highlighting the whole controller, it is also possible that this reduced screen would only show the parts of the system that have failures.

Beam Permit Loops

At the system level the redundant beam permit loops are important for operation. A specialist screen is foreseen that shows the characteristics of the loops, Figure 4.100 on the next page shows a typical view.

The frequencies, distributions, number of glitches and error rates are shown at each point of the beam permit loop. This gives an instant indication of the permit loop function. These figures can be plotted graphically by clicking on the relevant button, showing the operation of the beam permit loops with reference to the worst acceptable performance. Numbers in these tables become orange when they are approaching limiting values, red when they are outside of design specification.

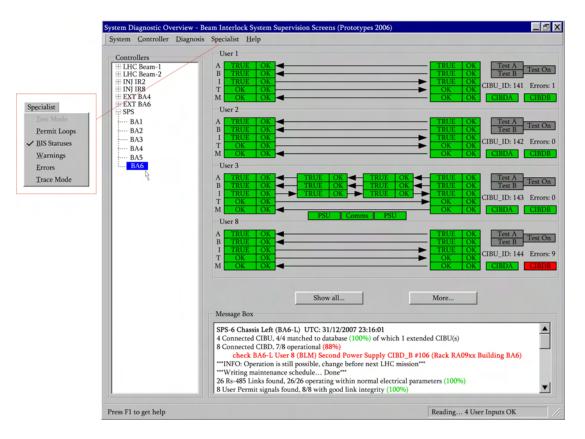


Figure 4.99: Specialist Supervision Beam Interlock Controllers

	CERN LHC LHC	Beam-1 LHC Beam-2 IN	J IR2 INJ IR8	EXT BA4 EXT	BA6 SPS		
	/	Location	Frequency	Sigma [ns]	Glitches	BER	
		Generator Out (IR6-L)	10.000001	0.001	0	< 1 x 10 ⁻¹⁶	
		Loop Out (IR5-R)	10.000001	0.005	0	< 1 x 10 ⁻¹⁶	
		Loop Out (IR5-K)	10.000001	0.010	0	< 1 x 10 ⁻¹⁶	
		Loop Out (IR4-R)	10.000001	0.020	1	3 x 10 ⁻¹⁴	
		Loop Out (IR4-L)	10.000002	0.100	1	3 x 10 ⁻¹⁴	
	/	Loop Out (IR3-R)	10.000003	0.150	1	3 x 10 ⁻¹⁴	
cialist		Loop Out (IR3-L)	10.000001	0.155	3	1 x 10 ⁻¹⁴	
	1	Loop Out (IR2-R)	10.000001	0.200	3	1 x 10 ⁻¹⁴	
Cest Mode	Loop A (ANTI CLOCKWISE)	Loop Out (IR2-R)	9,999999	0.312	3	1 x 10 ⁻¹⁴	
ermit Loops	(ANTI CLOCKWISE)	Loop Out (IR1-R)	10.000001	0.405	3	1 x 10 ⁻¹⁴	
IS Statuses		Loop Out (IR1-L)	10.000000	0.607	4	5 x 10 ⁻¹³	
15 Statuses		Loop Out (IR8-R)	10.000001	0,700	4	5 x 10 ⁻¹³	
Varnings		Loop Out (IR8-L)	10.000001	0.899	4	5 x 10 ⁻¹³	
Irrors		Loop Out (IR7-R)	10.000001	1.305	5	3 x 10 ⁻¹³	
		Loop Out (IR7-L)	10.000001	1.555	5	1 x 10 ⁻¹³	
Trace Mode		Loop Out (IR6-R)	10.000001	1.752	6	8 x 10 ⁻¹²	
		Generator In (IR6-L)	10.000001	1.985	7	2 x 10 ⁻¹²	Graphical View.
-		Location	Frequency	Sigma [ns]	Glitches	BER	1
		Generator Out (IR6-R)	10.000001	0.001	0	< 1 x 10 ⁻¹⁶	
			10.000001	0.005	ō	< 1 x 10 ⁻¹⁶	
		Loop Out (IR7-L) Loop Out (IR7-R)	10.000001	0.010	Ő	< 1 x 10 ⁻¹⁶	
		Loop Out (IR7-R)	10.000001	0.020	i i	3 x 10 ⁻¹⁴	
			10.000002	0.100	i	3 x 10 ⁻¹⁴	
		Loop Out (IR8-R)	10.000003	0.150	i	3 x 10 ⁻¹⁴	
		Loop Out (IR1-L) Loop Out (IR1-R)	10.000001	0.155	3	1 x 10 ⁻¹⁴	
	Loop B	Loop Out (IR1-K)	10.000001	0.200	3	1 x 10 ⁻¹⁴	
	(CLOCKWISE)	Loop Out (IR2-L) Loop Out (IR2-R)	9.999999	0.312	3	1 x 10 ⁻¹⁴	
		Loop Out (IR2-R)	10.000001	0.405	3	1 x 10 ⁻¹⁴	
		Loop Out (IR3-L)	10.000000	0.607	4	5 x 10 ⁻¹³	
		Loop Out (IR3-R) Loop Out (IR4-L)	10.000001	0.700	4	5 x 10 ⁻¹³	
		Loop Out (IR4-L) Loop Out (IR4-R)	10.000001	0.899	4	5 x 10 ⁻¹³	
		Loop Out (IR5-L)	10.000001	1.305	5	3 x 10 ⁻¹³	
		Loop Out (IR5-L)	10.000001	1.555	5	1 x 10 ⁻¹³	
		Loop Out (IR6-L)	10.000001	1.752	6	8 x 10 ⁻¹²	
		Generator In (IR6-R)	10.000001	1.985	7	2 x 10 ⁻¹²	Graphical View.

Figure 4.100: Specialist Supervision of the Beam Permit Loops

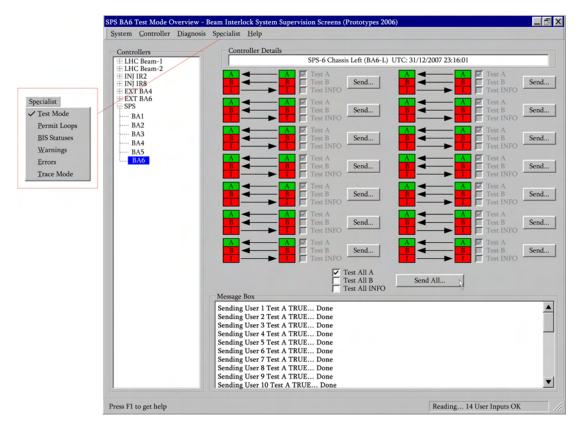


Figure 4.101: Specialist Test Screens at the Controller Level

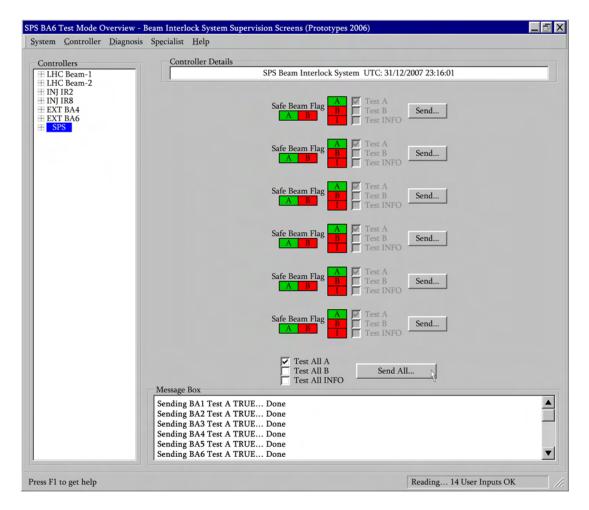


Figure 4.102: Specialist Test Screens at the System Level

Test Mode

Test mode is one of the most important functions of the Beam Interlock System during commissioning and before injection, numerous specialist screens are foreseen that aid in the implementation of this function. Test mode is a powerful tool, it's expected that it will be briefly used at the start of every mission, to ensure the functionality of key parts of the system, a full system test is expected to be ran periodically, at intervals between one month and one year depending on circumstances. Essentially the test mode allows USER_PERMIT_A to be set to TRUE whilst _B is set FALSE and vice-versa, it also gives a method for testing BEAM_PERMIT_INFO, which can be forced to TRUE on command. Figure 4.101 on the facing page shows the test screen at the controller level.

Unchecking the 'all' boxes at the bottom allow individual User Interfaces to be tested, checking an 'all' box overrides the settings at the User Interface level and sets the specified test to every User Interface. An automated read back can then confirm that the set values are correct, and that the Beam Interlock Controller is behaving correctly. Figure 4.102 on the preceding page shows a typical system level test supervision screen where tests can be set at the system level.

At this level it is also possible to read back Safe Beam Flag values, it is foreseen that a test mode of the Safe Machine Parameters system could set one of the flags to TRUE, the other to FALSE.

Of course the screens shown here have not yet been realised, these are just starting points to inspire the supervision software that will be implemented for the system start up in 2007. It may also be that the full range of screens is not available until some months after the start of LHC, as priority is given to the more critical functions required for the initial stages of machine operation. Equally, it is unclear how some specific functions will be implemented, such as the request for automatic beam-dump of both beams in the generator board, or the automated arming of the beam permit loops. These problems will be addressed and overcome in due course, unfortunately not allowing enough time for their inclusion in this thesis.

Chapter 5

Proof of Concept and First Experience

The Beam Interlock System has been tested in numerous situations as a precursor to the mass production and installation of the equipment for the protection of the LHC. A full controller prototype and a set of User Interfaces were manufactured and rigorously tested in laboratory conditions, following this a complete preseries of Beam Interlock Controllers and User Interfaces was made and installed in both the SPS ring and the SPS BA4 extraction for CNGS beam. The protection of the SPS and in particular the CNGS experiment have been important milestones for the Beam Interlock System, proving the system operation with real risks in the case of failure.

5.1 Prototype Testing Examples

The prototype testing covered the complete operation of the Beam Interlock Controller from User Interface through to beam permit loop, a brief overview of the key test points is presented here, concerning the testing of the User Interface, Test & Monitor and Manager boards.

The patch-panel and extension boards were also completely verified, these passive components proved to be reliable and robust, the exploitation of the VME chassis in this manner has been proven to be sound, making reliable interconnections between components. Appendix O details the assembly the passive elements in the rear of a VME chassis.

The following pages present the results of tests and measurements carried out on the operation of the components in the critical path of the Beam Interlock System.

User Interface

The User Interface has been rigorously tested both for its ease of fabrication, function and for compatibility with User System platforms.

The current loop input was shown to be very versatile, regulating a forward current between 10 and 13mA depending on component values and User System Voltage. The switching threshold between USER_PERMIT FALSE and TRUE is around 3.5mA, with the output changing state once the input reaches around 1.7 Volts. These characteristics will slowly increase as the components on the circuit board age, the guaranteed switching level for the optocoupler is 6.3mA, which is reached once the input voltage exceeds approximately 2 Volts. The absolute maximum level of input voltage is much higher than the 25V specification as the transistors used in the design tolerate some 50V before breaking down, nonetheless, Transient Voltage Suppressor (TVS) diodes are used that have a threshold of 33V. These provide complete overvoltage protection for the input circuits of the User Interface with little effect on the system response time. Overall, the input characteristics of the current loop are good, this single circuit can easily accommodate every User System.

The propagation delay for a transmission of USER_PERMIT through the User Interface has also been investigated. Figures 5.1 and 5.2 show the results of experiments that recorded some thousands of USER_PERMIT activations and de-activations. A 5V signal was used as an input to the User Interface current loop. The upper trace shows the input to the User Interface, the lower traces show the output which has been conditioned by an RS485 receiver. Persistence has been used on the traces, the shaded purple areas show the range of responses over the thousands of activations.

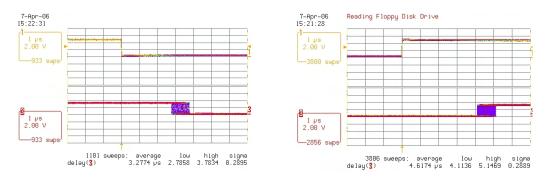


Figure 5.1: TRUE to FALSE

Figure 5.2: FALSE to TRUE

The propagation delays are acceptable, with typical responses as shown in Table 5.1.

Transition	Input to Output Delay		
$\boxed{\text{TRUE} \rightarrow \text{FALSE}}$	$3.3 \pm 0.5 \mu s$		
$FALSE \rightarrow TRUE$	$4.6 \pm 0.5 \mu s$		

Table 5.1: Time Delay of the CIBU circuits for a 5V User System

Glitch Filters on the Manager Board

The USER_PERMIT transmitted from the User Interface is conditioned by the matrix on the Manager board. Amongst the many tests of this board were measurements concerning the operation of the glitch filtering circuits. This is one of the more complicated operations implemented in the matrix CPLDs.

The upper dark-blue trace is the USER_PERMIT signal input to the matrix, with the lower light-blue trace being the signal at the output of the matrix. In this case the Manager board was equipped with a $2\mu s$ filter, slightly longer than the $1.6\mu s$ filter specified for the final implementation.

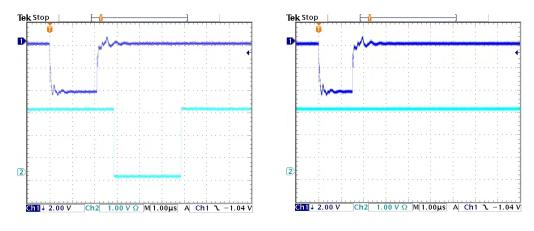


Figure 5.3: USER_PERMIT FALSE $\geq 2\mu s$ Figure 5.4: USER_PERMIT FALSE $< 2\mu s$

Figure 5.3 shows a USER_PERMIT change that lasts longer than the filter length, Figure 5.4 shows a change that is shorter than the filter length, which is removed.

TEST and **MONITOR** Mechanisms

The function of the Test & Monitor board has been verified by a small Visual Basic program. The Test & Monitor board was connected to a single User Interface and the serial transmission between the devices was verified. Figure 5.5 shows the output of the program, with the connected User Interface shown at the top of the monitoring screen. The raw data read from the Test & Monitor board is tabulated on the right-hand side, allowing a bit-level verification of the serial communications channels. Eventually, this local monitoring screen will be implemented in the Beam Interlock System supervision software to monitor the status of the complete system.

CIBT Monitoring Progra	m 0v1 (10.03.06 BMT)			
	CIBT	RS485 Links	CIBU	CIBD
			InstA Test IN1 ID: 8 Errors: 0 Beam-1 TestD Test1 IN2 IN2 ID: Creating Errors: (####) (pending)	A B Raw Data
			Test// Test// IN3 ID: <####> Errors: <###> <pending></pending>	Image: A state in the
CIBM (RS485)			TestA Test IN4 D: <####> Errors: <###> <pending> TestA TestA TestA</pending>	Image: Constraint of the second sec
Permit Info			TestB Lest INS ID: <####> Errors: <####> <pending> TestA Test1 IN6</pending>	
→ OK A OK B OK C	LED VHDL Version 1 v 5 CTRL VHDL Version 1 v 5		ID: <#####> Errors: <####> <pending> TestA TestA IN7 ID: <#####> Errors: <####> <pending></pending></pending>	
Test → 0K A 0K B Monitor ← 0K A 0K B			TestM Test IN8 ID: (####) Errors: (###) (pending) TestM TestM IN9 TestM TestM (pending) ID: (###) Errors: (###) (pending) TestM TestM IN10 ID: (####) Errors: (###) (pending)	International International International International <t< th=""></t<>
			TestA/ TestB Test IN11 ID: (####) Errors: (###) (pending) TestB TestB IN12 ID: (####) Errors: (###) (pending) TestB TestB IN13 ID: (####) Errors: (###) (pending) TestB TestB IN14 ID: (####) Errors: (###) (pending) TestB TestB IN14 DD: (####) Errors: (###> (pending)	OUTICEBUADO DOUTCO

Figure 5.5: Monitoring of the CIBU via the CIBT and Visual Basic

LOCAL_BEAM_PERMIT as a USER_PERMIT

Connecting one Beam Interlock Controller as an input to another is vital for the operation of the extraction and injection interlock systems, this is the basic principle for the implementation of the Master Beam Interlock Controller. A pair of prototype controllers has been used to verify the use of LOCAL_BEAM_PERMIT as a USER_PERMIT input. Figure 5.6 shows the layout of this interconnection, where the USER_PERMIT from a User Interface connects to a Beam Interlock Controller, which is subsequently connected to another controller, in the same way as will be implemented for the Master Beam Interlock Controller.

Figure 5.6: User Interface \rightarrow Controller \rightarrow Master

The typical response time is shown in Figure 5.7. The upper trace shows the USER_PERMIT input to the User Interface, the middle trace shows the LOCAL_BEAM_PERMIT output of the Beam Interlock Controller, the lower trace is the LOCAL_BEAM_PERMIT of the Master Beam Interlock Controller.

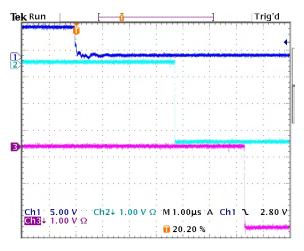


Figure 5.7: Reponse Time of the Master-Slave Links

The transmission delay between each Beam Interlock Controllers is $< 3\mu s$, this will easily accommodate the requirements of the extraction and injection regions.

Beam Permit Loops

The principle of the beam permit loop have also tested, in this case a small four point loop was formed, and measurements concerning the frequency propagation characteristics were taken. The layout of the test loop is shown in Figure 5.8.

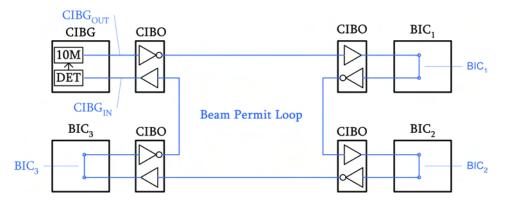
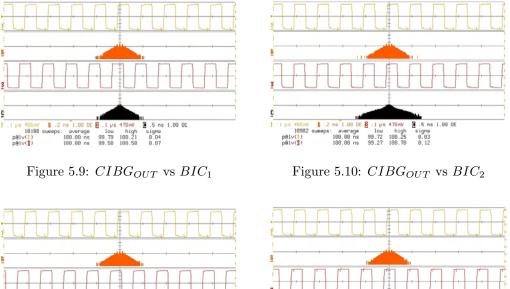



Figure 5.8: Simple Three Controller Prototype Beam Permit Loop

The measurement points are marked in blue on Figure 5.8. The four following charts are screen shots from an oscilloscope connected at the four points of the beam permit loop.

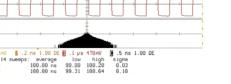


Figure 5.11: $CIBG_{OUT}$ vs BIC_3

Figure 5.12: $CIBG_{OUT}$ vs $CIBG_{IN}$

.03

Tabulating these results leads to Table 5.2, showing the jitter observed at each point of the loop.

Distribution Sigma [ns]	$CIBG_{OUT}$	BIC_1	BIC_2	BIC_3	$CIBG_{IN}$
Pessimistic Prediction	0.04	0.11	0.15	0.18	0.24
Observation	0.03	0.07	0.12	0.10	0.15

Table 5.2: Predicted and Observed Performance of the Prototype Beam Permit Loop

An unexpected characteristic of some optical transceivers was the improvement of duty cycle during transmission, the devices exhibiting these effects have above average characteristics for both transmitted power and receiver threshold. Generally, the prototype beam permit loop proved the frequency transmission principle to be sound, with the models derived in section 4.2 shown to have the correct characteristics.

5.2 Interlocking the SPS

Once the laboratory tests showed that the system was functionally correct, a preseries was made and installed in the SPS machine.

The SPS has has six points, each is to be eventually fitted with a Beam Interlock Controller, but for the 2006 testing only a sub-section of the SPS was fitted with a Beam Interlock System. This was implemented in parallel to the existing SPS interlock system, meaning that the SPS safety would not be compromised if the Beam Interlock System failed.

There were only five User System installed, requiring three Beam Interlock Controllers. Figure 5.13 on the next page shows the layout of the installed systems and controllers with respect to the SPS.

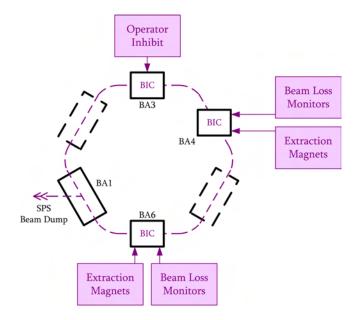


Figure 5.13: Beam Interlock Installation in SPS, 2006

The SPS Beam Dump System is located in point one (BA1), at this early stage the beam dumping system was equipped with a single frequency detection circuit for a single beam permit loop. To maintain the system safety the permit loops were passed through the A and the B matrices in series. At the points without controllers a simple bridge was used to complete the permit loops. Figure 5.14 shows the permit loop implementation in the SPS.

The fibres installed in the SPS give a good basis for functional verification of the beam permit loop as they have a relatively high attenuation and are typical of those that will be installed in the LHC. The fibre runs from point 6 to 4 and point 3 to 1 are approximately the same lengths as those that will be installed between points in LHC. A pessimistic beam permit loop performance can be inferred using the rules derived in Section 4.2, this can be compared to SPS beam permit loop observations. The test points are labelled in green on Figure 5.14, Table 5.3 on the facing page shows the measured optical losses, coupled with the optical characteristics of transmitter and receiver for each link.

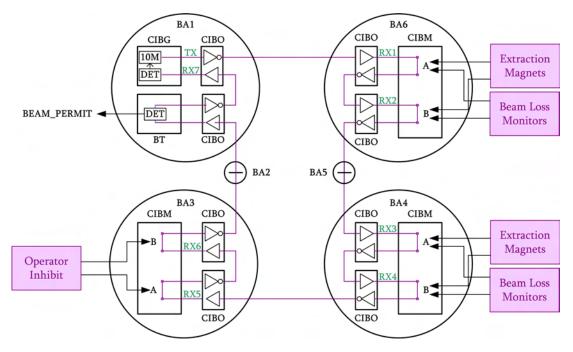


Figure 5.14: Beam Permit Loop and Controller Installation in SPS, 2006

The measurements of the transmitted optical power, link losses and receiver thresholds were used

to derive the expected beam permit loop performance and overall jitter at each test point. The right hand column (shown in blue) of Table 5.3 shows the overall sigma predicted using the pessimistic model.

Li	nk	Transmitter	Link	Receiver	Power	Change	Overall
Start	End	Power	Loss	Threshold	Margin	in σ	σ
Start		[dBm]	[dB]	[dBm]	[dBm]	[ns]	[ns]
BA1	BA6-A	-16.49	2.29	-32.79	-14.01	0.1	0.1
BA6-A	BA6-B	-16.54	0.45	-32.43	-15.44	0.1	0.2
BA6-B	BA4-A	-15.23	2.91	-32.80	-14.66	0.1	0.3
BA4-A	BA4-B	-15.85	0.59	-31.33	-14.89	0.1	0.4
BA4-B	BA3-A	-15.83	2.65	-32.83	-14.35	0.1	0.5
BA3-A	BA3-B	-15.98	0.44	-31.13	-14.71	0.1	0.6
BA3-B	BA1	-16.08	3.88	-31.39	-11.43	0.1	0.7

Table 5.3: Optical Power Budget and Predicted Performance of the Beam Permit Loops in SPS

The observed performance (shown in green) compared to these predictions is shown in Table 5.4.

Measurement Point	ΤХ	RX1	RX2	RX3	RX4	RX5	RX6	RX7
Pessimistic Prediction	0.04	0.10	0.20	0.30	0.40	0.50	0.60	0.70
Observation	0.03	0.03	0.07	0.06	0.09	0.08	0.11	0.10

Table 5.4: Predicted and Observed Performance of the SPS Beam Permit Loop

Clearly the model derived for the performance of the beam permit loop provides a very pessimistic approximation, even in the machine environment. Using this model for the LHC beam permit loops will ensure that even in the worst case the required Bit Error Rate is achieved.

5.2.1 Software Supervision of the SPS

In addition to the hardware, the SPS Beam Interlock System has been a good testing ground for the supervision software. Prototype screens have been created that interpret the data read from the Manager board, allowing the system operation to be visualised. Figure 5.15 shows the overview screen with controllers installed in points 3, 4 and 6. BA4 on the right of the diagram is also the location of the extraction interlock system for the CNGS experiment.

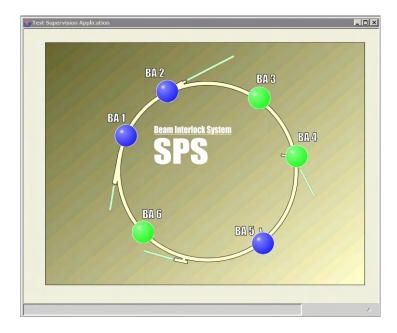


Figure 5.15: Overview Supervision Screen Prototype, SPS 2006

Figure 5.17 on the facing page shows the supervision screen of a single controller. In this case the controller has a pair of User Systems connected in two maskable channels. The USER_PERMIT signals from the User Systems are shown on the left hand-side of the screen, followed by the disable switches and mask settings which lead to the final LOCAL_BEAM_PERMIT signal on the right-hand side. The Safe Beam Flag is shown at the top of the screen aligned with the mask signals.

Expanding the simple view to include the redundant channels leads to Figure 5.18 on the next page, showing the specialist controller view. This is the same layout as that shown previously, with the inclusion of the redundant signals for each channel. This screen can be used by machine interlock specialists to verify the operation of each of the channels, _A and _B. This is especially important during a test, when _A and _B are forced to different values.

5.2.2 Software Interlocks

The SPS Beam Interlock System has also been used as a test bench for the Software Interlock System (SIS). This system is capable of forming more complex interlocking criteria based on data retrieved from the operational databases for the equipment.

The interface between the Software Interlock System and Beam Interlock System was implemented by periodically writing a value to the FESA server running in the Power PC of the VME Chassis. This server would then write a value to the Monitor FPGA which in turn sets SOFTWARE_PERMIT for the matrices. If the value was not written to the FESA server within a predefined period, this SOFTWARE_PERMIT would be set FALSE and beam operation aborted.

Figure 5.16 shows the communication of this software interlock through the various systems.

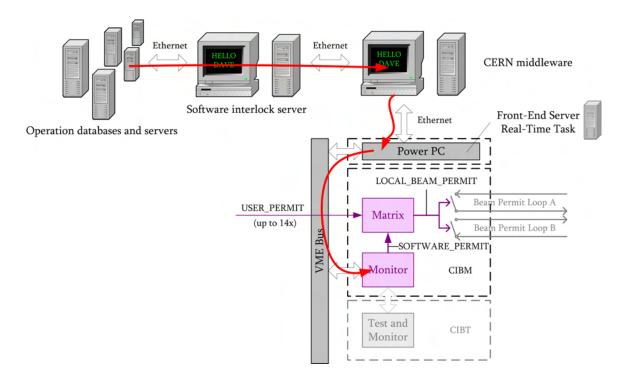


Figure 5.16: Software Interlocking in SPS, 2006

Figure 5.17: Controller Supervision Screen Prototype, SPS 2006

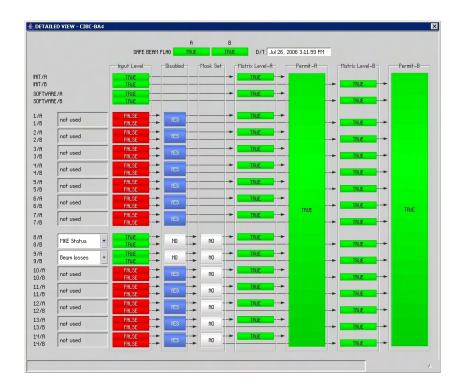


Figure 5.18: Specialist Supervision Screen Prototype, SPS 2006

5.3 Interlocking the CNGS Extraction

CNGS is a new experiment, with the transfer line and magnets only being completed at the end of 2005. The CNGS Beam Interlock System is the sole equipment responsible for the protection of this part of the accelerator complex, meaning that the CNGS experiment of 2006 has been both the most critical and rewarding test so far. Machine protection, operation and physics completely depended on the operation of the Beam Interlock System.

The beam is extracted from the SPS into a short transfer line, called TT40, before being diverted into the new TT41 beam-line. The extraction region, TT40 and TT41 all have to give permission for the beam extraction to take place. Four Beam Interlock Controllers have been installed, two protecting TT40 and the extraction region and two protecting TT41. Figure 5.19 shows the location of these controllers with respect to the SPS and the TI8 transfer line to LHC. In total around 30 User Systems were connected to the system.

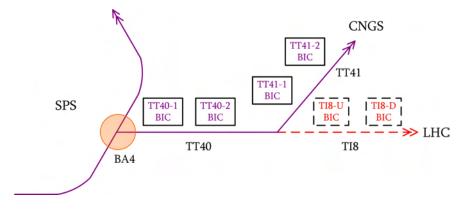


Figure 5.19: CNGS and TI8 Beam Interlock System, 2006

Protection of the extraction from BA4 ultimately requires a Master Beam Interlock Controller, as the beam can be directed towards CNGS or LHC depending on the cycle. For 2006 only the CNGS extraction has been used, so a simple system architecture has been implemented, as shown in Figure 5.20. The extraction interlock system will be fitted with a Master Beam Interlock Controller in 2007, to accommodate these more complex extraction criteria.

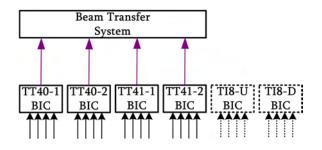


Figure 5.20: CNGS Controller Hierarchy, 2006

5.3.1 Extraction Procedure

A complex sequence of events must be followed before the beam can be safely transferred out of the SPS. The extraction essentially consists of the firing of a kicker magnet which diverts the normally circulating beam into the CNGS transfer lines, the transfer of the beam has to be very precise, as the tolerances for beam alignment in the transfer lines are very small. Of course the process for the beam transfer is not as simple as this suggests, it is carried out using a relatively complex structure of magnets, as shown in Figure 5.21 on the next page.

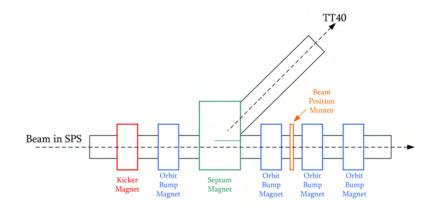


Figure 5.21: Magnets and Equipment Around the Extraction Region

This part of the accelerator complex is the orange circle shown on Figure 5.19 on the facing page. In Figure 5.21 the main horizontal path is the normal trajectory of beam through the SPS accelerator, with the TT40 transfer line coming off at an angle from this. The various coloured sections represent the key elements required for the beam transfer.

- Kicker Magnet this is a normal conducting magnet that can be pulsed, with an activation taking several microseconds. This magnet is not strong enough to bend the beam into the TT40 alone, it relies on the Septum Magnet and Orbit Bump Magnets to transfer the beam successfully.
- Septum Magnet This is a special magnet which is split into a side with field and a side without (the upper and lower-sides shown in Figure 5.21). The upper-side has a strong field, when the beam passes through this it is deflected through a large angle, aimed down the extraction region. The septum magnet is also pulsed, taking several milliseconds to reach full field strength.
- Orbit Bump Magnets the four bump magnets shown on Figure 5.21 work together, they can change the orbit of the beam around the extraction region. When the magnets are powered, the beam is moved closer to the upper side of the Septum Magnet. These magnets are turned on and off relatively slowly, allowing a stable change in the orbit of the circulating beam.

All of these elements are required to successfully transfer the SPS beam into the TT40 transfer line, the sequence of events is as follows:

- 1. The beam destined for CNGS is injected from the PS into the SPS as at around 28GeV, the injection of the beam leaves two empty sections of circulating beam. These empty gaps allow two extractions to be made, each gap give space for the kicker magnet to fire without spraying beam around the machine while its field rises. Once in the SPS, the beam is accelerated to 400GeV.
- 2. Once at 400GeV, the beam is stable, following a centralised closed orbit, as shown in Figure 5.22 on the following page. This can be verified by observing the beam position using Beam Position Monitors installed in the SPS.
- 3. The Septum Magnet is powered around 1.5 seconds before extraction.
- 4. Around 200ms before extraction, the bump magnets are powered and the beam orbit is changed so that it passes closer to the upper-side of the Septum Magnet, as shown in Figure 5.23 on the next page. Throughout this process Beam Position Monitors are used to determine the correct alignment of the beam.
- 5. A final check of the system operation is made by looking at beam parameters and reading the BEAM_PERMIT signal from the Beam Interlock System. If the Beam Interlock System indicates that everything is ready in TT40, TT41 and the extraction region, then the Kicker Magnet is pulsed. The first part of the beam is deflected into the upper-side of the Septum Magnet, being transferred out of the SPS machine, as shown in Figure 5.24 on the following page.
- 6. The Kicker Magnet is turned off immediately following the extraction.

- 7. Around 50 milliseconds later, steps 5. and 6. are repeated for the second part of the beam.
- 8. Once all the circulating beam is extracted, the SPS prepares for another beam injection from the PS accelerator.

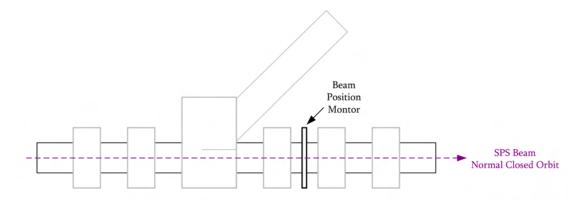
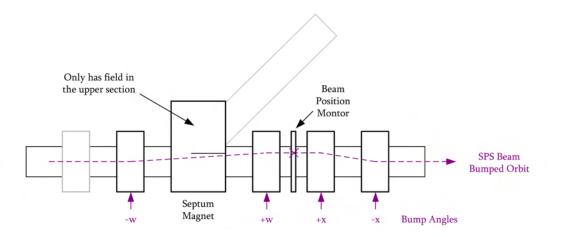
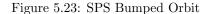




Figure 5.22: Normal SPS Closed Orbit

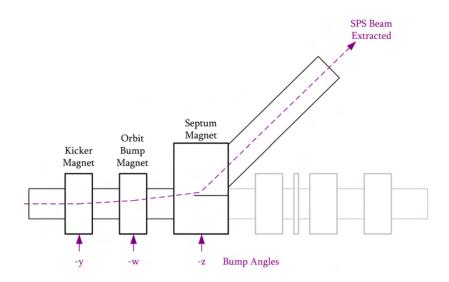


Figure 5.24: SPS Beam Extraction

Looking back at Figure 2.1 on page 17 shows that a single extracted batch from the SPS has almost the same energy as a complete circulating beam in other accelerators, evidently the CNGS beam has enough stored energy to destroy the extraction region.

The critical time for the extraction is the interval directly preceding the extraction kick. Within this time frame all the operational parameters must be within tolerances for the beam to be successfully transferred. Most equipment surveillance is too slow to be effective, this was evident in 2004, when the Septum Magnet failed milliseconds before extraction resulting in the extracted beam destroying the vacuum chamber of the TT40 transfer line [45].

This event was a timely reminder of the beam related danger, especially important in the extraction regions where aperture limitations mean that tolerances are particularly small. Following this failure it became clear that the existing interlock systems could not protect against these very fast events in the extraction regions. To overcome this weakness the Fast Magnet Current-Change Monitor was designed, interlocking the critical magnets and protecting the accelerator complex against the fastest events.

5.3.2 Current-Change Interlocking for CNGS

The effectiveness of the Fast Magnet Current Change Monitor has been determined by experiments involving low intensity beam sent through the transfer lines TT40 and TT41 from SPS [135]. The stored beam energy was below the damage thresholds of the transfer line, allowing a live test to be carried out without endangering the machine operation. The elements which were involved in the test are shown in Figure 5.25.

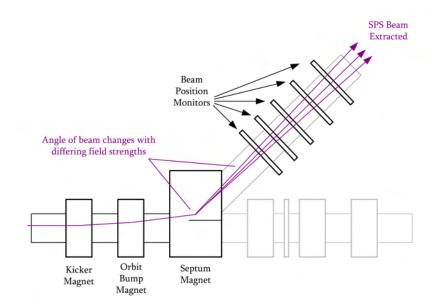


Figure 5.25: Set-up of the Current-Change Monitor Tests

For the test, the Septum Magnet power supply was programmed to change the current of the magnet just before the extraction kick. The experiments started with the change occurring just before the extraction kick, where the decaying magnet field was still strong enough to correctly steer the beam. The time of the current-change was gradually advanced, to a point where the beam would be mis-steered, replicating the failure which resulted in damage in 2004.

In every case the beam was either extracted within tolerances, or the Fast Magnet-Current Change Monitor and Beam Interlock System interlocked the extraction kick, protecting the machine from damage, proving the Machine Protection System function in a live situation.

Analysis of the experiment showed that the current-change monitor is very precise, a change in current of < 0.1%, equivalent to an angle change of less than 2μ radian was detected and interlocked successfully by the monitor [135].

This experiment tested the complete interlock chain, from failure, through detection and reaction. It proved that the complete chain performs to specification in every aspect.

5.3.3 Software Supervision of the CNGS Extraction

The CNGS supervision is implemented in a similar way to that of the SPS, with a system overview screen and a detailed view of each controller. Complementing these is a bar graph screen showing the extraction permit windows from the Beam Interlock System, a typical output is shown in Figure 5.26. The USER_PERMIT signals are stacked one above the other. Green indicates TRUE, red indicates FALSE. The BEAM_PERMIT of system is shown along the bottom of the charts, essentially being a logical AND of the USER_PERMIT signals shown above.

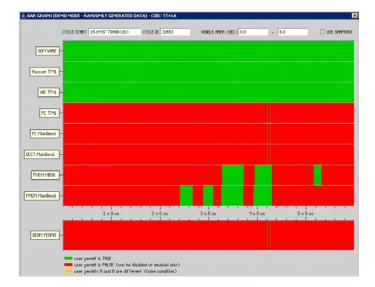


Figure 5.26: Bar Graph Supervision Screen Example from CNGS Extraction, 2006

The two extraction pulses are clearly shown occurring at an interval of less than 100ms. The data shown in these bar charts is based on the history buffer information read from the controllers, which is interpreted by software into a detailed record, such as that shown in Figure 5.27.

🗆 US	E FILTER FILTER SETTIN65				USE SHAPSHO
A/8	DESCRIPTION	TIME (S)	TIME (US)	DELTA (MS)	DELTA (US)
n po	BPL record found (0x0)	11:59:57	357208	4286	4286209
	FMCM MSE (R) goes from TRUE to FRLSE	11.59.57	387602	4316	4316603
	FMCM MSE (B) goes from TRUE to FALSE	11.59.57	387602	4316	4316603
	Timing marker detected (143044)	11 59 59	70998	5999	5999999
	SBF (A) goes from FALSE to TRUE	12.00.02	147297	3076	3076299
	SBF (B) goes from FRLSE to TRUE	12 00 02	147309	3076	3076311
	Timing marker detected (143045)	12.00.09	870968	10799	10799990
	SBF (R) goes from TRUE to FRLSE	12 00 13	47000	3178	3176012
	SDF (D) goes from TRUE to FRLSE	12.00.13	-17000	3176	3176012
	FMCM MSE (R) goes from FRLSE to TRUE	12:00:14	7822	4138	4136834
	FMCM MSE (B) goes from FRLSE to TRUE	12:00:14	7022	4136	4136834
	BPL record found (0x8)	12 00 14	74366	4203	4203378
		12,00.14	74366	4203	4200378
	PC MSE (R) goes from FRLSE to TRUE	12 00 14	78104	4207	4207116
	PC MSE (8) goes from FRLSE to TRUE	12.00.14	78104	4207	4207116
	PC Bumpers (R) goes from FRLSE to TRUE	12 00 14	78159	4207	4207171
	PC Bumpers (B) goes from FRLSE to TRUE	12,00.14	78159	4207	4207171
	BPL record found (0xb)	12.00.14	78189	4207	4207201
	PC TTHD (R) goes from FRLSE to TRUE	12.00.14	78191	4207	4207203
9 100	PC TTH0 (8) goes from FRLSE to TRUE	12.00.14	78191	4207	4207203
	PC MSE (R) goes from TRUE to FRLSE	12.00.14	81155	4210	4210167 4210167
	PC MSE (B) goes from TRUE to FALSE	12:00:14		4210	
	BPL record found (0xe)	12:00:14	81155		4210167
	PC Bumpers (R) goes from TRUE to FRLSE	12:00:14	81222	4210	4210234 4210234
	PC Bumpers (B) goes from TRUE to FRLSE PC TTHO (A) goes from TRUE to FALSE	12.00.14 12.00.14	81222 81360	4210 4210	4210234
	PC T110 CH2 goes from TRUE to FRLSE	12:00:14	81360	4210	4210372
		12:00:14	91136	4220	4220148
	PC MSE (B) goes from FILSE to TRUE	12:00:14	91136	4220	4220148
	PC PIGE (0.) goes from FRLSE to TRUE PC Bumpers (R) goes from FRLSE to TRUE	12:00:14	91136	4220	4220183
	PC Bumpers (B) goes from FILSE to TRUE PC Bumpers (B) goes from FILSE to TRUE	12:00:14	91171	1220	4220163
	BPL record found (0xf)	12:00:14	91216	4220	4220228
	PC TP40 GD goes from FRLSE to TRUE	12:00:14	91210	4220	4220220
	PC TTHO (B) goes from FRLSE to TRUE	12:00:14	91217	4220	4220229
	PC MSE (R) goes from TRUE to FRLSE	12:00:14	91217	4220	4223167
	PC MSE (B) goes from TRUE to FRLSE	12:00:14	94155	4223	4223167
	BPL record found (Dro)	12:00:14	94155	4223	4223167
	PC TTM0 (8) goes from TRUE to FALSE	12:0014	94366	4223	4223378
	BPL record found (0x8)	12:00:14	107211	4236	4236223
	PC Bumpers (B) goes from TRUE to FALSE	12:00:11	894252	4223	4223262

Figure 5.27: Interpreted History Buffer

Both operators and specialists can view the history buffers to get an impression of the events during the extraction.

5.3.4 The VME Chassis in SPS BA4

Building BA4 contains the TT40, TT41 and SPS point 4 Beam Interlock Controllers, front and rear photographs of these installations are shown below.

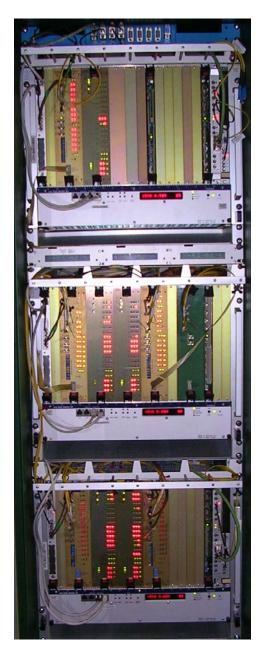


Figure 5.28: BA4 Rack

Figure 5.29: Rear of SPS BIC BA4



Figure 5.30: Rear of TT40 BICs

Figure 5.31: Rear of TT41 BICs

This gives an impression as to the complexity of a Beam Interlock Controller. The systems shown here are only for the interlocking of the CNGS experiment. In 2007 this will become even more complex as the Master Beam Interlock Controller is implemented, along with the controllers for the TI8 transfer line.

5.4 Scaling to the LHC

All of the electronics for the Beam Interlock System had to be designed and produced in a short space of time to install and commission both the SPS and CNGS systems ready for beam operation. Ultimately the goal was to prove the hardware of the Beam Interlock System in the machine environment, and clearly the Beam Interlock Systems installed in SPS and CNGS have been effective in protecting the complex, one of the final steps will be the scaling-up of these systems to protect the LHC machine.

5.4.1 LHC Beam Interlock System Response Time

The first question concerns whether the specified response time of the LHC will be met. The predicted worst case response time for the LHC system is as shown in Figure 5.32. This is for a change in USER_PERMIT located at LHC point 2, leading to a change in BEAM_PERMIT at point 6, the worst possible transmission case.

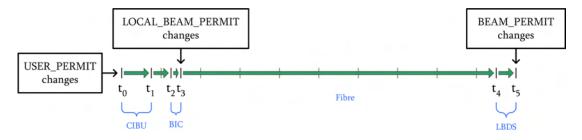


Figure 5.32: Predicted Worst Case Response Time for the Beam Interlock System (to scale)

- t_0 USER_PERMIT changes state
- t_0 to t_1 : $7\mu s$ Worst case propagation delay of the User Interface, experience has shown that the response time is typically $3 4\mu s$ for 5V systems, and $4 6\mu s$ for 24V systems.
- t_1 to t_2 : 6.5 μs Worst case propagation delay of the cable from User Interface to controller, 1200m at 5.4ns per meter.
- t_2 to t_3 : $2\mu s$ Propagation delay of the Manager board, with a $1.6\mu s$ glitch filter and $0.4\mu s$ for synchronisation.
- t_3 LOCAL_BEAM_PERMIT changes state
- t_3 to t_4 : 79.5 μs Worst case propagation delay of light in fibre for half of the LHC, with a margin added for routing and propagation delays during the electrical to optical conversion.
- t_4 to t_5 : $5\mu s$ Detection delay, specified as $5\mu s$.
- t_5 BEAM_PERMIT changes state

In the worst case the $t_0 \rightarrow t_5$ delay is $100 \mu s$ exactly matching the design specification of the LHC Beam Interlock System.

5.4.2 Final Improvements to the System

Implementing the interlock systems in SPS and CNGS have been an excellent opportunity to learn from the system operation. Amongst the most interesting observations are those concerning failures of the system. At the time of writing there had been seven interventions to repair problems related to the Beam Interlock System in the course of around six months operation.

- 1. **CNGS controller persistent bus read error** Due to foreign conductive material shorting a bus driver.
- 2. SPS VME chassis PSU failure Internal VME PSU failure after a 24 hour power cut.
- 3. CNGS controller ethernet fault Ethernet controller on the Power PC board crashed.

- 4. CNGS beam position monitors fault User System mis-configured, giving pulses on USER_PERMIT.
- 5. Software interlock initialisation fault Delayed rearming of the SPS Beam Interlock System after a VHDL upgrade was applied to the monitor FPGAs of the SPS Manager boards.
- 6. **Software interlock fault** Stuck at FALSE following the introduction of a new SPS cycle type.
- 7. Software interlock fault Stuck at FALSE following a bad Internet Protocol (IP) address configuration between Software Interlock System and Beam Interlock System.

At first glance seven interventions may seem excessive, however only one of these problems was a Beam Interlock System hardware failure. It is somewhat counter intuitive, but problems are actually good for the system development, as each is logged and carefully investigated. Failure analysis is fed back into the design process, leading to an improved design in the subsequent iterations. Numerous improvements to the Beam Interlock System are scheduled to be addressed and implemented before the final LHC system is fabricated. These come in response to observations both from operations and failures such as those listed above.

Quality Management Strategy

Perhaps one of the most critical updates is to the machine interlocks quality management. Now that the basic function and architecture of the systems is proven in a small preseries, larger series must be considered as a natural progression. However, one must consider the quality management of large quantities of devices, in particular the procurement of Automated Test Equipment. Work is ongoing to create test equipment for each board, which can be used to quickly and accurately test the function of each and every component. This is absolutely vital if the LHC machine is to meet the startup deadline of late 2007.

Testing and commissioning of the preseries controllers and User Interfaces was quite a cumbersome task. It would take many months to test and commission the LHC Beam Interlock System in the same way. Following the prototype and preseries some system objectives have been set that will speed up the test and commissioning of the system.

- 1. **Pre-delivery** Automated Test Equipment (ATE) needs to be given to manufacturers so that they can completely check the function of the electronics which are being shipped to CERN.
- 2. **Post-delivery** Once the electronics arrive at CERN the same test equipment should be available to quickly and accurately determine whether everything is functioning correctly, to ensure that no damage has occurring during delivery.
- 3. **Software** At the controller level, fundamental software is required that shows the status from User Interface through to LOCAL_BEAM_PERMIT. This has to include all the TEST and MONITOR data, with the capability to activate test mode in a safe and robust manner.
- 4. Sequencer At the system level a test sequencer is required to automate the final system test and commissioning that will be carried out before LHC starts, in principle this sequencer should be able to select to test any part of the system, from a single user, to the beam permit loops. To carry this out the sequencer should have direct links to the LHC User Systems, Beam Interlock System and Beam Dumping Systems.
- 5. **Transmission Rate** The extra bandwidth available on the link from User Interface to Controller should be exploited by making the frame transmission almost continuous, as currently the time delay from a TEST written to the Manager board, and the User Interface being updated is in the order of one or two seconds.
- 6. **Documentation** Perhaps the most basic requirement of the commissioning process are the sequences that need to be followed at the level of the Beam Interlock System.

Altering the Software Interlock Hierarchy

The software interlock proved to be considerably unreliable, being responsible for several hours of machine downtime. The implementation used in the SPS creates an operational dependency on the monitor FPGA on the Manager board, going against the design principles laid out in the early stages of the system development. Figure 5.33 shows the preferred integration of the Software Interlock System with the Beam Interlock System, which is proposed for 2007.

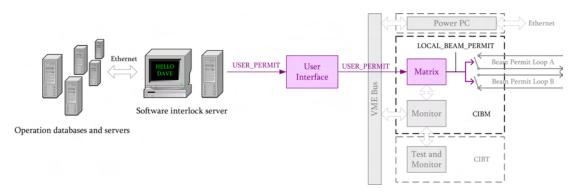


Figure 5.33: Proposed Integration of the Software Interlock System

Beam Permit Loop Upgrades

Numerous studies are planned to finalise the implementation of the beam permit loop and the optical transceivers, there are four open questions concerning this part of the Beam Interlock System.

Frequency or DC?

The current implementation of the beam permit loop uses 10MHz to represent TRUE and DC for FALSE. This requires a DC based optical communications system which is quite difficult to realise as modern market trends are for high bandwidth links using AC coupled transmission. A different frequency could be sent for the FALSE state, this would allow the link to be designed using AC coupled transceivers. However, adjusting the components of this link must not be taken lightly, a bad design implemented here could have a serious effect on system safety and availability.

Figure 5.34: DC versus Frequency Based Operation for the Beam Permit Loops

The parameters of the frequency detectors must match the correspond to the signals on the beam permit loops, to this end, the detector specification needs to be concluded and approved by all parties.

Upgrade the Optical Transceiver?

The frequency discussion also has a bearing on the implementation of the Optical Transceiver, it is being investigated whether this device can be simply upgraded. The key motivations concern the component choice for the device, these are very mature products and are not supplied by many companies, also the transmitters and receivers chosen are at the limit of their operation regions when being used in single mode fibres.

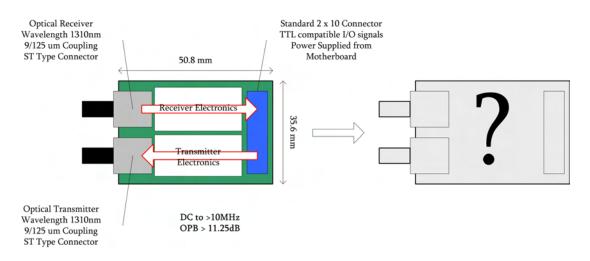


Figure 5.35: Upgrade to the CIBO Transceiver

Numerous alternatives are being explored that contribute to the frequency versus DC debate.

Upgrade the Switching Circuit?

A failure mode exists in the non-latching Beam Interlock Controllers that has a very small chance of leading to an erroneous assertion of BEAM_PERMIT. The specified switching circuit is an AND gate, consider that the LOOP_IN signal is stopped at logic '1', the value of LOCAL_BEAM_PERMIT appears on LOOP_OUT. This means if LOCAL_BEAM_PERMIT oscillates, then so will the beam permit loop. If the worst case is considered this oscillation could represent BEAM_PERMIT TRUE. To compensate for this a memory element can be used for the switch, so if LOOP_IN does not oscillate, then LOOP_OUT is fixed.

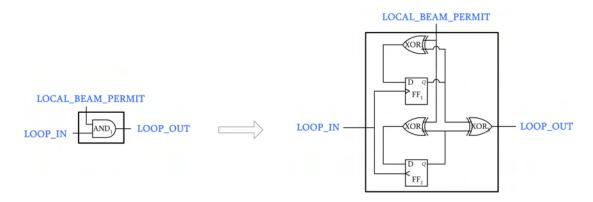


Figure 5.36: Proposed Upgrade for the Optical Switching Circuit

This switch would only be implemented in non-latching controllers used in the tree hierarchies. Preliminary experiments showed that the memory element increased the permit loop jitter by a factor of three when compared to the AND gate solution. In addition it is also considered poor CPLD design practice to use an asynchronous input signal as a clock signal in both the rising and falling edge domains.

Delay Verification?

One of the less critical propositions concerning is that of a ping mechanism. This would allow the controller synchronisation and fibre delay between each point to be verified. An extra history buffer record is needed that is logged when the beam permit loop has an edge change when it is in the FALSE state, in this way the loop delay can be tested during the Beam Interlock System testing and commissioning.

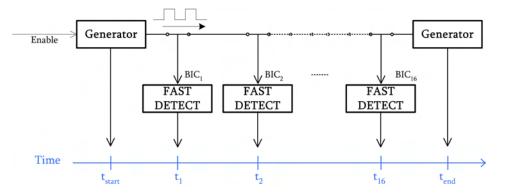


Figure 5.37: Pinging the Beam Permit Loops to Check Delay

The Manager Board and the History Buffer

One final iteration is required on the Manager board to upgrade the VME bus drivers and adjust some component alignments. At the same time a review will be made of the whole device to see whether any other changes and modifications are required.

Some VHDL modifications are planned, such as improving the history buffer, which is currently cumbersome to read and reconstruct, discussions between operations staff, machine interlocks hardware engineers and software specialists are ongoing in order to find a common solution that meets the various requirements for the history buffer.

VME Bus Upgrade

The persistent bus read error observed in one of the CNGS controllers proved that hypothetical pin-to-pin shorts are a real issue, reinforcing the fail-safe pinning criteria. The pin-short forced a review of the VME bus implementation, resulting in more powerful drivers being specified for the next Manager board iteration, and for every other card that uses the same bus interface.

The Master Beam Interlock Controller

In 2006 the SPS point 4 extraction interlock system has been implemented using a simple beam permit loop as there was only one destination for the extracted beam. The master controller is required for 2007, this will accommodate more complex interlocking criteria, taking into consideration the beam destination.

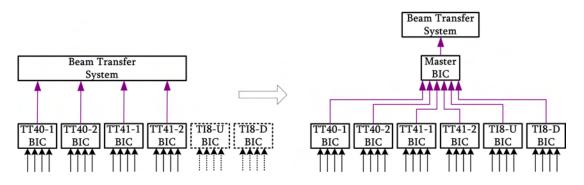


Figure 5.38: Required Implementation of the Master BIC for 2007

More design specifications are needed before this can be realised, especially concerning the proposed architecture of the extraction interlock systems.

Software Supervision

The software supervision worked very well for the CNGS experiment, it allowed numerous iterations to be safely made and tested in a real machine environment. More work needs to be carried out to realise the remaining screens that are as yet not available. Work between Machine Interlock hardware specialists, software programmers and the operations crew is foreseen in the near future to set the short, medium and strategic plans for the software.

Databases

The configuration database needs to be prepared so that the observed controller configuration can be automatically verified. This is needed before the machine commissioning begins, so that the record of each link can be stored from the very beginning. The User Interface Identification (CIBU_ID) will be recorded, along with the cable numbers, cable lengths, hardware platforms, system engineers and many other details. This database will also allow the history buffer records of the Beam Interlock Controllers to be adjusted for the cable length between User System and Interlock Controller.

Coupled with this is the need for a maintenance database to track faults, fixes and change requests. Without the database it will be very difficult to spot coherent failures that could be indicative of more serious problems in other parts of the system.

User Interface to Test & Monitor Serial Communications

The serial communications links TEST and MONITOR have been used extensively throughout the testing of the Beam Interlock Systems installed in SPS and CNGS. On rare occasions an unusual behaviour is observed where a requested test mode results in the User Interface only accepting half of the TEST commands, in these cases it signals a communications error to the Test & Monitor. Preliminary investigations suggest that the DC balance of the links is to blame, this can be overcome by sending the TEST and MONITOR frames at a higher rate, maybe $1000 \times$ the current one. This will be investigated and VHDL upgrades deployed in the Test & Monitor devices if warranted.

This should wait until the software screens that exploit these frames are available, to give an indication of the exact nature of these transmission errors. It has to be noted that an upgrade of the User Interface VHDL is possible, but is not advised due to the proven operation of the current version of VHDL in every other respect.

Debugger tools are needed for the links between the User System and User Interface, and the User Interface and controller. These hardware units should be able to record operation for a given period of time, this would help to debug troublesome links that could otherwise be tricky to diagnose in the event of an intermittent fault.

The forward terminating resistors on the RS485 channels USER_PERMIT_A and _B are also to be removed to ensure that signal integrity is maintained up to and beyond the 1200m limit of the RS485 links.

Chapter 6

Conclusions

This thesis has described the design, realisation and testing of a Beam Interlock System for the protection of CERN high energy accelerators. The system has been shown to be solid and dependable from the ground up. Both prototype and preseries testing have proven without doubt that the system meets its specification. Above all, it has been demonstrated that the system has flexibility without compromising safety, allowing each and every application to be realised with just a minimum of modification to the system. Any part of the CERN accelerator complex that needs beam interlocking can be fitted with an interlock system providing solid defense against beam related damage.

The LHC is the first accelerator to have a dependability requirement, making the Beam Interlock System the first of its kind, motivated not only by function, but also by safety and reliability. Dependability analysis has been used as an integral part of the system design, with failure-mode analysis giving an extra aspect to electronics design. It was shown that a dual-redundant architecture using the _A and _B channels was required to reach the strenuous safety requirements imposed on the system. With redundant power supplies required to keep the system availability high, compromising for the increased complexity due to the redundant architecture.

A fundamental aspect to the safety analysis is proof of function. Complete and robust testing and monitoring of the system has been implemented. This allows an end-to-end test of the system to be carried out without ever forcing the system into a dangerous state by exploiting the _A and _B redundancy.

One further aspect of the system that is both novel and unique is the inclusion of a Safe Beam Flag that allows a sub-set of the User System inputs to be masked. This will be crucial during commissioning and the early operation of the LHC machine giving operators the freedom to make adjustments without endangering the machine.

The system performance, quantified using standard military and mathematical reliability techniques, has shown to statistically meet both specifications for safety and availability. Meeting the requirements for Safety Integrity Level 4, the highest that is reasonably attainable for an electronic system, and generating less than four False Beam Dumps per year due to internal failure. This investigation of the Beam Interlock System safety forms the foundation of this thesis, ultimately this is what justifies the award of PhD.

The final proof of the Beam Interlock System described in this thesis has been the successful operation of the SPS and the CNGS experiment. The Beam Interlock System was vital for the operation of both. In total, a system around one third the size of LHC was installed, interlocking the extraction of beam from SPS, towards the neutrino target in Gran Sasso, Italy. The CNGS project has proven the system is capable of protecting a real physics experiment, working without issue and giving the operations team confidence, knowing that the Beam Interlock System will act as dependable safety-net if anything should go wrong.

The next goal for the system development is the mass production and installation of the equipment in the LHC. By Autumn 2007 the LHC will be online, with the Beam Interlock Systems being the backbone of the Machine Protection Systems. The Beam Interlock System will prove decisive in the safe operation of the world's largest proton-proton accelerator.

This thesis was successfully defended at Brunel University on the 20th November 2006. My thanks to Professor J. Barrows of the John Adams Institute for Accelerator Science, Oxford University and Professor J. Stonham of Brunel University for their time and their enthusiasm.

Appendix A

RS485 versus Current Loop Technology

Three different transmission techniques were studied for the Beam Interlock System communications.

- 1. Current Loops
- 2. Optically Isolated RS485 Transmission
- 3. RS485 Transmission

Communication links of each type were constructed and investigated.

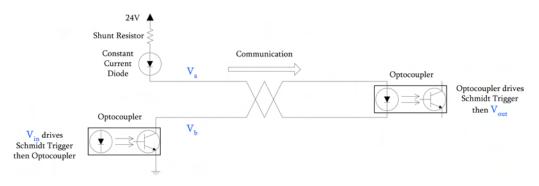


Figure A.1: Current Loop Transmission Circuit

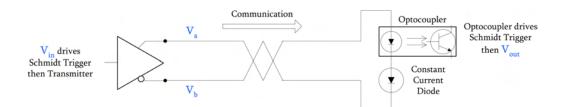


Figure A.2: Optically Isolated RS485 Transmission Circuit

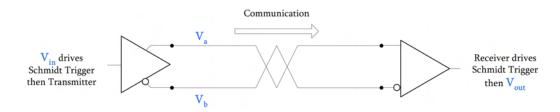


Figure A.3: RS485 Transmission Circuit

A.1 Current Loop Testing

A one meter current loop connection was established, it exhibited the following characteristics, where:

- Dark Blue is V_{in}
- Purple is V_{out}

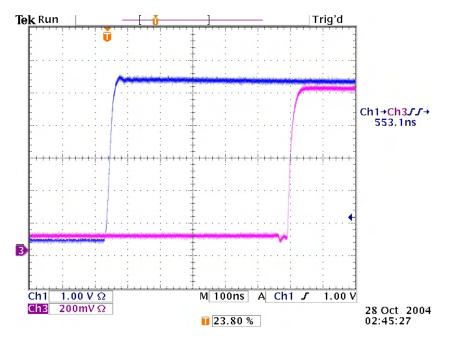


Figure A.4: FALSE to TRUE Transmission Using Current Loops

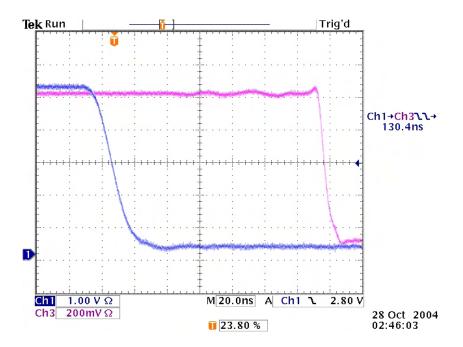


Figure A.5: TRUE to FALSE Transmission Using Current Loops

The line voltages V_a and V_b were observed leading to the following plots

- Dark Blue is V_{in}
- Purple is V_a
- Green is V_b

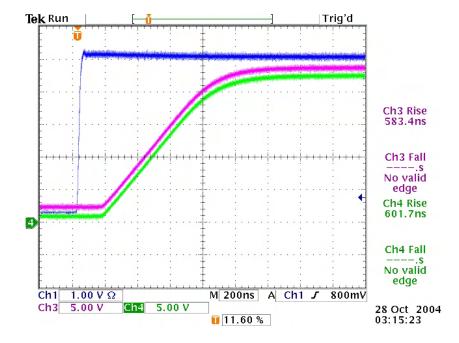


Figure A.6: FALSE to TRUE Transmission Current Loop Line Voltages

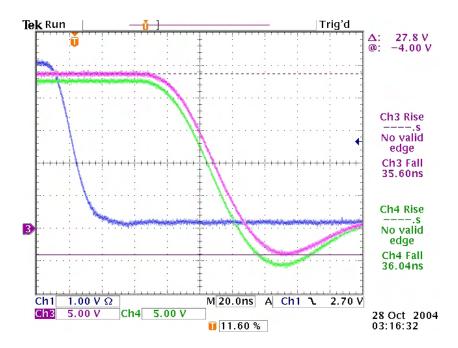


Figure A.7: TRUE to FALSE Transmission Current Loop Line Voltages

The following table is derived from the graphs:

Transition	$\left \begin{array}{c} \mathrm{dV}/\mathrm{dt} \\ [V/\mu s] \end{array} \right $	Transmission Delay $[\mu s]$
$ \begin{array}{c} FALSE \rightarrow TRUE \\ TRUE \rightarrow FALSE \end{array} $	36 720	$\begin{array}{c} 0.550 \\ 0.130 \end{array}$

Table A.1: Current Loop Observations

The values of dV/dt are very high, this could be compensated by adding capacitance in parallel to the cable but would lead to an inconsistent response due to cabling effects and a less reliable link due to the increased component count.

A.2 Optocoupled RS485 Testing

An RS485 driver can be used to drive an optically isolated link, with a constant current diode regulating the optocoupler current at an efficient level. The following diagrams show the response of a one meter optocoupled RS485 link, where:

- Dark Blue is V_{in}
- Light Blue is Vout
- Purple is V_a (Non Inverting)
- Green is V_b (Inverting)

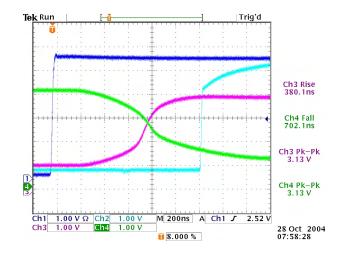


Figure A.8: FALSE to TRUE Transmission Using Isolated RS485

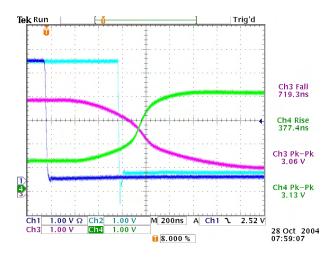


Figure A.9: TRUE to FALSE Transmission Using Isolated RS485

Transition	$\begin{array}{c} \mathrm{dV/dt} \\ [V/\mu s] \end{array}$	Transmission Delay $[\mu s]$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4.4 8.2	$1.300 \\ 0.600$

Table A.2: Isolated RS485 Observations

The characteristics of the link are good, however Figure A.9 clearly shows that the output of the communications channel switches to TRUE before V_a and V_b have crossed. This means that the communications channel is more susceptible to external perturbation than a regular RS485 connection.

A.3 RS485 Testing

A one meter RS485 communications link was constructed using simple transceivers, in these diagrams:

- Dark Blue is V_{in}
- Light Blue is V_{out}
- Purple is V_a (Non Inverting)
- Green is V_b (Inverting)

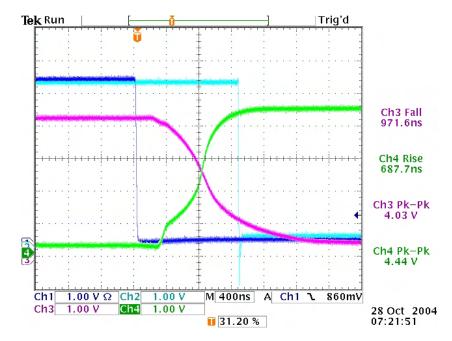


Figure A.10: FALSE to TRUE Transmission Using RS485

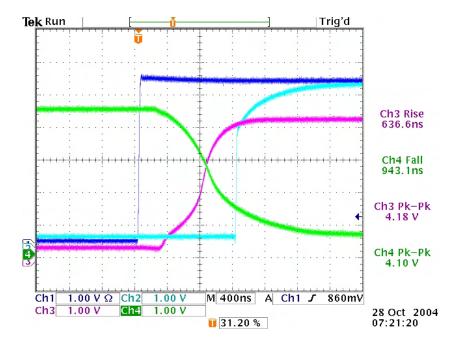


Figure A.11: TRUE to FALSE Transmission Using RS485

Transition	$\frac{\mathrm{dV/dt}}{[V/\mu s]}$	Transmission Delay $[\mu s]$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$6.5 \\ 4.3$	$1.200 \\ 1.200$

Table A.3: RS485 Observations

RS485 meets all the requirements of the communications link: it's simple, deterministic in both TRUE to FALSE and FALSE to TRUE transitions, it's fast and has a low dV/dt. Experiments such as the one shown in Figure A.12 have proven that RS485 has an inherently high tolerance against external perturbation. In this experiment $\pm 10V$ sine waves at varying frequencies were coupled to the shield of the communications link, it showed no indications of erroneous behaviour, despite both V_a and V_b clearly being effected.

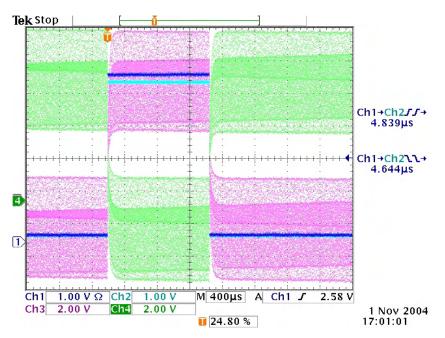


Figure A.12: Example of RS485 Resistance to External Perturbation

Appendix B

Testing a CERN Standard NE12 Cable

The CERN standard cable (NE12) was tested with RS485 communications to determine the impact of cable length on transmission delay and to see whether the initial cable capacitance could cause adverse effects on the system response time. In this case approximately $2 - 2.5\mu s$ pulses were sent at one second intervals through cables of various lengths. A typical response is shown in the following series of oscilloscope traces.

- Dark Blue is V_{in}
- Green is V_{out}
- Purple is V_a (Non Inverting)
- Light Blue is V_b (Inverting)

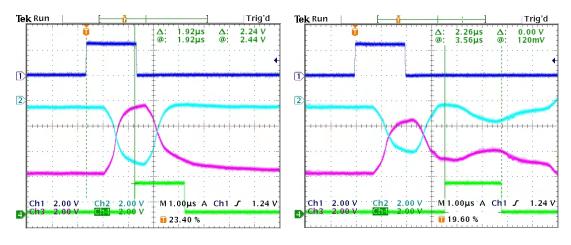


Figure B.1: 30cm RS485 Delay

Figure B.2: 315m RS485 Delay

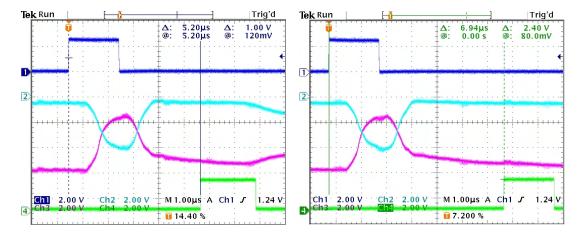


Figure B.4: 915m RS485 Delay

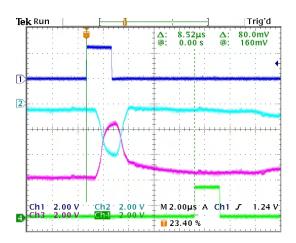


Figure B.5: 1215m RS485 Delay

Cable capacitive effect is minimal, it does not perturb the operation of the system even with long links and excessive idle periods. RS485 signals transmitted through the NE12 cable were shown to have a deterministic delay as a function of cable length.

Length	Delay
[m]	$[\mu s]$
0.3	1.92
315	3.56
615	5.20
915	6.94
1215	8.52

Delay = 5.4 ns/m

Table B.1: NE12 Cable Delay Measurements

These figures can be used to determine the corrective factors that need to be applied to the logged data of the Beam Interlock Controllers to compensate for cable delay.

Appendix C

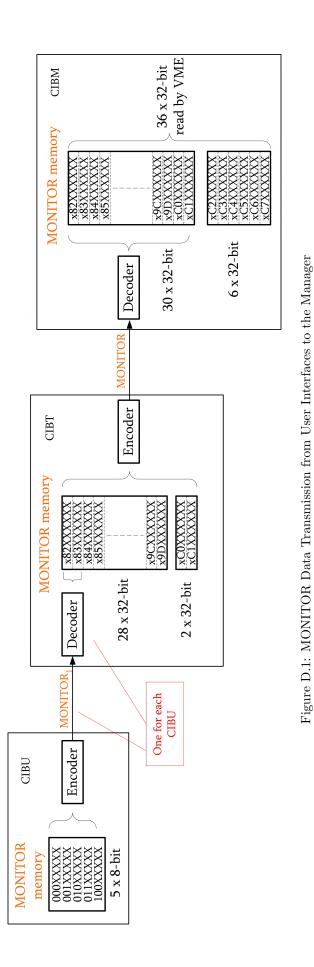
LHC Beam Interlock System User's List

Table C.1 on the next page shows a complete list of the User Systems installed in the LHC. The table shows the installations at each point, whether the systems are maskable or unmaskable and whether they interlock beams independently or simultaneously. Note that in almost every case systems that interlock the beams independently have a pair of connections per Beam Interlock Controller. In these cases the Double User Interface can be used to save on both rack space and to improve system reliability.

Insertion Region	IR 1	IR	5	IR	0	IR	4		IR 5	IR	5 G		IR 7		IR 8	
Position (Left/Right)	L R	Г	Я	Г	Я	Г	Я	Г	R	Г	Я	Г	R	Г		Я
Beam	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1	2 1	7
Un-Maskable Independent User System Inputs:	System Inputs:	-		-		-	-		-	-		-	-	-		
Vacuum System	1 1	1	1	1	_	1	1			1	1	–				
Experiment Movable Devices	1 1	-							1							
LHC Beam Dumping System					_											
CERN Control Centre	1 1				_						_		_			
Safe Machine Parameters	1 1				_				_		_		_			
Un-Maskable Simultaneous User	User System Inputs:		-	-	-	-	-	-	-	-	-		-	-		
Beam Loss Monitor System	1	-1		1		1										
Powering Interlock Controllers	1 1	1		2		1	1	1	1	1		2				-
Warm Magnet Interlock Controllers	1												_			
Vacuum System	1										_					
Experiment Detectors	2								2				_			-
Experiment Movable Devices	•	-												_		<u>, </u>
Access System	-													_		, ,
Maskable Independent User System Inputs:	tem Inputs:								1				1			
Collimation System	$\begin{array}{c c}1 & 1 & 2 \\ \end{array}$	2	2	2				2	2	2		2		2	2	0
Transverse Feedback							1									
RF System					_	1	1		_				_			
Beam Lifetime Monitor					_	1										
Beam Position Monitor											1					
Beam Aperture Kicker				-		1										
Beam Television				-	1		1				1					
Maskable Simultaneous User System Inputs:	stem Inputs:															
Beam Loss Monitor System	1	1		,		, _ 1		,						1		
Powering Interlock Controllers	1 1	, _ 1		5		, _ 1						2				
Fast Magnet Current Monitors	1		0		က						7		က			
Experiment Magnets	1		1						1							
Beam-1	3 4	4	n 2	က	1	4	4	က	က	4	က	က		က	က	
Both-Beam	9 9	9	-1-	4	· က	4	2	ъ	-1-	ъ	4	1-		9		
Beam-2	3 4	က	°	က		4	4	3	3	3	4	с С			3	4
														Beam-1	48	~
												Totals		Both-Beam	1 84	
														Beam-2	2 49	_
E	, , , , , , , , , , , , , , , , , , ,		ζ				¢	,	, ,						-	

Appendix D

TEST and MONITOR Data in the BIS


D.1 History Buffer Records

The history buffer in the CIBM records a history of events. There are almost 100 records that can be created, each representing a different changed observed:

Record Name	Trigger Signal	Change	Number
	USER_PERMIT_A 1-14	$T \rightarrow F$	14
Matrix Inputs		$\mathbf{F} \rightarrow \mathbf{T}$	14
Maarix inputo	USER_PERMIT_B 1-14	$T \rightarrow F$	14
		$F \rightarrow T$	14
	LOCAL_BEAM_PERMIT_A	$T \rightarrow F$	1
Local Beam Permit		$F \rightarrow T$	1
	LOCAL_BEAM_PERMIT_B	$T \rightarrow F$	1
		$F \rightarrow T$	1
	FAST & SLOW_DETECT_A	$T \rightarrow F$	2
Beam Permit		$F \rightarrow T$	2
	FAST & SLOW_DETECT_B	$T \rightarrow F$	2
		$F \rightarrow T$	2
	SAFE_BEAM_FLAG_A	$T \rightarrow F$	1
Safe Beam Flag		$F \rightarrow T$	1
	SAFE_BEAM_FLAG_B	$T \rightarrow F$	1
		$F \rightarrow T$	1
Mask	MASK 1-7	$T \rightarrow F$	7
		$\mathbf{F} \rightarrow \mathbf{T}$	7
	LATCH INIT A	$T \rightarrow F$	1
		$\mathbf{F} \to \mathbf{T}$	1
	LATCH INIT B	$T \rightarrow F$	1
Latch		$F \rightarrow T$	1
	LATCH_REARM_A	$T \rightarrow F$	1
		$F \rightarrow T$	1
	LATCH_REARM_B	$T \rightarrow F$	1
		$F \rightarrow T$	1
		Total	94

Table D.1: Different Types of Records in the History Buffer

D.2 MONITOR Data

Data that can be read from the Manager board concerning the MONITOR data from throughout the Beam Interlock Controller and User Interfaces is as follows:

Starting with data that originated in the User Interface:

- USER_PERMIT_A (PA)- read from the CIBU
- USER_PERMIT_B (PB)- read from the CIBU
- BEAM_PERMIT_INFO (PI)- read from the CIBU
- USER_PERMIT_A_TX_FAULT (PATF)- from the CIBU RS485 transmission circuit
- USER_PERMIT_B_TX_FAULT (PATF)- from the CIBU RS485 transmission circuit
- BEAM_PERMIT_INFO_RX_FAULT (PIRF)- from the CIBU RS485 reception circuit
- PSU_A_OK (PSUA)- CIBD_A read from the CIBU
- PSU_B_OK (PSUB)- CIBD_B read from the CIBU
- CIBU_ID (ID)- a unique ten-bit CIBU identifier 0 1023
- TEST_RX_FAULT (TRF)- receiver timeout from the Manchester decoder
- TEST_ERROR (TE)- receiver error from the Manchester decoder
- TEST_ON (ON)- '1' when the CIBU is in 'test' mode
- TEST_LOGIC_A (LGA)- the test value applied to USER_PERMIT_A
- TEST_LOGIC_B (LGB)- the test value applied to USER_PERMIT_B
- CIBU_B2 (CB2)- the beam functionality of the CIBU (B1 or B2)
- CIBUT_PRESENT (UTP)- a test device is locally connected

These are arranged into five bytes and transmitted periodically back to the Beam Interlock Controller from the CIBU, the format of the bytes is shown in Table D.2.

7	6	5	4	3	2	1	0	
0	0	0	PA	PB	PI	TE	ON	$Byte_0$
0	0	1	PAF	PBF	PIF	PSUA	PSUB	$\begin{vmatrix} Byte_0\\Byte_1\\Byte_2\\Byte_3\\Byte_4\end{vmatrix}$
0	1	0	CB2	UTP	LGA	LGB	TRF	$Byte_2$
0	1	1		(CIBU_IE	b_{9-5}	'	$Byte_3$
1	0	0		(CIBU_IE	$)_{4-0}$		$Byte_4$

Table D.2: Five 8-bit MONITOR Registers Send by the CIBU

The three remaining addresses, $Byte_5$, $Byte_6$ and $Byte_7$ are used for MONITOR data of the fibre optic extenders, CIBFU and CIBFC shown in Table D.3.

7	6	5	4	3	2	1	0	
1	0	1	FUPA	FUPAF	FUPB	FUPBF	FUPI	$Byte_5$
1	1	0	FUPIF	FUPSU	FCURXF	FCPA	FCPAF	$Byte_6$
1	1	1	FCPB	FCPBF	FCPI	FCPIF	FCPSU	$Byte_7$

Table D.3: Three 8-bit MONITOR Registers Appended to CIBU MONITOR Data by the CIBFx

The description of the CIBFU bits is as follows.

- CIBFU_USER_PERMIT_A (FUPA)- read from the CIBU
- CIBFU_USER_PERMIT_B (FUPB)- read from the CIBU
- CIBFU_BEAM_PERMIT_INFO (FUPI)- read from the CIBU
- CIBFU_USER_PERMIT_A_FAULT (FUPAF)- from the CIBU RS485 transmission circuit
- CIBFU_USER_PERMIT_B_FAULT (FUPBF)- from the CIBU RS485 transmission circuit
- CIBFU_BEAM_PERMIT_INFO_FAULT (FUPIF)- from the CIBU RS485 reception circuit

• CIBFU_PSUs_OK (FUPSU)- Both Power supplies in the CIBFU are working correctly

The CIBFC bits are identical, they are identified by replacing CIBFU and FUxxx with CIBFC and FCxxx respectively. One bit (FCURXF) is reserved for transmission errors in the link, either the CIBFU or CIBFC can set this, it indicates optical transmission problems between CIBFU and CIBFC. Altogether this allows the full integrity of the links to be observed and any problems diagnosed.

The CIBT adds some additional bits concerning the operation of the links to the CIBU. These which are determined locally in the CIBT:

- BEAM_PERMIT_INFO_TX_FAULT (PITF)- in the CIBT RS485 transmission circuit
- TEST_TX_FAULT (TTF)- in the CIBT RS485 transmission circuit
- MONITOR_RX_FAULT (MRF)- in the CIBT RS485 reception circuit
- CIBU_PRESENT (UP)- if the CIBU is connected and operating
- TEST_MONITOR_ERROR (TME)- cumulative errors on TEST and MONITOR, 0 255.

In the CIBM these values can be found in a pair of 32-bit registers per CIBU with the following arrangement:

			E	$Byte_3$			
31	30	29	28	27	26	25	24
1	0	0		CIBU	J_ID		0
			E	$Byte_2$			
23	22	21	20	19	18	17	16
PA	PB	PI	PATF	PBTF	PIRF	PSUA	PSUB
			E	$Byte_1$			
15	14	13	12	11	10	9	8
ON	LGA	LGB	PITF	TTF	MRF	UP	TE
			E	$Byte_0$			
7	6	5	4	3	2	1	0
			TN	ME_{7-0}			

	$Byte_3$									
31	30	29	28	27	26	25	24			
1	0	0	CIBU_ID 1							
	$Byte_2$									
23	22	21	20	19	18	17	16			
CB2	UTP	ID_{9-4}								
	$Byte_1$									
15	14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	ID) ₃₋₀		CIBFU Data						
•	$Byte_0$									
7	6	5	4	3	2	1	0			
CIBF	U Data			CIBF	C Data					

Table D.4: Two 32-bit MONITOR Registers for Each CIBU Read from the CIBT

The 28 registers corresponding to the CIBU statuses is accompanied by a pair of 32-bit registers which represent the internal status of the CIBT

- BEAM_PERMIT_INFO_B1_A_RX (PI1AR) read locally in the CIBT
- BEAM_PERMIT_INFO_B1_B_RX (PI1BR) read locally in the CIBT
- BEAM_PERMIT_INFO_B1_C_RX (PI1CR) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_A_RX (PI2AR) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_B_RX (PI2BR) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_C_RX (PI2CR) read locally in the CIBT

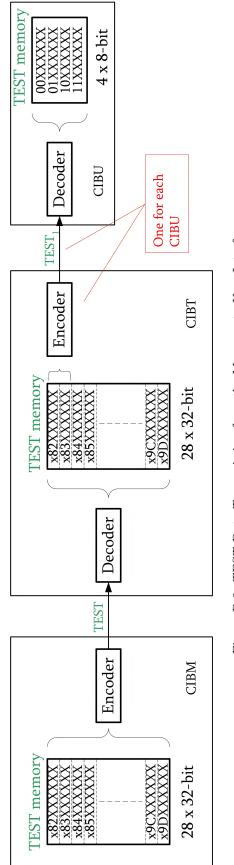
- TEST_A_RX (TAR)- being used as the source for TEST data
- TEST_B_RX (TBR)- being used as the source for TEST data
- MONITOR_A_TX (MAT)- transmitting MONITOR data
- MONITOR_B_TX (MBT)- transmitting MONITOR data
- BEAM_PERMIT_INFO_B1_A_RX_FAULT (PI1ARF) read locally in the CIBT
- BEAM_PERMIT_INFO_B1_B_RX_FAULT (PI1BRF) read locally in the CIBT
- BEAM_PERMIT_INFO_B1_C_RX_FAULT (PI1CRF) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_A_RX_FAULT (PI2ARF) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_B_RX_FAULT (PI2BRF) read locally in the CIBT
- BEAM_PERMIT_INFO_B2_C_RX_FAULT (PI2CRF) read locally in the CIBT
- TEST_A_RX_FAULT (TARF)- read locally in the CIBT
- TEST_B_RX_FAULT (TBRF)- read locally in the CIBT
- MONITOR_A_TX_FAULT (MATF)- read locally in the CIBT
- MONITOR_B_TX_FAULT (MBTF)- read locally in the CIBT
- VERSION_SC_HIGH (VSCH)- serial communications FPGA version upper nibble
- VERSION_SC_LOW (VSCL)- serial communications FPGA version lower nibble
- VERSION_DD_HIGH (VDDH)- display driver FPGA version upper nibble
- VERSION_DD_LOW (VDDL)- display driver FPGA version lower nibble

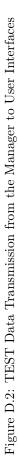
These are arranged as follows:

			Byte	23							
31	30	29	28	27	26	25	24				
1	1	0	0	0	0	0	0				
$Byte_2$											
23	22	21	20	19	18	17	16				
PI1AR	PI1BR	PI1CR	PI2AR	PI2BR	PI2CR	x	x				
	$Byte_1$										
15	14	13	12	11	10	9	8				
PI1ARF	PI1BRF	PI1CRF	PI2ARF	PI2BRF	PI2CRF	x	x				
	$Byte_0$										
7	6	5	4	3	2	1	0				
TRA	TRB	TRAF	TRBF	MTA	MTB	MTAF	MTBF				
	$Byte_3$										
31	30	29	28	27	26	25	24				
1	1	0	0	0	0	0	1				
	$Byte_2$										
23	22	21	20	19	18	17	16				
x	x	<i>x</i>	<i>x</i>	x	x	x	x				
	$Byte_1$										
15	14	13	12	11	10	9	8				
	VS	СН		VSHL							
	$Byte_0$										
7	6	5	4	3	2	1	0				
	VD	DH			VDD)L					

Table D.5: Two 32-bit MONITOR Registers for the CIBT

Finally the CIBM appends six 32-bit registers concerning its own status of operation:


• BEAM_PERMIT_INFO_A_TX (PIAT) - read locally in the CIBM


- BEAM_PERMIT_INFO_B_TX (PIBT) read locally in the CIBM
- BEAM_PERMIT_INFO_C_TX (PICT) read locally in the CIBM
- TEST_A_TX (TAT)- transmitting TEST data
- $\bullet\,$ TEST_B_TX (TBT)- transmitting TEST data
- MONITOR_A_RX (MAR)- being used as the source for MONITOR data
- MONITOR_B_RX (MBR)- being used as the source for MONITOR data
- TEST_B_TX_FAULT (TBTF)- read locally in the CIBM
- MONITOR_A_RX_FAULT (MARF)- read locally in the CIBM
- MONITOR_B_RX_FAULT (MBRF)- read locally in the CIBM
- BEAM_PERMIT_INFO_TX (PIT) Transmitted by CIBM (CIBU 1-6)
- BEAM_PERMIT_INFO_TX_FAULT (PITF) read locally in the CIBM (CIBU 1-6)
- SAFE_BEAM_FLAG_A (SBFA) Received from the SMPR
- SAFE_BEAM_FLAG_B (SBFB) Received from the SMPR
- SAFE_BEAM_FLAG_A_FAULT (SBFAF) read locally in the CIBM
- SAFE_BEAM_FLAG_B_FAULT (SBFBF) read locally in the CIBM
- VERSION_MF_HIGH (VMFH)- monitor FPGA version upper nibble
- VERSION_MF_LOW (VMFL)- monitor FPGA version lower nibble
- VERSION_MA_HIGH (VMAH)- matrix A FPGA version upper nibble
- VERSION_MA_LOW (VMAL)- matrix A FPGA version lower nibble
- VERSION_MB_HIGH (VMBH)- matrix B FPGA version upper nibble
- VERSION_MB_LOW (VMBL)- matrix B FPGA version lower nibble

This memory mapping is still to be confirmed, as of September 2007. The 36 rows of 32-bit values read from the CIBM that correspond to the operational status of the Beam Interlock Controller and User Interfaces. Summarising the tables shown previously shows that the first byte of each row identifies its contents:

- $\bullet~\mathbf{x82} \rightarrow \mathbf{x9D}$ are CIBU MONITOR registers
- $\bullet~\mathbf{xC0} \rightarrow \mathbf{xC1}$ are CIBT MONITOR registers
- $\mathbf{xC2} \rightarrow \mathbf{xC7}$ are CIBM MONITOR registers

D.3 TEST data

The TEST commands that are written to the CIBU must first be passed to the CIBT from the CIBM, the signals are as follows:

- **CIBU#** The socket number of the User Interface that is to be tested (1-14 in straight binary)
- **AB** The USER_PERMIT that is to be tested, logic '1' selects USER_PERMIT_A, logic '0' selects _B.
- **TF** The TRUE or FALSE level to be applied to the USER_PERMIT selected by AB, logic '1' sets the channel to TRUE, logic '0' sets it FALSE.
- ON A logic 1' sets the mode of the CIBU to 'test', a logic '0' sets it to 'operation'.
- **RST** Setting all bits to '1' forces the CIBU mode to 'reset'. After some seconds the CPLD will restart in the 'operation' mode.

These are arranged in the CIBT in the following structure:

$Byte_3$											
31	30	29	28	27	26	25	24				
1	0	0		CIBU#							
	$Byte_2$										
23	22	21	20	19	18	17	16				
0	0	AB	LG	ON	AB	LG	ON				
	$Byte_1$										
15	14	13	12	11	10	9	8				
x	x	x	x	x	x	RST	RST				
			1	$Byte_0$							
7	6	5	4	3	2	1	0				
x	x	x	x	x	x	x	x				
				_							
				$Byte_3$	1						
31	30	29	28	27	26	25	24				
31 1	30 0	29 0	28	27 CII	26 BU#	25	24 1				
1	0	0	2 8	$\begin{array}{c} 27 \\ \text{CII} \\ Byte_2 \end{array}$	BU#	I	1				
		-	28	27 CII Byte ₂ 19		25	1 16				
1	0	0	28 20 LG	27 CII Byte ₂ 19 ON	BU#	I	1				
1 23	0 22	0 21	28 20 LG	27 CII Byte ₂ 19	BU#	17	1 16				
1 23	0 22	0 21	28 20 LG	27 CII Byte ₂ 19 ON	BU#	17 LG 9	1 16 0N 8				
1 23 1	0 22 1	0 21 AB	28 20 LG	$\begin{array}{c} 27 \\ \text{CII} \\ \textbf{B}yte_2 \\ 19 \\ \text{ON} \\ \textbf{B}yte_1 \end{array}$	3U# 18 AB	17 LG	1 16 ON				
1 23 1 15	0 22 1 14	0 21 AB 13	28 20 LG 12 x	$\begin{array}{c} 27 \\ \text{CII} \\ \textbf{Byte}_2 \\ 19 \\ \text{ON} \\ \textbf{Byte}_1 \\ 11 \end{array}$	3U# 18 AB 10	17 LG 9	1 16 0N 8				
1 23 1 15	0 22 1 14	0 21 AB 13	28 20 LG 12 x	$\begin{array}{c} 27 \\ \text{CII} \\ \textbf{B}yte_2 \\ 19 \\ \text{ON} \\ \textbf{B}yte_1 \\ 11 \\ x \end{array}$	3U# 18 AB 10	17 LG 9	1 16 0N 8				

Table D.6: Two 32-bit TEST Registers for Each CIBU Written to the CIBT by the CIBM

The CIBT uses $byte_3$ from the CIBM TEST data as an address, this is stored along with the three remaining bytes, creating a 28 × 32-bit memory for the TEST data received from the CIBM. This TEST data is then encoded as four single byte frames that are sent to the relevant CIBU:

7	6	5	4	3	2	1	0	
0	0	AB	LG	ON	AB	LG	ON	Copied from 100XXXX0 Byte 2
0	1	RST	RST	RST	RST	RST	RST	Copied from 100XXXX0 Byte 1
1	0	x	x	x	x	x	x	
1	1	AB	LG	ON	AB	LG	ON	Copied from 100XXXX1 Byte 2

Table D.7: Four 8-bit TEST Registers Written to the CIBU by the CIBT

Together the TEST and MONITOR data provides a complete diagnosis of the operation of the Beam Interlock System, from User Interface to beam permit loop.

Appendix E

Socket and Connector Coding

In the LHC VME chassis, beam-1, beam-2 and both-beam signals can be accommodated by the patch-panel, which routes the signals to the beam-1 and beam-2 controllers providing the correct interlocking. The size and gender of the sockets on the panel are coded to ensure that the correct interlocking is maintained.

Socket Size and Gender	Beam Connection Type	
12-pin female	beam-1	
12-pin male	beam-2	
19-pin female	both-beam	

Table E.1: Socket Coding for the LHC Patch-Panel (CIBPL)

The SPS patch-panel allows two independent controllers to be implemented in a single chassis, this can be used in any part of the CERN complex where only one beam is to be interlocked. There is no need to differentiate between beams in this case so every connection is made by the same type of socket.

Socket Size and Gender	Beam Connection Type
12-pin female	SPS-beam

Table E.2: Socket Coding for the SPS Patch-Panel (CIBPS)

The sockets on the User Interface are also coded, the requirements in this case are not as strict as for the patch panels, the only critical fault could be a User System that accidentally interlocks the wrong beam. For example, if a system interlocking beam-2 were to accidentally interlock beam-1, the results could be catastrophic. On the other hand it is not so critical if a system interlocking beam-1 were to be accidentally connected to a both-beam socket, the coding is applied to both the controller and user side of the User Interface electronics, on the controller side:

Socket Size and Gender	Beam Connection Type
12-pin female	LHC beam-1, LHC both-beam or SPS-beam
12-pin male	LHC beam-2

Table E.3: Controller Side Socket Coding for the User Interface (CIBU)

And the user side:

Socket Size and Gender	Beam Connection Type
8-pin female	LHC beam-1, LHC both-beam or SPS-beam
8-pin male	LHC beam-2

Table E.4: User Side Socket Coding for the User Interface (CIBU)

User Systems are encouraged to provide coding to differentiate between beam-1 and beam-2 sockets within their systems. This isn't specified as in some cases it is impossible to implement.

This choice of socket encoding also implies that the cable connectors linking the LHC User Interfaces to the LHC Beam Interlock Controllers is consistent with the beam being interlocked. Conversely, the same connectors are used throughout the single beam installations:

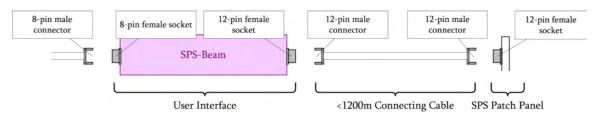


Figure E.1: Connector and Socket Coding for the SPS and Transfer Line Systems

Figure E.2 shows the three combinations of cables connectors and sockets that can be implemented in the LHC.

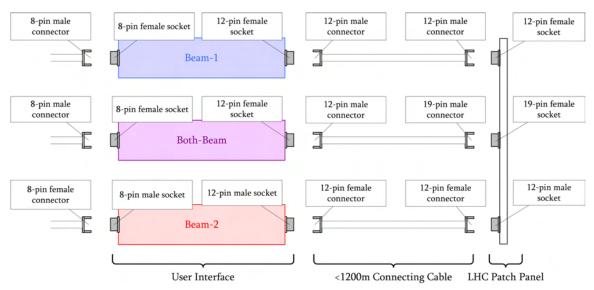


Figure E.2: Connector and Socket Coding for the LHC Systems

The interlocking architecture is hardwired at the input to the LHC Beam Interlock Controller, automated test sequences in software can be activated to verify the links. The combination of hardware coding and software verification leads to a robust and secure architecture that prevents simple errors from jeopardising the safe operation of the LHC accelerator.

Appendix F

Electro-Magnetic Compatibility Analysis

F.1 Cables from User System to User Interface

Three different implementations have been observed in the machine, the first is a twisted pair cable with the shield left open at one side and a pig-tail connector at the other, as shown in Figure F.1.

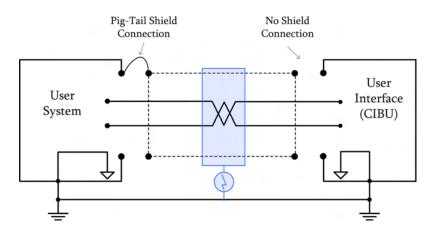


Figure F.1: User System to CIBU cable, with a Single Pig-Tail Shield Connection

Testing of this configuration showed that the link has almost no immunity from external events, as shown in Table F.1.

One pig-tail, no ground	Severity Level			
USER_PERMIT Setting	0.5kV	1.0kV	$2.0 \mathrm{kV}$	4.0kV
TRUE	A	В	В	С
FALSE	С	С	\mathbf{C}	С

Table F.1: EMC Test Results of Circuit in Figure F.1

The second implementation is a twisted pair cable with the shield connected at both sides using pig-tail connectors, as shown in Figure F.2 on the following page.

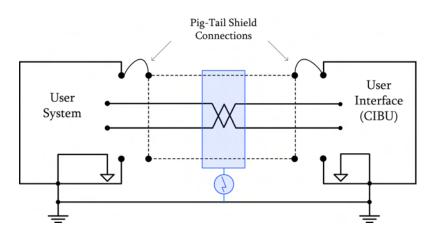


Figure F.2: User System to CIBU cable, with a Pair of Pig-Tail Shield Connections

This link is slightly more immune to external events, but still led to a complete failure at the highest level of testing, as shown in Table F.2.

Two pig-tails, no ground	Severity Level			
USER_PERMIT Setting	$0.5 \mathrm{kV}$	1.0kV	2.0kV	4.0kV
TRUE	А	А	А	D
FALSE	А	А	А	D

Table F.2: EMC Test Results of Circuit in Figure F.2

The recommended implementation for this interconnection is a twisted pair cable with the shield fully connected at both sides, and with a pair of ground wires within the cable itself, as shown in Figure F.3.

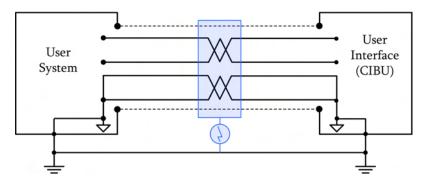


Figure F.3: User System to CIBU Cable as Recommended

This link showed the best performance at the highest levels of testing, without any perturbations being recorded, as shown in Table F.3.

Full connector, grounded wires	Severity Level			
USER_PERMIT Setting	$0.5 \mathrm{kV}$	1.0kV	2.0kV	4.0kV
TRUE	А	А	А	A
FALSE	А	А	А	Α

Table F.3: EMC Test Results of Circuit in Figure 4.84 on page 107

F.2 Cables from User Interface to Controller

The cables from the User Interface to the Beam Interlock Controller have full shielding, and a pair of ground wires connected at both ends, as shown in Figure F.4.

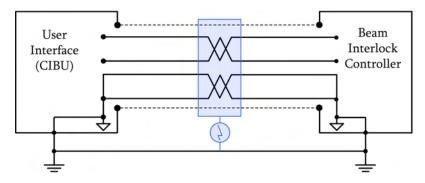


Figure F.4: User Interface to Controller Cable

Testing on this link has shown that it is immune to problems at all of the tested voltage levels:

Full connector, grounded wires	Severity Level			
USER_PERMIT Setting	$0.5 \mathrm{kV}$	1.0kV	2.0kV	4.0kV
TRUE	А	А	А	Α
FALSE	А	А	А	А

Table F.4: EMC Test Results of Circuit in Figure 4.85 on page 107

F.3 Power Supply Testing

The Beam Interlock Controller has a switched mode Power Supply, this was also tested according to the IEC-61000, with a simple layout as shown in Figure F.5

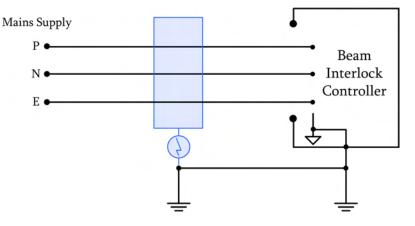


Figure F.5: EMC Testing of the VME Power Supply

These devices are designed to be used in industrial environments, so it has to be noted that they have already been tested to the IEC 61000 levels by the supplier [129], however no mention is given regarding the level of performance achieved during manufacturer testing. The VME Power Supply showed no ill effects at any of the tested voltage levels.

	Severity Level			
	0.5 kV 1.0 kV 2.0 kV 4.0 kV			
VME PSU	А	А	А	А

Table F.5: EMC Test Results of the VME Power Supply

The CIBD was tested in much the same way as the VME Power Supply, using the same set-up as shown in Figure 4.86 on page 107. The CIBD uses an enclosed power supply from Tracopower, this enclosed supply has been manufacturer tested, and is certified as withstanding 1kV interference [130], to increase the protection level the supply has been encased a second time, and has a mains supply filter fitted with slow-fuse. The results of the tests are shown in Table F.6.

	Severity Level			
	0.5 kV 1.0 kV 2.0 kV 4.0 kV			
CIBD	A	A	A	D

Table F.6: EMC Test Results of the CIBU Power Supply (CIBD)

It has to be noted that the CIBD and CIBU did not fail at 4.0kV, conducted radiation caused the Power PC of the VME Chassis to fail, it needed a power cycle to be restored.

Appendix G

Signal Integrity Analysis

G.1 Electrical Length Calculation

A key parameter in the analysis of an interconnection is the electrical length, this relates the signal wavelength that can be found on the link with the physical link length. If this ratio is high, then the interconnection must be treated as a high frequency design, with impedance and termination values considered, a low-frequency analysis is sufficient if this ratio is small. The rise time of an individual signal is normally determined by the driver parameters, in the case of the MAX3440E, the rise time of one of the wires of the differential signal is 200ns [84]. The equivalent frequency of this signal can be found from the following equation [117].

$$f_r = \frac{1}{\pi \times t_r} \tag{G.1}$$

Where f_r is the frequency in Hertz and t_r is the rise time in seconds. This means that a 200ns risetime has an equivalent frequency of 1.6MHz, in a cable this frequency can be approximated by the following:

$$\lambda_r = \frac{0.5 \times c}{f_r} \tag{G.2}$$

Where λ_r is the wavelength in meters and c is the speed of light in a vacuum. Equating this for the MAX3440E in a CERN standard NE12 cable leads to a wavelength of 112.5m. The electrical length is the ration of this wavelength to the physical length of the interconnection [136]

$$E = \frac{l}{\lambda_r} \tag{G.3}$$

Where E is the electrical length and l is the cable length in meters. A full length RS485 link of 1200m driven by a MAX3440E has an electrical length of over 10, the specified limit for low frequency design is 0.05 [115].

G.2 Type-1 Signal Integrity

The link from the User System to the User Interface (CIBU) consists of just three signals:

- USER_PERMIT_A
- USER_PERMIT_B
- BEAM_PERMIT_INFO

USER_PERMIT_A and _B are considered as 'mission critical', whereas BEAM_PERMIT_INFO is less critical, all three signals are connected using current loops, as this facilitates the interconnection of the different User System hardware platforms.

G.2.1 USER_PERMIT from User System to CIBU

The User System needs to provides a voltage or current source and a switch to drive the USER_PERMIT links, the switch can take the form of a transistor, or a physical device such as a relay. The CIBU has a small circuits to regulate the current in the loop to optimise the operation of the optocoupler. The recommended layout of this interconnection is shown in Figure G.1.

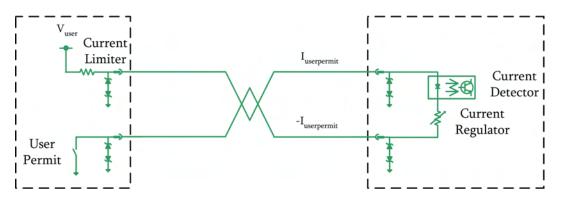


Figure G.1: Basic USER_PERMIT Current Loop Implementation

The current regulator controls the current in the loop, optimising the switching of the optocoupler, which serves as a current detector. When the user gives permit, current is allowed to flow, since the current in the two branches is equal and opposite and the wires are twisted pair, signal coupling is mostly between these two wires. Full shielding and ground connections augment this performance, improving the noise immunity.

A simple NPN transistor is recommended as the current loop switch, typically a BC847 is recommended for a smooth switching when the User System has a 5V supply. Slower 24V systems can be implemented with a relay for the switching, in this case the rate of change of voltage has to be limited to around 5V/us to prevent reflection problems on the link. It is inevitable that mechanical switching components have a settling time, for a typical relay this can be several milliseconds, so fast interlock systems are not to use a mechanical switch.

The complete circuit has been simulated as two single ended transmission lines with each having a characteristic impedance of half the differential impedance, this is an approximation. The typical differential impedance is the a value taken for a CERN standard interconnecting cable [137].

G.2.2 BEAM_PERMIT_INFO from CIBU to User System

The User Interface provides a contact for BEAM_PERMIT_INFO, essentially a slow optocoupler, which is closed when the BEAM_PERMIT_INFO is FALSE the user can use a current or voltage interface to readback this value for example with a simple pull-up arrangement, as shown in Figure G.2.

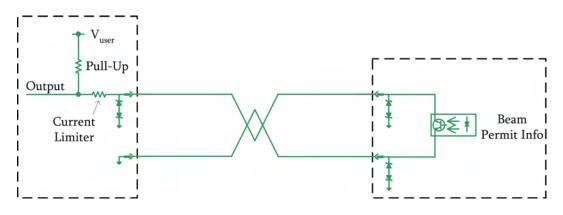


Figure G.2: Basic BEAM_PERMIT_INFO Current Loop Implementation

The reaction time of the circuit is somewhat slower than that of the USER_PERMIT.

G.3 Type-2 Signal Integrity

The link from the User Interface (CIBU) to the Beam Interlock Controller (BIC) is made using slew-rate limited balanced differential RS485 signals in a shielded twisted pair cable, altogether there are five signals in this link:

- USER_PERMIT_A
- USER_PERMIT_B
- BEAM_PERMIT_INFO
- TEST
- MONITOR

USER_PERMIT_A, _B and BEAM_PERMIT_INFO are DC signals, TEST and MONITOR are encoded frames, at 31.25kHz.

G.3.1 Differential Signals between CIBU and BIC

The differential signals between the CIBU and BIC are considered as high frequency signals as has been shown in the previous section. Four different circuit topologies exist for DC links USER_PERMIT and BEAM_PERMIT_INFO :

- USER_PERMIT from CIBU to CIBM through CIBPL with single termination
- USER_PERMIT from CIBU to CIBM through CIBPL with double termination
- USER_PERMIT from CIBU to CIBM through CIBPS
- BEAM_PERMIT_INFO from CIBM or CIBT to CIBU

The encoded links TEST and MONITOR have a 62.5kHz basic frequency, with the same basic topology. The use of redundant and timed frames means that even if a corruption to occur, it could not lead to machine downtime due to a switch from 'operation' to 'test' mode. All the different type-2 signal architectures have been analysed and each has been shown to have an acceptable performance.

G.4 Type-3 Signal Integrity

Links that go from Controller to Controller are optical, in principle there cannot be any EMC issues related to these physical links [138].

G.5 Type-4 Signal Integrity

Signals that are transmitted from one card to another within the VME chassis of the Beam Interlock Controller are slew-rate limited balanced differential RS485 signals with a fundamental frequency of 250 kHz. The wavelength of the 250kHz signal is identical to that show in Section [cite] as the same MAX3440E driver is used.

As the interconnecting PCBs are not strictly impedance controlled, the slow rising and falling edges of the slew-rate limited signals is relied upon to ensure that the integrity of the links is maintained. The longest physical connection is a Safe Beam Flag signal from the SMPR, which has to traverse almost the complete CIBP, in the LHC there are a pair of Safe Beam Flags for each CIBM:

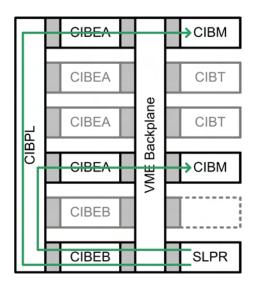


Figure G.3: Safe Beam Flag Transmission within an LHC Patch Panel (CIBPL)

The same flag is used in a multi-drop arrangement in the SPS:

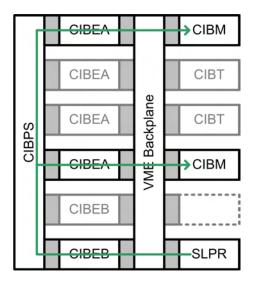


Figure G.4: Safe Beam Flag Transmission within an SPS Patch Panel (CIBPS)

Again the MAX3440E transceiver is used, but this time the maximum length is just one meter, this gives an electrical length of less than 0.01. This can be treated as a low frequency link, simulation show that there are absolutely no integrity issues with any of the Type-4 RS485 differential board-to-board links.

G.6 Type-5 Signal Integrity

Type-5 links are those that can be found on the same PCB, where a signal passes from one integrated circuit to another on the same board. There are numerous Type-5 signals to be considered, in order to analyse the links the simplest approach is to determine the electrical length of only fastest signals ensuring that they can all be considered as low-frequency signals.

G.6.1 Worst Case Type-5 Link

The longest link on the CIBM is from the lower RS485 transceivers to the upper matrix. The USER_PERMIT signal is derived from the differential signals by the MAX3440E transceiver and although the differential signals are slew rate limited, the TTL output signals from the driver are

not. A rise and fall time for these signals can be determined from values for TTL components giving a typical rise time of only 5ns [139], this is an equivalent frequency of over 60MHz having a wavelength just under three meters. if it is to be considered a low frequency link the longest allowed trace is 14cm, [136] [115]. All of the USER_PERMIT links on the CIBM are shorter than 14cm, so no integrity problems exist.

G.6.2 Special Case Type-5 Link

The signal from the CIBO optical transceiver has a fall time of only 1.1ns [140], giving a signal frequency of 290MHz with a corresponding wavelength of 62cm. This leads to a maximum trace length of just 3.1cm. This is routing of the LOOP_IN and LOOP_OUT signals has been constrained to meet these length limitations.

Appendix H

Failure Modes, Effects and Criticality Analysis

Failure Modes, Effects and Criticality Analysis has been carried out on the complete Beam Interlock System to determine the probability of different failures occurring during a single ten-hour LHC mission. Table H.1 shows the probabilities of failure of each sub-system of the Beam Interlock System during a single ten-hour LHC mission. The numbers take into consideration the quantity of each unit installed in the LHC Beam Interlock System.

Sub-System	LHC Quantity	P(Fail) per 10-hour mission for all of LHC			
Sub-System	LIIC Quantity	No Effect	Maintenance	False Dump	Blind Failure
CIBD	266	4.78E-04	1.13E-02	2.41E-08	0.00E + 00
CIBUS	82	3.89E-03	2.34E-03	2.67 E-03	3.80E-10
CIBUD	51	4.54E-03	2.61E-03	2.98E-03	2.36E-10
CIBPL	16	1.40E-05	2.80E-05	1.97 E-04	0.00E + 00
CIBEA	64		5.61E-05	5.61E-05	
CIBEB	32	2.80E-05		2.80 E- 05	
CIBT	32	9.08E-04	9.05E-04	4.59E-06	
CIBTD	32	4.90E-04	1.80E-05		
CIBM	32	1.59E-03	1.59E-03	2.39E-03	1.37E-11
CIBMD	32	9.50E-04	4.62 E-06	1.33E-04	
CIBO	72	1.42E-04		5.98E-04	5.08E-13
CIBG	4	2.91E-05	2.91E-05	6.40 E-05	
CIB FAN	32		4.92E-03	7.57 E-08	
CIB PSU	32		3.20E-03	3.20E-08	
T	otals	1.31E-02	2.70E-02	9.12E-03	3.27E-08

Table H.1: Sub-System Probability of Failure for the Whole of LHC During a Ten-Hour Mission

H.1 Double User Interface (CIBUD) Example

To give an example of FMECA consider the CIBUD figures shown in Table H.1. The equivalent hourly probabilities of failure are derived by dividing by 510 which is the number of unit-hours in an LHC mission:

No Effect	Maintenance	False Dump	Blind Failure
'NE'	$^{\prime}\mathrm{M}^{\prime}$	$^{ m FD}$	'BF'
8.9×10^{-6}	5.1×10^{-6}	5.8×10^{-6}	7.3×10^{-12}

Table H.2: Double User Interface Hourly Probability of Failure

The following pages show the Failure Modes, Effects and Criticality Analysis worksheet that has been used to determine these figures.

Description Subjection Calification Displayment Calification Calification											
Description Description Methods	System:	Beam Interlock System	r		Subsystem:	CIBUD	Version	3v1		Date:	September 24, 2006
</th <th>-</th> <th>0110</th> <th>Description</th> <th>Base Villand Date</th> <th>D.f.</th> <th>Difficient Made</th> <th>9-4-0</th> <th> 302</th> <th>Detection</th> <th>DUE-11</th> <th>The Action</th>	-	0110	Description	Base Villand Date	D.f.	Difficient Made	9-4-0	30 2	Detection	DUE-11	The Action
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[Ref Des]	Trescribrion	Dase Failure Nate	[Manufacturer]	[MIL-HDBK-338B]	MIL-HDBK-338B]	MIGCI	топор	/mg.r).r	Channel Affected
% Model Side 0.1 Oper Gauch Trian 0.86 Dist Target π_3 Target π_3 Target π_3 Target π_3 Target π_3 Target π_4 T		[Class]		[10E9 hours]	[MIL-HDBK-]	[FMD-97-]	[FMD-97-]	[NE, M, FD, BF]	[source]	[per Hour]	[B1/B2, A/B]
$4C_1$ GAN $3AB_1$ $3AB_1$ Grant M_{11}		R1	3k3Ω 0.25W Resistor	15.65	9.1	Open Circuit / Drift	0.950	BF	Test	1.49E-08	Beam-2 A
-4.7 MW -7.1 -7	1	Resistor	7 mW	70.01	10	Short Circuit	0.050	FD	Monitor	7.83E-10	
τ MB MB τ MB τ MB <td>1</td> <td>у . г</td> <td>TOLES W CZ 0 22/344</td> <td>07.01</td> <td>1.4</td> <td></td> <td>0.000</td> <td>INE</td> <td></td> <td>1.20E-U0</td> <td></td>	1	у . г	TOLES W CZ 0 22/344	07.01	1.4		0.000	INE		1.20E-U0	
4.2.4, 0.000 $1.2.6$ 0.000 0.000 0.0000 0.0000 0.0000 0.00000 $4.2.0.2.5$ W Restore $1.2.0.5$ 9.1 0.0000 0.00000 0.000000 0.0000000 $4.2.0.2.5$ W Restore 0.0000 9.1 $0.00000000000000000000000000000000000$	0	Resistor P3	4./ mW 4F70.0.75W/ Resistor	13.76	01	Onen Circuit / Drift	050.0	£	Monitor	0.03E-10 1 76E-08	
4/0.0 23/0 9.1 Quer Grant/ Toff 0.00 NI Monte 1.26/0 4.0.10X Monte 0.00 9.1 Quer Grant/ Toff 0.00 NI Monte 1.26/0 2.20.05X Reserve 0.00 9.1 Quer Grant/ Toff 0.00 NI Monte 1.26/0 4.0 Monte 3.22 0.00 9.1 Quer Grant/ Toff 0.00 NI Monte 0.001.00 4.0 Monte 13.2 9.1 9.1 Quer Grant/ Toff 0.90 NI Test 3.220.00 4.0 Monte 13.4 9.1 Quer Grant/ Toff 0.90 NI Test 3.220.00 2.42.0 SW Restor 7.14 9.1 Quer Grant/ Toff 0.90 NI Test 3.572.00 2.42.0 SW Restor 7.14 9.1 Quer Grant/ Toff 0.90 NI Test 3.572.00 2.40.0 SW Restor 3.50 9.1 Quer Grant/ Toff 0.90 NI Test	è	Recistor	47 mW	07:01	1.7	Chert Circuit	0.050	NF	TOTTTOTAT	6.63F-10	
$47 {\rm mV}$ $47 {\rm mV}$ $47 {\rm mV}$ $40 {\rm mV}$ $400 {\rm mV}$ $600 {\rm mV}$ $100 {\rm mV}$ $1000 {\rm mV}$ $1000 {$		R4	4k70.0.25W Resistor	13.26	91	Onen Circuit / Drift	0.950	NE		0.001-10 1 26F-08	
Z20 025W Restor 000 91 Open Gravit/ Delt 0.950 NE month 0.006-00 4700 05W Restor 39.21 9.1 Open Gravit/ Delt 0.950 PD Per 0.006-00 4700 05W Restor 33.5 9.1 Open Gravit/ Delt 0.950 PD Montor 1.56 0.006-00 4.7 mW 33.5 9.1 Open Gravit/ Delt 0.950 PD Montor 1.56 0.006-00 4.7 mW 33.5 9.1 Open Gravit/ Delt 0.950 M Tes 5.575-00 3.450 05W Restor 5.55 9.1 Open Gravit/ Delt 0.950 M Tes 5.575-00 3.50 05W Restor 5.55 9.1 Open Gravit/ Delt 0.950 M Tes 5.575-00 3.50 05W Restor 13.56 9.1 Open Gravit/ Delt 0.950 M Montor 5.55 0.006-00 3.50 05W Restor 13.56 9.1 Open Gravit/ Delt 0.950 M 0.006 0.50 0.50 <td></td> <td>Recistor</td> <td>47 mW</td> <td></td> <td></td> <td>Short Circuit</td> <td>0500</td> <td>M</td> <td>Monitor</td> <td>6.63E-10</td> <td></td>		Recistor	47 mW			Short Circuit	0500	M	Monitor	6.63E-10	
NOTIVITIO Spart Gravit Obsert Gravit Obsert Gravit Opsection		R5	220 0.25W Resistor	0.00	9.1	Onen Circuit / Drift	0.950	NE		0.00E+00	
4700 JSW Resider 3921 91 921		Resistor	NOT MOUNTED			Short Circuit	0.050	NE		0.00E+00	
q^{m} mV <		R6	470Ω 0.25W Resistor	39.21	9.1	Open Circuit / Drift	0.950	£	Test	3.72E-08	
4220 GNN Restor 326 9.1 Qene Grench Drift 0.590 PD Monine 1.2860 $4.7 mV$ 2.400 GNV Restor 7.14 9.11 Qene Grench 0.690 M Test 0.580 2.400 GNV Restor 7.14 9.11 Qene Grench 0.690 M Test 0.580 2.400 GNV Restor 7.14 9.11 Qene Grench 0.690 M Test 0.580 3.600 GNV Restor 1.565 9.1 Qene Grench 0.690 M Test 0.580 $4.7 mV$ 1.356 9.1 Qene Grench 0.690 M Test 0.580 $4.7 mV$ $4.7 mV$ 1.326 9.1 Qene Grench 0.690 N N Non- 5.560 $4.7 mV$ $4.7 mV$ 0.900 N N Non- 5.560 5.580 $4.7 mV$ 0.900 N N N 0.660 N 0.660		Resistor	47 mW			Short Circuit	0.050	Ð	Test	1.96E-09	
4.7mV 4.7 mV 6.58 mV 6.58 mV 6.58 mV 1.1 W 1.4 9.1 5.0 mV $3mat$ Currant/Drift 0.99 M Test 6.58 mV 1.0 W 1.0 W 1.4 9.1 $5mat$ $5mat$ $5mat$ $5mat$ $3mat$ 5.6 9.1 $9mat$ Currant/Drift 0.99 M Test 5.75 mV $3mat$ 5.6 9.1 $9mat$ Currant/Drift 0.99 M Test 5.75 mV $3mat$ 1.26 9.1 $5mat$ $5mat$ $5mat$ $5mat$ $5mat$ $5mat$ 4.7 m/W 1.26 9.1 $5mat$ <		R7	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	ED	Monitor	1.26E-08	
$2440.02W$ Resince 7.14 9.1 Que Circuit/Diff 0.950 M Test 5.78 ± 00 $1 mW$ $1 mW$ $7 m$ 3.957 ± 00 3.57 ± 00 3.57 ± 00 $1 mW$ $1 mW$ $7 m$ $3.9 mC$ (crucit) 0.950 M $7 m$ 3.57 ± 00 $3.40.02W$ Resistor 15.65 9.1 Qren Circuit) 0.950 M $7 m$ 3.57 ± 00 $4.7 mW$ 13.26 9.1 Qren Circuit/Drift 0.950 $N M$ $7 m$ 3.58 ± 00 $4.7 mW$ 3.25 9.1 Qren Circuit/Drift 0.950 $N M$ $7 m$ 3.58 ± 00 $4.7 mW$ 3.26 9.1 Qren Circuit 0.950 $N M$ $1 mW$		Resistor	4.7 mW			Short Circuit	0.050	FD	Monitor	6.63E-10	
1 MV 1 MV 1 mV 2 MO ($2 \text{ WR sitester 1 \text{ mV} 2 \text{ MO} (2 \text{ MV} 1 \text{ mV} 2 \text{ MO} (2 \text{ MV} 2 \text{ MO} 2 \text{ MO} 2 \text{ MO} 2 \text{ MV} 2 \text{ MO} $		R8	2k4Ω 0.25W Resistor	7.14	9.1	Open Circuit / Drift	0.950	M	Test	6.78E-09	
2640 0.2W Rainer 7.14 9.1 Open Grenit/ Drift 0.990 M Test 5.3510 $1 mW$ 556 9.1 Short Grenit 0.900 M Test 5.3510 $7 mW$ 556 9.1 Short Grenit 0.090 PC Monitor 5.3510 $7 mW$ 5.5 9.1 Short Grenit 0.090 PC Monitor 5.3510 $4.7 mW$ 5.57 9.1 Short Grenit 0.090 PC Monitor 5.5810 $4.7 mW$ 3.26 9.1 Short Grenit 0.990 NE Monitor 5.5810 $4.7 mW$ 3.26 9.1 Short Grenit 0.990 NE Monitor 5.5810 $4.7 mW$ 3.26 9.1 Open Grenit 0.990 NE Monitor 5.5810 $4.7 mW$ 3.26 9.1 Open Grenit 0.990 NE 0.990 0.990 $2.00 (25W Resitor$		Resistor	$1\mathrm{mW}$			Short Circuit	0.050	M	Test	3.57E-10	
1 mV $1 mV$ $1 mV$ $1 mV$ $1 mV$ $2 mV$ 2		R9	2k4Ω 0.25W Resistor	7.14	9.1	Open Circuit / Drift	0.950	M	Test	6.78E-09	
3k30 0.2W Resirer 15.5 9.1 Open Grenti, Drift 0.950 BY Text 1.4PB.66 $4x70$ 5W Resirer 13.36 9.1 Open Grenti, Drift 0.950 ND Monitor 1.286.10 $4x70$ 5W Resirer 13.36 9.1 Open Grenti, Drift 0.950 ND Monitor 1.286.10 $4x70$ 5W Resirer 13.26 9.1 Open Grenti, Drift 0.950 ND Monitor 6.682.10 $4x70$ 5W Resirer 13.26 9.1 Open Grenti, Drift 0.950 NE Monitor 6.682.10 $4x70$ 5W Resirer 0.00 9.1 Open Grenti, Drift 0.950 NE 7.4 1.262.05 47 m/W Ma Monitor 0.668.10 0.050 NE 7.4 1.262.06 47 m/W Ma Monitor 0.569 NE 7.4 1.262.06 47 m/W Monitor 0.550 NE 7.4 1.262.06 0.566.10	÷	Resistor	$1 \mathrm{mW}$			Short Circuit	0.050	M	Test	3.57E-10	
7 mW 7 mW 7 mW 7 mV 8 mot circuit 0.950 PD $M \text{ mutor}$ $47.0 \ 0.2W \text{ Resistor}$ 13.26 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ $47.0 \ 0.2W \text{ Resistor}$ 13.26 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ $47. \text{mW}$ 13.26 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ $47. \text{mW}$ 13.26 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ $220.025W \text{ Resistor}$ 0.00 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ $220.025W \text{ Resistor}$ 0.00 9.1 Short Circuit 0.950 NE $M \text{ mutor}$ 47 mW 9.1 0.960 Circuit 0.950 NE $M \text{ mutor}$ $47.0025W \text{ Resistor}$ 7.14 9.1 0.960 Circuit 0.950 NE $M \text{ mutor}$ $47.0025W \text{ Resistor}$ 7.14 9.1 0.960		R10	3k3Ω 0.25W Resistor	15.65	9.1	Open Circuit / Drift	0:950	BF	Test	1.49E-08	Beam-2 B
447G 0.25W Resistor 13.26 9.1 Open Gircuit / Drift 0.950 NE Monitor 4.73 0.25W Resistor 13.26 9.1 Short Gircuit 0.050 NE Monitor 4.73 0.25W Resistor 13.26 9.1 Short Gircuit 0.050 NE Monitor 4.73 0.25W Resistor 13.26 9.1 Open Gircuit / Drift 0.950 NE Monitor 4.73 0.25W Resistor 13.26 9.1 Open Gircuit 0.050 NE Monitor 2.60 0.25W Resistor 0.00 9.1 Open Gircuit 0.050 NE Monitor 2.60 0.25W Resistor 39.21 9.1 Open Gircuit 0.050 NE Ne 4.70 0.25W Resistor 13.26 9.1 Open Gircuit 0.050 NE Test 4.70 0.25W Resistor 1.14 9.1 Open Gircuit 0.050 N Test 4.70 N 2.640 0.5W Resistor 1.14 9.1 Open Gircuit 0.050 N Test 4.70 N		Resistor	$7 \mathrm{mW}$			Short Circuit	0.050	ED	Monitor	7.83E-10	
$47 \mathrm{mW}$ $47 \mathrm{mW}$ $8 \mathrm{herr} \mathrm{Grent}$ 0.000 $100 \mathrm{m}$ $100 $		R11	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	NE		1.26E-08	
44.70 0.5W Resistor 13.26 9.1 Open Gircuit/ Diff 0.960 ED Monitor 4.7 mW $4.7 \mathrm{mW}$ 13.26 9.1 Open Gircuit/ Diff 0.950 NE Monitor 4.7 mW 13.26 9.1 Open Gircuit/ Diff 0.950 NE Monitor 2.20 0.5W Resistor 0.00 9.1 Open Gircuit / Diff 0.950 NE Net 2.20 0.5W Resistor 39.21 9.1 Open Gircuit / Diff 0.950 NE Test 4.7 mW 37.0 1.4 9.1 Open Gircuit / Diff 0.950 NE Test 4.7 mW 1.3 0.1 Open Gircuit / Diff 0.950 NM Test 4.7 mW 1.1 0.950 NM Test Test Test 1.1 mW 1.1 mW 0.550 NM NM Test Test 2.44.00.55W Resistor 7.14 9.1 Open Gircuit / Diff 0.950 MM Test 1.1 mW 1.1 mW 7.14		Resistor	4.7 mW			Short Circuit	0.050	FD	Monitor	6.63E-10	
47 nW 81 net circuit 0.050 NE $N \text{ mitor}$ 47 nW 13.26 9.1 Short Circuit 0.050 NE Monitor $2202.058 \text{ Resistor}$ 0.00 9.1 Short Circuit 0.050 NE Monitor $2202.058 \text{ Resistor}$ 39.21 9.1 Open Circuit 0.050 NE Monitor 47 nW 39.21 9.1 Open Circuit 0.050 NE Test 47 nW 13.26 9.1 Open Circuit 0.050 N Test 47 nW 1.1 nW 32.14 9.1 Open Circuit 0.050 M Test 1 nW 7.14 9.1 Open Circuit 0.050 M Test 1 nW $2.42.0 0.5W \text{ Resitor 7.14 9.1 Short Circuit 0.050 M Test 1 \text{ nW} 2.42.0 0.5W Resitor 7.14 9.1$		R12	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	Ð	Monitor	1.26E-08	
4k2G 0.25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 NE Monitor 220 0.25W Resistor 0.00 9.1 Open Circuit 0.050 NF Monitor 220 0.25W Resistor 0.00 9.1 Open Circuit 0.050 NF Fet 47.02.0.25W Resistor 39.21 9.1 Open Circuit 0.050 NF Fet 47.02.0.25W Resistor 33.26 9.1 Open Circuit 0.050 NF Fet 47.00.0.25W Resistor 13.26 9.1 Open Circuit 0.050 NF Fet 47.00.0.25W Resistor 7.14 9.1 Open Circuit 0.050 N Fet 47.0.0.25W Resistor 7.14 9.1 Open Circuit 0.050 M Fet 2.8420.0.25W Resistor 7.14 9.1 Open Circuit 0.050 M Fet 1.mW 2.42.0.25W Resistor 7.14 9.1 Open Circuit 0.050 M Fet 2.8420.025W Resistor 3.7.4	1	Resistor	4.7 mW			Short Circuit	0.050	NE		6.63E-10	
$4.7 \mathrm{mW}$ $4.7 \mathrm{mW}$ Monitor Short Gircuit 0.050 M Monitor 220.05W Resistor 0.00 9.1 Open Gircuit/Drift 0.950 NP P 47.00 MOUNTED 39.21 9.1 Open Gircuit/Drift 0.950 NP P Test 47.00 Moritor 13.26 9.1 Open Gircuit/Drift 0.950 NP P Test 47.00 25W Resistor 1.3 0.14 9.1 Open Gircuit/Drift 0.950 NM Test 47.00 25W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 NM Test 1.mW 7.14 9.1 Open Gircuit/Drift 0.950 NM Test 2.840 0.5W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 NM Test 1.mW 1.mW 7.14 9.1 Open Gircuit/Drift 0.950 NM Test 2.840 0.5W Resistor 1.326 9.1 Op		R13	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	NE		1.26E-08	
222.0 25W Resistor 0.00 9.1 Open Gircuit/ Drift 0.950 NE 47 MOUNTED 3921 9.1 Open Gircuit/ Drift 0.950 FD Test 47 mV 47 mV 3921 9.1 Open Gircuit/ Drift 0.950 FD Test 47 mV 37.05 W Resistor 13.26 9.1 Open Gircuit/ Drift 0.950 FD Test 47 mV 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 2k400 05W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 2k40 05W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 2k40 05W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 1mW 1mW 73.5 Short Gircuit 0.650 M Test 2k40 05W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 2k40 05W Resistor 1.0W <td< td=""><td></td><td>Resistor</td><td>4.7 mW</td><td></td><td></td><td>Short Circuit</td><td>0.050</td><td>M</td><td>Monitor</td><td>6.63E-10</td><td></td></td<>		Resistor	4.7 mW			Short Circuit	0.050	M	Monitor	6.63E-10	
NOT MOUNTED Short Garcuit 0.050 NE Ne 4700 025W Resistor 3921 9.1 9.1 0.950 FD Test 4700 025W Resistor 3326 9.1 Open Gircuit/Drift 0.950 FD Test 4772 0.25W Resistor 13.26 9.1 Open Gircuit/Drift 0.950 FD Test 4.7 mW 7.14 9.1 Open Gircuit/Drift 0.950 M Test 2k400 025W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 M Test 2k400 025W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 M Test 2000 025W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 M Test 2000 025W Resistor 7.14 9.1 Open Gircuit/Drift 0.950 M Test 1 n/W 1.326 9.1 Open Gircuit/Drift 0.950 M Monitor 47.7 0.25W Resistor 13.26 9.1 Open Gircuit/Drift 0.950<		R14	220 0.25W Resistor	0.00	9.1	Open Circuit / Drift	0.950	NE		0.00E+00	
4/03.025W Resistor 99.21 9.1 0.1 Open Grent/ Duft 0.950 PD Test 47.03 $47.0W$ 1326 9.1 Open Grent/Duft 0.950 PD Test $4.7 nW$ 1326 9.1 Open Grent/Duft 0.950 PD Test $4.7 nW$ 7.14 9.1 Open Grent/Duft 0.950 M Test $2k40.025W$ Resistor 7.14 9.1 Open Grent/Duft 0.950 M Test $1 nW$ $2k1$ 0.16 0.60 M M Test $2202.025W$ Resistor 7.14 9.1 Open Grent/Duft 0.950 M M $2202.025W$ Resistor 23.74 9.1 Open Grent/Duft 0.950 M M $4.7 nW$ $8nV$ $6nvt Gircuit 0.950 M M 4.7 nW 8.8nt Gircuit/Duft 0.950 M M M 4.7 nW 8.8nt Gircuit $		Resistor	NOT MOUNTED			Short Circuit	0.050	NE		0.00E+00	
$47 \mathrm{mW}$ $47 \mathrm{mW}$ $47 \mathrm{mW}$ $5 \mathrm{mv}$ clictuit 0.050 FD Test Test $47 \mathrm{mW}$ $13 \mathrm{mW}$ $13 \mathrm{S6}$ 9.1 Open Circuit/Drift 0.950 PD Test $2 \mathrm{sclo}$ 7.14 9.1 Open Circuit 0.050 m Test $1 \mathrm{mW}$ 7.14 9.1 Open Circuit 0.050 M Test $1 \mathrm{mW}$ 7.14 9.1 Open Circuit 0.050 M Test $2 \mathrm{sclo}$ 7.14 9.1 Open Circuit 0.050 M Test $2 \mathrm{sclo}$ $2.1 \mathrm{sclo}$ 9.1 Open Circuit/Drift 0.950 M Monior $2 \mathrm{sclo}$ $2.0 \mathrm{sclo}$ $0.1 \mathrm{sclo}$ 0.050 M Monior $2 \mathrm{sclo}$ $2.3.74 \mathrm{sclo}$ $9.1 \mathrm{open}$ 0.950 M Monior $2 \mathrm{sclo}$ $2.3 \mathrm{sclo}$ $2.3 \mathrm{sclo}$ 0.950 <td></td> <td>R15</td> <td>47002 0.25W Resistor</td> <td>39.21</td> <td>9.1</td> <td>Open Circuit / Drift</td> <td>056.0</td> <td>ΗD</td> <td>Test</td> <td>3.72E-08</td> <td></td>		R15	47002 0.25W Resistor	39.21	9.1	Open Circuit / Drift	056.0	ΗD	Test	3.72E-08	
47.0 $.5W$ Resistor 13.26 9.1 Open Gircuit/ Drift 0.950 FD Test $4.7 \mathrm{mW}$ $3.1 \mathrm{mW}$ 7.14 9.1 Open Gircuit 0.050 PD Test $2.40 \mathrm{O.25W}$ Resistor 7.14 9.1 Open Gircuit 0.050 M Test $1 \mathrm{mW}$ $1 \mathrm{mW}$ $2.840 \mathrm{O.55W}$ Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test $2.840 \mathrm{O.55W}$ Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Test $2.800 \mathrm{O.55W}$ Resistor $2.3.74$ 9.1 Open Gircuit / Drift 0.950 M Test $4.70 \mathrm{O.55W}$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor $4.70 \mathrm{O.55W}$ Resistor $18.22 \mathrm{O.55W}$ Resistor $13.26 \mathrm{O.55W}$ M Monitor $4.70 \mathrm{O.5W}$ Resistor $13.26 \mathrm{O.5W}$ $0.950 \mathrm{M}$ M Monitor $4.70 \mathrm{O.5W}$ Resistor $13.26 \mathrm{O.5W}$ $0.950 \mathrm{M}$ M Monitor </td <td>1</td> <td>Resistor</td> <td>47 mW</td> <td></td> <td></td> <td>Short Circuit</td> <td>0.050</td> <td>FD</td> <td>Test</td> <td>1.96E-09</td> <td></td>	1	Resistor	47 mW			Short Circuit	0.050	FD	Test	1.96E-09	
$4.7 \mathrm{mW}$ $4.7 \mathrm{mW}$ Short Gircuit 0.050 PD Test $240.02 \mathrm{W} \mathrm{Resistor}$ 7.14 9.1 Open Gircuit/Drift 0.950 M Test $1 \mathrm{mW}$ $1 \mathrm{mW}$ 7.14 9.1 Open Gircuit/Drift 0.950 M Test $2 \mathrm{kelstor}$ 7.14 9.1 Open Gircuit/Drift 0.950 M Test $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MO}$ $2 \mathrm{MO}$ $M \mathrm{MO}$ Test $2 \mathrm{MW}$ $2 \mathrm{MO}$ $2 \mathrm{MO}$ 0.950 $M \mathrm{MO}$ Test $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MO}$ 0.050 $M \mathrm{MO}$ $M \mathrm{MO}$ $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MO}$ $M \mathrm{MO}$ $M \mathrm{MO}$ $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{MO}$ $M \mathrm{MO}$ $M \mathrm{MO}$ $2 \mathrm{MW}$ $2 \mathrm{MW}$ $2 \mathrm{M}$ $2 \mathrm{M}$ $M \mathrm{MO}$ $M \mathrm{MO}$ $4 \mathrm{MW}$ $2 \mathrm{M}$ $2 \mathrm{M}$ <td< td=""><td></td><td>R16</td><td>4k7Ω 0.25W Resistor</td><td>13.26</td><td>9.1</td><td>Open Circuit / Drift</td><td>0.950</td><td>Ð</td><td>Test</td><td>1.26E-08</td><td></td></td<>		R16	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	Ð	Test	1.26E-08	
Zk4.0 $(25W \text{ Resistor}$ 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 1 mW 1 mW 7.14 9.1 Open Gircuit/ Drift 0.950 M Test $2k_0 O5W \text{ Resistor}$ 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 1 mW 23.74 9.1 Open Gircuit/ Drift 0.950 M Test $2200, 0.25W \text{ Resistor}$ 23.74 9.1 Open Gircuit/ Drift 0.950 M Meditor $4.70 0.55W \text{ Resistor}$ 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor		Resistor	4.7 mW			Short Circuit	0.050	Ð	Test	6.63E-10	
1 mW $1 mW$ 1		R17	2k4Ω 0.25W Resistor	7.14	9.1	Open Circuit / Drift	0.950	M	Test	6.78E-09	
Zk42.0.25W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Test 1 mW 1 mW 2374 9.1 Open Gircuit/ Drift 0.050 M Test $220025W$ Resistor 2374 9.1 Open Gircuit/ Drift 0.050 M Monitor $470.025W$ Resistor 13.26 9.1 Open Gircuit/ Drift 0.950 M Monitor $47.00.25W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW $10.25W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor $4.70.0.25W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor $4.70.0.55W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor $4.70.0.55W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 </td <td></td> <td>Resistor</td> <td>$1 \mathrm{mW}$</td> <td></td> <td></td> <td>Short Circuit</td> <td>0.050</td> <td>M</td> <td>Test</td> <td>3.57E-10</td> <td></td>		Resistor	$1 \mathrm{mW}$			Short Circuit	0.050	M	Test	3.57E-10	
1 mW 1 mW $2 2020 \ 0.55 \text{ W Resistor}$ 23.74 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $2 2002 \ 0.55 \text{ W Resistor}$ 23.74 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 \text{ mW}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 \text{ mW}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $10 \text{kb} 0.57 \text{ W Resistor}$ $18 22$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 \text{ mW}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 \text{ mW}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 \text{ mV}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$ $4 7 0 \ 0.55 W \text{ Resistor}$ $13 2 6$ 9.1 $O \text{pen Giruit/Diff}$ 0.950 M $M \text{onitor}$		R18	2k4Ω 0.25W Resistor	7.14	9.1	Open Circuit / Drift	0.950	M	Test	6.78E-09	
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		Resistor	1 mW			Short Circuit	0.050	M	Test	3.57E-10	
18 mV Short Circuit 0.050 M Monitor 4720 $.55W$ Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 4.7 mV 18.22 9.1 Open Gircuit / Drift 0.050 M Monitor $100k0$ $.05W$ Resistor 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor		R19	2200 0.25W Resistor	23.74	9.1	Open Circuit / Drift	0.950	Μ	Monitor	2.26E-08	
4k72 0.25W Resistor 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mW 4.7 mW 100.025W Resistor 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 100.025W Resistor 18.22 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit 0.050 M Monitor 4.7 mV 13.26 9.1 Open Gircuit 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor 4.7 mV 13.26 9.1 Open Gircuit / Drift 0.950 M Monitor		Resistor	$18 \mathrm{mW}$			Short Circuit	0.050	M	Monitor	1.19E-09	
47 mW Short Circuit 0.050 M Monitor 10k2.0.25W Resistor 18.22 9.1 Open Circuit / Drift 0.950 M Monitor <1 mW		R20	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	М	Monitor	1.26E-08	
10k.0 .55W Resistor 18.22 9.1 Open Circuit / Drift 0.950 M Monitor <1 mW		Resistor	4.7 mW			Short Circuit	0.050	М	Monitor	6.63E-10	
<1 mW Short Circuit 0.050 NE Monitor 4k70.0 25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor 47.70 25W Resistor 13.26 9.1 Open Circuit 0.050 M Monitor 47.70 25W Resistor 13.26 9.1 Open Circuit 0.050 M Monitor 47.00 25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor		R21	10kQ 0.25W Resistor	18.22	9.1	Open Circuit / Drift	0.950	M	Monitor	1.73E-08	
4k70 0.25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor 47.70 U.25W Resistor 13.26 9.1 Open Circuit 0.050 M Monitor 47.00 U.25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor		Resistor	<1 mW			Short Circuit	0.050	NE	Monitor	9.11E-10	
4.7 mW Short Circuit 0.050 M Monitor 4670.0 25W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor		R22	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	M	Monitor	1.26E-08	
47.70.0.25.W Resistor 13.26 9.1 Open Circuit / Drift 0.950 M Monitor		Resistor	4.7 mW			Short Circuit	0.050	М	Monitor	6.63E-10	
		R23	4k7Ω 0.25W Resistor	13.26	9.1	Open Circuit / Drift	0.950	M	Monitor	1.26E-08	

			Beam-2 Status True	Beam-2 Status True									Beam-2 Status True	Beam-2 Status True	Beam-2 Status True	Beam-2 Status True																																
1.52E-07	157F-07	R 00F-09	3.72E-08	1.96E-09	6.78E-09	3.57E-10	6.78E-09	3.57E-10	6.78E-09	3.57E-10	6.78E-09	3.57E-10	1.52E-07	8.00E-09	1.26E-08	6.63E-10	1.26E-U8	3.77F-08	1.96F-09	1.26E-08	6.63E-10	3.72E-08	1.96E-09	3.72E-08	1.96E-09	3.72E-08	1.96E-09	3.72E-08	1.96E-09	3./2E-08 1 06F 00	3.72F_08	1.96E-09	9.76E-09	5.14E-10	9.76E-09	5.14E-10	6./8E-U9 3 57E-10	6.78E-09	3.57E-10	1.26E-08	6.63E-10	2.26E-08	1.19E-09	1.26E-08	6.63E-10	2.26E-08	1.19E-09	1.26E-08 6.63E-10
Monitor	Monitor	Monitor	Sequencer	Sequencer	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Test	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor Monitor								
6	6	26	W	Μ	Μ	Μ	Μ	М	Μ	Μ	Μ	М	Μ	M	Μ;	W ;	W	M	W	W	W	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	W M	W	M	Μ	Μ	Μ	М	Μ	Μ	M	M	WW
0.950	0.050	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	050.0	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.050 0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.050 0	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.000	0.050
Open Circuit / Drift	Onon Circuit / Drift	Open ducuit/ Dant Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Onen Circuit / Deift	Short Grenit	Open Circuit / Drift	Short Circuit	Open Gircuit / Drift chart Gircuit	Onen Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Gircuit / Drift Short Circuit								
9.1	0.1	1.2	9.1		9.1		9.1		9.1		9.1		9.1		9.1		9.1	01	1.7	9.1		9.1		9.1		9.1		9.1		9.1	91		9.1		9.1		1.6	9.1		9.1		9.1		9.1		9.1	ţ	1.4
160.01	160.01	TANAAT	39.21		7.14		7.14		7.14		7.14		160.01		13.26		13.26	30.71	17:/0	13.26		39.21		39.21		39.21		39.21	20.00	17.69	39.21	1	10.27		10.27		1.14	7.14		13.26		23.74		13.26		23.74	20.61	13.26
110Ω 0.25W Resistor	1100.0.25W/ Posietor	1000 W CZ.0 2011	4702 0.25W Resistor	$47 \mathrm{mW}$	10kΩ 0.25W Resistor	<1 mW	10kΩ 0.25W Resistor	<1 mW	10kQ 0.25W Resistor	<1 mW	10kΩ 0.25W Resistor	<1 mW	110Ω 0.25W Resistor	227 mW	4k7Ω 0.25W Resistor	4.7 mW	4k/52 0.25 W Resistor	4./ III W 4700.0.25W Bosistor	47 mW	4k7Q 0.25W Resistor	4.7 mW	470Ω 0.25W Resistor	47 mW	470Ω 0.25W Resistor	47 mW	4700 0.25W Resistor	47 mW	470Ω 0.25W Resistor	47 mW	4/02/02/20 Kesistor	470.0.0.75W Resistor	47 mW	1kΩ 0.25W Resistor	$2.5\mathrm{mW}$	1kΩ 0.25W Resistor	2.5 mW	ZK452 U.Z.W. Resistor 1 mW	10kQ 0.25W Resistor	<1 mW	4k7Ω 0.25W Resistor	$4.7 \mathrm{mW}$	4702 0.25W Resistor	$18 \mathrm{mW}$	4k7Ω 0.25W Resistor	4.7 mW	220Ω 0.25W Resistor	18 m W	4k/52 0.22 W Resistor 4.7 mW
R24 Docine	D'5C	Resistor	R26	Resistor	R27	Resistor	R28	Resistor	R29	Resistor	R30	Resistor	R31	Resistor	R32	Resistor	K33	Resistor P3A	Resistor	R35	Resistor	R36	Resistor	R37	Resistor	R38	Resistor	R39	Resistor	R40 Provintere	R41	Resistor	R42	Resistor	R43	Resistor	Resistor	R45	Resistor	R46	Resistor	R47	Resistor	R48	Resistor	R49 D	RESISTOT	Resistor

Beam-2 Status True Beam-2 Status True Beam-2 Status True Beam-2 Status True

Monitor 1 19E-09							E 1.20E-U8	-			_	: 1.26E-08			-	6.63E-10		6.63E-10		-	6.63E-10					6./8E-09 3.57E-10	0.00E+00	0.00E+00	1.49E-08 7.83E-10					1.96E-09	1.26E-08	6.63E-10	3.72E-08	_		+	1.52E-07 8.00F-09	-	
Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor			Monitor	Monitor	Test		8	Test Monitor	Monitor			Monitor	Test		Monitor	Test	Test	Monitor	Monitor	Monitor	Monitor	
M	W	W	Μ	Μ	M	₽:	z G	M	6	M	£	Μ	FD	M	£	M	Μ	Ð	Μ	E :	M	NE	NE	Μ;	M	M	NE	NE		FD	NE	NE	26		NE	Μ	ED	Ð	e i	2 f	26	E	f
0.050	0.950	0.050	0.950	0.050	0.950	0.050	020.0 020.0	050.0	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.050.0	0.950	0.050	0.950	0.050	0.050.0	0.950	0.050	0.950	0.050	0.050	0.950	0.050	0.950	0.950	0.050	0.950	0.050	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.050.0	0.950	0
Open Circuit / Drift Short Circuit	Onen Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift Short Circuit	Onen Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit/ Drift Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Gircuit / Drift Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift Short Circuit	Open Circuit / Drift	
9.1	91		9.1		9.1		1.6	91		9.1		9.1		9.1	ġ	1.4	9.1		9.1	d	1.6	9.1		9.1		1.4	9.1		9.1	9.1		9.1	-	1.2	9.1		9.1		9.1		9.1	9.1	
47.07	160.01	10.001	160.01		13.26	10.01	97.61	13.26		13.26		13.26		13.26	10.01	13.26	13.26		13.26	10.07	97.61	0.00		7.14	t	/.14	0.00	1	15.65	13.26		13.26	10.05	17:00	13.26		39.21		13.26	10.071	160.01	13.26	
4702 0.25W Resistor 18 mW	1100.0.25W Resistor	227 mW	110Ω 0.25W Resistor	227 mW	4k7Ω 0.25W Resistor	4./ mW	47.0.25 W Kessstor	4/20 0 25W Resistor	4.7 mW	4k70 0.25W Resistor	4.7 mW	4k7Ω 0.25W Resistor	$4.7 \mathrm{mW}$	4k7Ω 0.25W Resistor	4.7 mW	4k/52 0.25 W Kesistor 4.7 mW	4k7Ω 0.25W Resistor	$4.7 \mathrm{mW}$	4k7Ω 0.25W Resistor	4.7 mW	47 mW	10kO 0.25W Resistor	NOT MOUNTED	10kΩ 0.25W Resistor	<10.000 million	2k45.0 U.25 W Keststor 1 mW	10kΩ 0.25W Resistor	NOT MOUNTED	3k3Ω 0.25W Resistor 7 mW	4k7Ω 0.25W Resistor	4.7 mW	4k7Ω 0.25W Resistor	4.7 mW	101816301 W CZ.0 260/F	4k7Ω 0.25W Resistor	$4.7 \mathrm{mW}$	470Ω 0.25W Resistor	47 mW	4k7Ω 0.25W Resistor	4.7 mW	1102.0 22.0 Kesistor 777 mW	4k7Ω 0.25W Resistor	111 11
R51 Resistor	R52	Resistor	R53	Resistor	R54	Kesistor	CCN Peerietor	B56	Resistor	R57	Resistor	R58	Resistor	R59	Resistor	R6U Resistor	R61	Resistor	R62	Resistor	K0.5 Recistor	R64	Resistor	R65	Kesistor	Roo Resistor	R67	Resistor	R68 Resistor	R69	Resistor	R70	Resistor	Resistor	R72	Resistor	R73	Resistor	R74	Resistor	C/X Recistor	R76	

Beam-1 A

| 3.5/E-10 | 6.78E-09 | 3.57E-10 | 6.78E-09 | 3.57E-10 | 6.78E-09 | 3.57E-10 | 1.49E-08 | 7.83E-10 | 1.26E-08 | 6.63E-10 | 1.26E-08 | 6.63E-10 | 1.26E-08 | 6.63E-10

 | 1.26E-08 | 6.63E-10 | 1.26E-08 | 6.63E-10 | 1.20E-Uð
6 63E 10 | 3 77F-08 | 1 96E-09
 | 1.26E-08 | 6.63E-10
 | 1.26E-08 | 6.63E-10 | 1.52E-07 | 8.00E-09 | 1.73E-08 | 1 575 07 | 8.00E-09 | 9.76E-09

 | 5.14E-10 | 9.76E-09 | 5.14E-10
4 FOT 47 | 1.52E-U/
8 00F 00 | 3.72E-08
 | 1.96E-09 | 3.72E-08 | 1.96E-09
 | 3.72E-08 | 1.96E-09 | 3.72E-08 | 1.96E-09 | 3.72E-08 | 1.96E-09 | 3./2E-08
1 96E-09 | 3.72E-08 | 1.96E-09 |
|---------------|---------------------------|---|---|---|--|---|---|--|---|---|---|--|--
--
--
--
--|---|---|---|---|---

--
--|---|---
---|--|--|---|---------------------------------------|-------------------------------------|---
--
--|--|--|----------------------|--
--
--|---|--|---|--|---------------|----------------------|---|--|--
---|----------------------|---------------|
| lest | Monitor | Monitor | Test | Test | Monitor | Monitor | Test | Monitor | Monitor | | | Monitor | | Monitor

 | Monitor | Monitor | Monitor | Monitor | Monitor | Monitor | Monitor
 | Monitor | Monitor
 | Monitor | Monitor | Monitor | Monitor | Monitor | Manitan | Monitor | Visual

 | Visual | Visual | Visual | Monitor | Visual
 | Visual | Visual | Visual
 | Visual | Visual | Visual | Visual | Monitor | Monitor | Visual
Visual | Visual | Visual |
| M | Μ | Μ | Μ | Μ | Μ | Μ | BF | £ | Ð | NE | NE | ED | NE | Μ

 | Μ | Μ | W | M | INI | W | N
 | W | Μ
 | Μ | Μ | W | W | MF | M | W | NE

 | NE | NE | NE | M | NE
 | NE | NE | NE
 | NE | NE | NE | NE | Μ | M | NE | NE | NE |
| 050.0 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050

 | 0.950 | 0.050 | 0.950 | 0.050 | 0.050 | 0.050 | 0.050
 | 0.950 | 0.050
 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.000 | 0.050 | 0.950

 | 0.050 | 0.950 | 0.050 | 050.0
050.0 | 0.950
 | 0.050 | 0.950 | 0.050
 | 0.950 | 0.050 | 0.950 | 0.050 | 0.950 | 0.050 | 0.050
0.050 | 0.950 | 0.050 |
| Short Circuit | Open Gircuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit

 | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit/ Drift | Omen Circuit / Drift | Short Girchit
 | Open Circuit / Drift | Short Circuit
 | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift
chart Circuit | On an Circuit / Puife | Short Circuit | Open Circuit / Drift

 | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift
Short Circuit | Open Circuit / Drift
 | Short Circuit | Open Circuit / Drift | Short Circuit
 | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift | Short Circuit | Open Circuit / Drift
Short Circuit | Open Circuit / Drift | Short Circuit |
| | 9.1 | | 9.1 | | 9.1 | | 9.1 | | 9.1 | | 9.1 | | 9.1 |

 | 9.1 | | 9.1 | ÷ | 1.4 | 91 |
 | 9.1 |
 | 9.1 | | 9.1 | , | 9.1 | - | 1.6 | 9.1

 | | 9.1 | ţ | 1.6 | 9.1
 | | 9.1 | | | | | | | | | | | | |
 | 9.1 | | 9.1 | | 9.1 | | 1.4 | 9.1 | |
| | 7.14 | | 7.14 | | 7.14 | | 15.65 | | 13.26 | | 13.26 | | 13.26 |

 | 13.26 | | 13.26 | 70.01 | 07.01 | 30.71 | 4
 | 13.26 |
 | 13.26 | | 160.01 | | 18.22 | 120.01 | 10.001 | 10.27

 | | 10.27 | 1/0/01 | 10.001 | 39.21
 | | 39.21 |
 | 39.21 | | 39.21 | | 39.21 | | 17.69 | 39.21 | |
| 1 mW | 10kΩ 0.25W Resistor | <1 mW | 2k4Ω 0.25W Resistor | $1 \mathrm{mW}$ | 10kΩ 0.25W Resistor | <1 mW | 3k3Ω 0.25W Resistor | $7 \mathrm{mW}$ | 4k7Ω 0.25W Resistor | $4.7 \mathrm{mW}$ | 4k7Ω 0.25W Resistor | $4.7 \mathrm{mW}$ | 4k7Ω 0.25W Resistor | 4.7 mW

 | 4k7Ω 0.25W Resistor | 4.7 mW | 4k7Ω 0.25W Resistor | 4.7 m W | TOISING WEATSON TOISING | 4700.0.25W Resistor | 47 mW
 | 4k7Ω 0.25W Resistor | 4.7 mW
 | 4k7Ω 0.25W Resistor | 4.7 mW | 110Ω 0.25W Resistor | 227 mW | 10kΩ 0.25W Resistor | WILLY
MILLY
1100 0 JEW During | 227 mW | 1kΩ 0.25W Resistor

 | 25 mW | 1kΩ 0.25W Resistor | 22 mW | 11002 U.Z5 W Keststor | 470Ω 0.25W Resistor
 | 47 mW | 470Ω 0.25W Resistor | 47 mW
 | 470Ω 0.25W Resistor | 47 mW | 4700 0.25W Resistor | 47 mW | 470Ω 0.25W Resistor | 47 mW | 47 mW | 470Ω 0.25W Resistor | 47 mW |
| Kesistor | R79 | Resistor | R80 | Resistor | R81 | Resistor | R82 | Resistor | R83 | Resistor | R84 | Resistor | R85 | Resistor

 | R86 | Resistor | R87 | Resistor | Docietore | B89 | Resistor
 | R90 | Resistor
 | R91 | Resistor | R92 | Resistor | R93
Dorietore | TUDALE | Resistor | R95

 | Resistor | R96 | Kesistor | R9/
Docistor | R98
 | Resistor | R99 | Resistor
 | R100 | Resistor | R101 | Resistor | R102 | Resistor | K103
Resistor | R104 | Resistor |
| | r 1 mW Short Carcut 0.050 | 1 mW biort circuit 0.030 M Test 10k0.0.55W Resistor 7.14 9.1 Open Circuit / Drift 0.950 M Monitor | 1 mW 1 mW Short Garcuit 0.030 M Text Iest 10k2 0.25W Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Monitor <1 mW | 1 mW 1 mW 1 mW 1 mW 1 est 1 est 10k20.25W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Monitor <1 mW | 1 mW 1 mW 5 Mort Garcuit 0.050 M Test 1 est 10k2.0 2W Resistor 7.14 9.1 Open Circuit / Drift 0.050 M Monitor <1 mW | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Imw Imw Short Gacut 0.050 M Test 10k2 0.2w Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Monitor <1mW | I mW I mW I est I est $10k_{20} 0.2w Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Monitor <1mW <1mW Nonitor Short Gircuit / Drift 0.950 M Monitor 2k_{42} 0.2w Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Monitor 1mW 7.14 9.1 Open Gircuit / Drift 0.950 M Test 10k_{20} 0.2w Resistor 7.14 9.1 Open Gircuit / Drift 0.950 M Monitor <1mW 8hort Gircuit 0.050 M Monitor Test 3k_{32} 0.2w Resistor 15.65 9.1 Open Gircuit / Drift 0.950 M Monitor 7mW 7mW 0.50 M 0.50 M Monitor $ | I mW I mW I est I est 10k2.0.25W Resistor 7.14 9.1 Open Gircuit/ Drift 0.950 M Monitor <1mW | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | I mW I mW I est current 0.050 M 'lest $10k20.02W$ Resistor 7.14 9.1 Open Circuit / Drift 0.950 M Monitor $<1mW$ $<1mW$ 7.14 9.1 Open Circuit / Drift 0.950 M Monitor $2k420.5W$ Resistor 7.14 9.1 Open Circuit / Drift 0.950 M Test $1mW$ 1mW 7.14 9.1 Open Circuit / Drift 0.950 M Test $1mW$ 7.14 9.1 Open Circuit / Drift 0.950 M Monitor $1mW$ 7.14 9.1 Open Circuit / Drift 0.950 M Monitor $3.0400.5W$ Resistor 15.65 9.1 Open Circuit / Drift 0.950 M Monitor $4.720.02W$ Resistor 13.26 9.1 Open Circuit / Drift 0.950 N Monitor $4.700 NE Resistor 13.26 9.1 Open Circuit / Drift 0.950 N Monitor 4.700 NE Resistor 13$ | 1 mW 1 mW left left left 1 mW 7.14 9.1 Open Circuit / Drift 0.950 M left $< 1 \text{ mW}$ < 1.14 9.1 Open Circuit / Drift 0.950 M Monitor $2 k_{42} 0.5 \text{W}$ Resistor 7.14 9.1 Open Circuit Drift 0.950 M Test 1 mW 7.14 9.1 Open Circuit 0.050 M Test 1 mW 7.14 9.1 Open Circuit 0.050 M Test 1 mW 7.14 9.1 Open Circuit 0.050 M Test 1 mW 7.1 W 7.1 W 9.1 Open Circuit 0.050 M Test 4.7 mW 1.0 M 0.50 M $Monitor$ $Monitor$ 7 mW 1.0 M 0.50 M $Monitor$ $Monitor$ 7 mW 1.0 M 0.50 M $Monitor$ $Monitor$ | 1 mW 1 mW left left <thleft< th=""> left left <th< td=""><td>1 mW $1 mW$ 1</td><td>1 mW $1 mW$ 1</td><td>1 mW $1 mW$ 1</td><td>1 mW $1 mW$ 1</td><td>1 mW $1 mW$ 1</td><td>1 mW $1 mW$ 1</td><td>Imw Imw Short circuit 0.050 M leat $10 \text{kco} DSW \text{ Resistor}$ 7.14 9.1 Open Gircuit/ Drift 0.950 M Monitor -1 mW -1 mW 7.14 9.1 Open Gircuit 0.050 M Monitor 2 May 2 mW 2 mW 0.950 M Monitor 1 mW 7.14 9.1 Open Gircuit 0.050 M Monitor 3 May 2 mW 0.950 M Monitor Monitor 3 May 2 May 2 mW 0.950 M Monitor $4 \text{ To} DSW \text{ Resistor}$ $13 26$ 9.1 Open Gircuit/ Drift 0.950 M Monitor $4 \text{ To} TmW$ $4 \text{ To} TmW$ 0.50 M Monitor Monitor $4 \text{ To} TmW$ 3 Monitor 0.50 M Monitor Monitor $4 \text{ To} TmW$ 3 Monitor 0.50 M Monitor Monitor <t< td=""><td>1 mW $1 mW$ $2 mW$ 2</td><td>1 mW 1 mW <t< td=""><td>Imm Imm Short Carcuit 0.050 M Test $10k_0$ (32W Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ $2k_0 0.2W$ Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $3k_3 0.2 W$ Resistor 15.65 9.1 Open Garcuit / Drift 0.950 M Monitor $47mW$ $3k_0 G$ GaW Resistor 13.26 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $37 mW$ $37 mW$ <math>36 m Garcuit / Drift 0.950 M Monitor $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M <</math></td><td>Image Image Short Garcuit 0.050 M Test $1002.073W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Monitor $1-mW$ $1-mW$ $3-mT$ Short Garcuit 0.050 M M Monitor $2-k+0.05W$ Resistor 7.14 9.1 Open Garcuit 0.050 M M Monitor $1-mW$ $3-3k-30.5W$ Resistor $5-55$ 9.1 Open Garcuit 0.050 M Monitor $3-k-30.5W$ Resistor $15-55$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $4.7 mW$ $3-3k-1$ $0-950$ M Monitor $0-50$ M Monitor $4.7 mW$ $3-3k-1$ $3-3k-1$ $3-3k-1$ $3-3k-1$</td><td>Image Image Short Garcuit 0.050 M Test $10050.5W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Mentior $1 mW$ $2 m$ $1 mW$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $1 mW$ $2 m$ $2 m$</td><td>1 mW 1.4 9.1 Shert Great 0.000 M Instr $(10k, 0.2W)$ Resistor 7.14 9.1 Shert Great 0.050 M Monitor $(10k, 0.2W)$ Resistor 7.14 9.1 Open Great 0.050 M Monitor $(1mW)$ $(1mW)$ Short Great 0.050 M Monitor $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ Monitor $(1mW)$ $(1mW)$</td><td></td><td></td><td>IIIMA IIIMA IIIIMA IIIIIMA IIIIIIMA IIIIIMA</td></t<></td></t<></td></th<><td>I mW I model of SW Resistor 7.14 9.1 Open Grent/ Drift 0.590 M Fast $-1 mW$ $-1 mW$ $2.40.0 SW$ Resistor 7.14 9.1 Open Grent/ Drift 0.590 M Test $-1 mW$ $1 mW$ $1 mW$ 0.600 M Test $-1 mW$ $1 mW$ 0.600 M 0.600 M Test $-1 mW$ 0.600 0.600 M 0.600 M Test $3.83.0 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $3.80 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $4.7 mW$ 0.950 M Monitor Monitor $4.7 mW$ $3.80 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $4.7 mW$ 0.950 M Monitor Monitor $4.7 mW$ $4.7 mW$ 0.950 M <t< td=""><td>Image Image Montication Image Montication Monticatio</td><td>$\begin{array}{l c c c c c c c c c c c c c c c c c c c$</td><td></td><td>$\begin{array}{l c c c c c c c c c c c c c c c c c c c$</td><td>Intw Tatw Name Dist Name Dist 10100 Tatw 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 5.55 9.11 Quel Gravit/Dirft 0.950 M Manifor 3820 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950<!--</td--><td>104.00 T,14 9.11 Check chean it 0.000 M Near $101W$ $101W$</td><td>Index Tark Sect Creati ORD M Number 1 mW 1 mW 2 mW</td><td>International conditions 14 9.11 Subsect channel 0.050 M N $-1 {\rm mW}$ $-1 {\rm mW}$</td><td>11 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <th2.2< th=""> <th2.2< th=""> <th2.2< th=""></th2.2<></th2.2<></th2.2<></td><td></td><td></td><td>Index 7.14 9.1 Sent Center 0.050 N Monitor -0.400 NM -0.500 N Monitor -0.500 N Monitor -0.700 NM -0.500 N -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0</td><td>Index 7.14 9.1 Send current 0.050 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor -1.0100 -1.0100 -1.0100 N N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 N Mentor Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.01000 N Mentor<</td><td>Index 7.14 9.1 Spent circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 15.66 9.1 Spent Circuit 0.900 N Monitor 3.000 C5W Resist 15.66 9.1 Spent Circuit 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.00 9.1 Open Circuit Diff</td><td>India O.S.W. Restor 7.14 9.1 Send creating 0.050 M Mention <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor $d 0.5W. Restor 5.3.6 9.1 Send$</math></math></math></math></math></math></math></math></math></td><td></td><td></td></td></t<></td></thleft<> | 1 mW $1 mW$ 1 | 1 mW $1 mW$ 1 | 1 mW $1 mW$ 1 | 1 mW $1 mW$ 1 | 1 mW $1 mW$ 1 | 1 mW $1 mW$ 1 | Imw Imw Short circuit 0.050 M leat $10 \text{kco} DSW \text{ Resistor}$ 7.14 9.1 Open Gircuit/ Drift 0.950 M Monitor -1 mW -1 mW 7.14 9.1 Open Gircuit 0.050 M Monitor 2 May 2 mW 2 mW 0.950 M Monitor 1 mW 7.14 9.1 Open Gircuit 0.050 M Monitor 3 May 2 mW 0.950 M Monitor Monitor 3 May 2 May 2 mW 0.950 M Monitor $4 \text{ To} DSW \text{ Resistor}$ $13 26$ 9.1 Open Gircuit/ Drift 0.950 M Monitor $4 \text{ To} TmW$ $4 \text{ To} TmW$ 0.50 M Monitor Monitor $4 \text{ To} TmW$ 3 Monitor 0.50 M Monitor Monitor $4 \text{ To} TmW$ 3 Monitor 0.50 M Monitor Monitor <t< td=""><td>1 mW $1 mW$ $2 mW$ 2</td><td>1 mW 1 mW <t< td=""><td>Imm Imm Short Carcuit 0.050 M Test $10k_0$ (32W Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ $2k_0 0.2W$ Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $3k_3 0.2 W$ Resistor 15.65 9.1 Open Garcuit / Drift 0.950 M Monitor $47mW$ $3k_0 G$ GaW Resistor 13.26 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $37 mW$ $37 mW$ <math>36 m Garcuit / Drift 0.950 M Monitor $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M <</math></td><td>Image Image Short Garcuit 0.050 M Test $1002.073W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Monitor $1-mW$ $1-mW$ $3-mT$ Short Garcuit 0.050 M M Monitor $2-k+0.05W$ Resistor 7.14 9.1 Open Garcuit 0.050 M M Monitor $1-mW$ $3-3k-30.5W$ Resistor $5-55$ 9.1 Open Garcuit 0.050 M Monitor $3-k-30.5W$ Resistor $15-55$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $4.7 mW$ $3-3k-1$ $0-950$ M Monitor $0-50$ M Monitor $4.7 mW$ $3-3k-1$ $3-3k-1$ $3-3k-1$ $3-3k-1$</td><td>Image Image Short Garcuit 0.050 M Test $10050.5W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Mentior $1 mW$ $2 m$ $1 mW$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $1 mW$ $2 m$ $2 m$</td><td>1 mW 1.4 9.1 Shert Great 0.000 M Instr $(10k, 0.2W)$ Resistor 7.14 9.1 Shert Great 0.050 M Monitor $(10k, 0.2W)$ Resistor 7.14 9.1 Open Great 0.050 M Monitor $(1mW)$ $(1mW)$ Short Great 0.050 M Monitor $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ Monitor $(1mW)$ $(1mW)$</td><td></td><td></td><td>IIIMA IIIMA IIIIMA IIIIIMA IIIIIIMA IIIIIMA</td></t<></td></t<> | 1 mW $1 mW$ $2 mW$ 2 | 1 mW 1 mW <t< td=""><td>Imm Imm Short Carcuit 0.050 M Test $10k_0$ (32W Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ $2k_0 0.2W$ Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $3k_3 0.2 W$ Resistor 15.65 9.1 Open Garcuit / Drift 0.950 M Monitor $47mW$ $3k_0 G$ GaW Resistor 13.26 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $37 mW$ $37 mW$ <math>36 m Garcuit / Drift 0.950 M Monitor $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $47 mW$ 1326 9.1 Open Garcuit / Drift 0.950 M <</math></td><td>Image Image Short Garcuit 0.050 M Test $1002.073W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Monitor $1-mW$ $1-mW$ $3-mT$ Short Garcuit 0.050 M M Monitor $2-k+0.05W$ Resistor 7.14 9.1 Open Garcuit 0.050 M M Monitor $1-mW$ $3-3k-30.5W$ Resistor $5-55$ 9.1 Open Garcuit 0.050 M Monitor $3-k-30.5W$ Resistor $15-55$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $4.7 mW$ $3-3k-1$ $0-950$ M Monitor $0-50$ M Monitor $4.7 mW$ $3-3k-1$ $3-3k-1$ $3-3k-1$ $3-3k-1$</td><td>Image Image Short Garcuit 0.050 M Test $10050.5W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Mentior $1 mW$ $2 m$ $1 mW$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $1 mW$ $2 m$ $2 m$</td><td>1 mW 1.4 9.1 Shert Great 0.000 M Instr $(10k, 0.2W)$ Resistor 7.14 9.1 Shert Great 0.050 M Monitor $(10k, 0.2W)$ Resistor 7.14 9.1 Open Great 0.050 M Monitor $(1mW)$ $(1mW)$ Short Great 0.050 M Monitor $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ Monitor $(1mW)$ $(1mW)$</td><td></td><td></td><td>IIIMA IIIMA IIIIMA IIIIIMA IIIIIIMA IIIIIMA</td></t<> | Imm Imm Short Carcuit 0.050 M Test $10k_0$ (32W Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ $2k_0 0.2W$ Resistor 7.14 9.1 Open Garcuit/ Drift 0.950 M Monitor $1mW$ $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $1mW$ 7.14 9.1 Open Garcuit / Drift 0.950 M Monitor $3k_3 0.2 W$ Resistor 15.65 9.1 Open Garcuit / Drift 0.950 M Monitor $47mW$ $3k_0 G$ GaW Resistor 13.26 9.1 Open Garcuit / Drift 0.950 M Monitor $47 mW$ $37 mW$ $37 mW$ $36 m Garcuit / Drift 0.950 M Monitor 47 mW 1326 9.1 Open Garcuit / Drift 0.950 M Monitor 47 mW 47 mW 1326 9.1 Open Garcuit / Drift 0.950 M <$ | Image Image Short Garcuit 0.050 M Test $1002.073W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Monitor $1-mW$ $1-mW$ $3-mT$ Short Garcuit 0.050 M M Monitor $2-k+0.05W$ Resistor 7.14 9.1 Open Garcuit 0.050 M M Monitor $1-mW$ $3-3k-30.5W$ Resistor $5-55$ 9.1 Open Garcuit 0.050 M Monitor $3-k-30.5W$ Resistor $15-55$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $3-3k-30.5W$ Resistor $13-26$ 9.1 Open Garcuit $0-650$ M Monitor $4.7 mW$ $4.7 mW$ $3-3k-1$ $0-950$ M Monitor $0-50$ M Monitor $4.7 mW$ $3-3k-1$ $3-3k-1$ $3-3k-1$ $3-3k-1$ | Image Image Short Garcuit 0.050 M Test $10050.5W$ Resistor 7.14 9.1 Short Garcuit 0.050 M Mentior $1 mW$ $2 m$ $1 mW$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $2 m$ $1 mW$ $2 m$ | 1 mW 1.4 9.1 Shert Great 0.000 M Instr $(10k, 0.2W)$ Resistor 7.14 9.1 Shert Great 0.050 M Monitor $(10k, 0.2W)$ Resistor 7.14 9.1 Open Great 0.050 M Monitor $(1mW)$ $(1mW)$ Short Great 0.050 M Monitor $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ $(1mW)$ Monitor $(1mW)$ | | | IIIMA IIIMA IIIIMA IIIIIMA IIIIIIMA IIIIIMA | I mW I model of SW Resistor 7.14 9.1 Open Grent/ Drift 0.590 M Fast $-1 mW$ $-1 mW$ $2.40.0 SW$ Resistor 7.14 9.1 Open Grent/ Drift 0.590 M Test $-1 mW$ $1 mW$ $1 mW$ 0.600 M Test $-1 mW$ $1 mW$ 0.600 M 0.600 M Test $-1 mW$ 0.600 0.600 M 0.600 M Test $3.83.0 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $3.80 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $4.7 mW$ 0.950 M Monitor Monitor $4.7 mW$ $3.80 LSW$ Resistor 13.26 9.1 0.960 M Monitor $4.7 mW$ $4.7 mW$ 0.950 M Monitor Monitor $4.7 mW$ $4.7 mW$ 0.950 M <t< td=""><td>Image Image Montication Image Montication Monticatio</td><td>$\begin{array}{l c c c c c c c c c c c c c c c c c c c$</td><td></td><td>$\begin{array}{l c c c c c c c c c c c c c c c c c c c$</td><td>Intw Tatw Name Dist Name Dist 10100 Tatw 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 5.55 9.11 Quel Gravit/Dirft 0.950 M Manifor 3820 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950<!--</td--><td>104.00 T,14 9.11 Check chean it 0.000 M Near $101W$ $101W$</td><td>Index Tark Sect Creati ORD M Number 1 mW 1 mW 2 mW</td><td>International conditions 14 9.11 Subsect channel 0.050 M N $-1 {\rm mW}$ $-1 {\rm mW}$</td><td>11 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <th2.2< th=""> <th2.2< th=""> <th2.2< th=""></th2.2<></th2.2<></th2.2<></td><td></td><td></td><td>Index 7.14 9.1 Sent Center 0.050 N Monitor -0.400 NM -0.500 N Monitor -0.500 N Monitor -0.700 NM -0.500 N -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0</td><td>Index 7.14 9.1 Send current 0.050 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor -1.0100 -1.0100 -1.0100 N N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 N Mentor Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.01000 N Mentor<</td><td>Index 7.14 9.1 Spent circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 15.66 9.1 Spent Circuit 0.900 N Monitor 3.000 C5W Resist 15.66 9.1 Spent Circuit 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.00 9.1 Open Circuit Diff</td><td>India O.S.W. Restor 7.14 9.1 Send creating 0.050 M Mention <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor $d 0.5W. Restor 5.3.6 9.1 Send$</math></math></math></math></math></math></math></math></math></td><td></td><td></td></td></t<> | Image Image Montication Image Montication Monticatio | $ \begin{array}{l c c c c c c c c c c c c c c c c c c c$ | | $ \begin{array}{l c c c c c c c c c c c c c c c c c c c$ | Intw Tatw Name Dist Name Dist 10100 Tatw 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 7.14 9.11 Quel Gravit/Dirft 0.950 M Manifor 240 DSW Restor 5.55 9.11 Quel Gravit/Dirft 0.950 M Manifor 3820 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 M Manifor 4520 DSW Restor 13.26 9.11 Quel Gravit/Dirft 0.950 </td <td>104.00 T,14 9.11 Check chean it 0.000 M Near $101W$ $101W$</td> <td>Index Tark Sect Creati ORD M Number 1 mW 1 mW 2 mW</td> <td>International conditions 14 9.11 Subsect channel 0.050 M N $-1 {\rm mW}$ $-1 {\rm mW}$</td> <td>11 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <th2.2< th=""> <th2.2< th=""> <th2.2< th=""></th2.2<></th2.2<></th2.2<></td> <td></td> <td></td> <td>Index 7.14 9.1 Sent Center 0.050 N Monitor -0.400 NM -0.500 N Monitor -0.500 N Monitor -0.700 NM -0.500 N -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0</td> <td>Index 7.14 9.1 Send current 0.050 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor -1.0100 -1.0100 -1.0100 N N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 N Mentor Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.01000 N Mentor<</td> <td>Index 7.14 9.1 Spent circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 15.66 9.1 Spent Circuit 0.900 N Monitor 3.000 C5W Resist 15.66 9.1 Spent Circuit 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.00 9.1 Open Circuit Diff</td> <td>India O.S.W. Restor 7.14 9.1 Send creating 0.050 M Mention <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor <math>ad 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor <math>d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor $d 0.5W. Restor 5.3.6 9.1 Send$</math></math></math></math></math></math></math></math></math></td> <td></td> <td></td> | 104.00 T,14 9.11 Check chean it 0.000 M Near $101W$ | Index Tark Sect Creati ORD M Number 1 mW 1 mW 2 mW | International conditions 14 9.11 Subsect channel 0.050 M N $-1 {\rm mW}$ | 11 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 <th2.2< th=""> <th2.2< th=""> <th2.2< th=""></th2.2<></th2.2<></th2.2<> | | | Index 7.14 9.1 Sent Center 0.050 N Monitor -0.400 NM -0.500 N Monitor -0.500 N Monitor -0.700 NM -0.500 N -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0.700 Sent Circuit 0.500 N Monitor -0.500 N Monitor -0 | Index 7.14 9.1 Send current 0.050 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor -1.0100 -1.0100 -1.0100 N N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.01000 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N N Mentor -1.0100 N Mentor -1.0100 -1.0100 N -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 N Mentor Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.0100 N Mentor Mentor -1.0100 -1.0100 -1.0100 -1.01000 N Mentor< | Index 7.14 9.1 Spent circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 7.14 9.1 Spent Circuit 0.900 N Monitor $2.40.5 W$ Resist 15.66 9.1 Spent Circuit 0.900 N Monitor 3.000 C5W Resist 15.66 9.1 Spent Circuit 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.66 9.1 Open Circuit Diff 0.900 N Monitor $4.7 m W$ 15.00 9.1 Open Circuit Diff | India O.S.W. Restor 7.14 9.1 Send creating 0.050 M Mention $ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor ad 0.5W. Restor 7.14 9.1 Send creating 0.050 M Monitor ad 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.65 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.3.6 9.1 Send creating 0.050 M Monitor d 0.5W. Restor 5.3.6 9.1 Send$ | | |

Beam-1 B

Beam-1 Status True Beam-1 Status True Beam-1 Status True Beam-1 Status True 185

13.26
1./
11.34 9.1
7.14 9.1
11.34 9.1
7.14 9.1
11 34 0.1
7.14 9.1
11.34 9.1
7.14 9.1
7.14 9.1
12.42 9.1
0.00
14.26 9.1
7.14 9.1
0.00
14.26 9.1
12.42 9.1
14.26 9.1
7.14 9.1
0.00
12.42 9.1
14.26 9.1
7.14 9.1
0.00
12.42 9.1
115.00 10.1

1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	0.2/E-U8	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	2.11E-08	4.33E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08 3 57E 08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	5.22E-08 6.27E-08	1.71E-08	3.52E-08	6.27E-08	3 EDE 00	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08 2 EDE 00	6.27E-08	1.71E-08	3.52E-08
		Monitor			Monitor		Monitor			Monitor			Monitor			Monitor		Monitor			Monitor			Monitor		Monitor			Monitor		Monitor			Monitor		Monitor			Monitor			Monitor		Monitor		
NE	NE	£	NE	NE	NID	NE	£	NE	NE	FD	NE	NE	FD	NE	NE	CI N	NE	£	NE	NE	FD	NE	NE	ED	NE	en en	NE	NE	FD	NE		NE	NE	FD	NE	E	NE	NE	ED	NE	NE	£	NE	E E	NE	NIF
0.149	0.306	0.545	0.149	0.306	CFC.U	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.306	C4C.U	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149 0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306
Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Curcur Value Drift.	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Value Drift.	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Volue Deife	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Violine Daide	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drut Short Circuit	Open Circuit	Value Deift
10.1			10.1		10.1	1.01		10.1			10.1			10.1		101	1.01		10.1			10.1	0		10.1		10.1			10.1		10.1			1.01		10.1			10.1		, ,	10.1		10.1	
115.00			115.00		115.00	00.011		115.00			115.00			141.48		11E 00	00.011		115.00			115.00			115.00		115.00			115.00		115.00			00.611		115.00			115.00		95 - 1 - 1	115.00		115.00	
100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	100-E 16V	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V	Non-Polarised		1uF 16V	Non-Polarised	100E 14W	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V New Delenised	nastipio 1-tion	100nF 16V	Non-Polarised		100nF 16V	Non-Folarised	100nF 16V	Non-Polarised		Man Dolonicod	norman 1-mout	100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	ANT IN CCT	100nF 16V	INOII-F'OIAITSEU	100nF 16V	Non-Polarised
8	Capacitor	4	ខ	Capacitor	5	Canacitor	I	8	Capacitor		C6	Capacitor		D	Capacitor	ĉ	Canacitor		60	Capacitor		C10	Capacitor		C11 Conscione	capacitor	C12	Capacitor		C13	Capacitor	C14	Capacitor		cl.)	article and the section	C16	Capacitor		C17	Capacitor	d y	C18	Capacitor	C19	Canacitor

1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0010-000	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.0015+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	3 57F 00	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	0.2/E-00	1.71E-08
		Monitor			Monitor			Monitor			Monitor		Monitor	TOTTIOLT		Monitor			Monitor			Monitor		Monitor			Monitor		Monitor		;	Monitor		Monitor			Monitor		Monitor			Monitor		Monitor	IOILIOU	
NE	NE	FD	NE	NE	FD	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	Ð	NE	NE	£	NE	ED E	NE	NE	FD	NE	NE NE	UI N	NE
0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149 0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0146 0146	0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0.545	0.149	0.306	0140	0.149
Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift Short Circuit	Onen Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Volue Deife	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Dall	Open Circuit	Value Drift	Short Circuit	Upen Circuit Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Upen Lircuit Volue Duife	Value Dant Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift Chant Circuit		Open Circuit
10.1			10.1			10.1			10.1			10.1		10.1			10.1			10.1			10.1		10.1			10.1		10.1		101	1.01		10.1			10.1		10.1			10.1		10.1	10.1
115.00			115.00			0.00			0.00			0.00		0.00			0.00			0.00			0.00		0.00			0.00		00.0		115 00	00.611		115.00		00 111	00.611		115.00			115.00		115.00	115.00
100nF 16V	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	NOT MOUNTED	100 nF 16V	Non-Polarised	NOT MOUNTED	100nF 16V	NOT-POLARISED	100hF 16V	Non-Polarised	NOT MOUNTED	100nF 16V	Non-Polarised	NOT MOUNTED	100nF 16V	Non-Polarised	NOT MOUNTED	Non Delorisod	NOT MOUNTED	100nF 16V	Non-Polarised	NOT MOUNTED	Non Polonical	NOT MOUNTED	100nF 16V	Non-Polarised	NOT MOUNTED	Non-Polarised		100nF 16V	Non-Polarised	100 1 001	Non Delociond	nastron 1-mont	100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	100-1111	100nF 16V
C20	Capacitor	4	C21	Capacitor		C22	Capacitor		C23	Capacitor		C24	Capacitor	C25	Capacitor	4	C26	Capacitor		C27	Capacitor	0.00	Conscitor	vorum dur	C29	Capacitor		C30	Cap action	C31	Capacitor	060	Canacitor	7	C33	Capacitor		Co4	capacitui	C35	Capacitor		C36	Capacitor	100	C37

	1./ IE-08	5.52E-U8	0.2/E-00	2 EDE 00	6 27F-08	1 71B-00	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	5.22E-08 6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08 6 27E-08	1 71E 00	3.52E-08	6.27E-08	1.71E-08	3.52E-08	0.2/E-U0	3.52E-08	6.27E-08	1.71E-08	3.52E-08	0.2/E-08 1 71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	3.52E-08	0.2/E-00	1.71E-08
		Moniton	INIOIIIIOL		Monitor	TOTTITOTAT		Monitor			Monitor			Monitor		Monitor			Monitor		Monitor			Monitor		Monitor	TOTTTOTAT		Monitor		Meritan	INIOIIIOI		Monitor			Monitor		Monitor			Monitor		M	INIUIIIUI	
	NE	NE	UI I	INE	an la	NF	NE	FD	NE	NE	FD	NE	NE	FD	NF	E	NE	NE	FD	NE		NE	NE	FD	NE	NE	NE	NE	FD	NE	NE	NF N	NE	FD	NE	NE	NF	NE	Ð	NE	NE	FD	NE	NE	DI II	NE
0110	0.149	0.506	0.140	0.149	0.545	0.140	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0.545	0.149 0.306	0.545	0.149	0.306	0.545	0.149	0.545	0.149	0.306	0.545	0.149	0.306	0.140	0.306	0.545	0.149	0.306	C+C.U	0.306	0.545	0.149	0.306	C4C.U	0.306	0.545	0.149	0.306	0.545	0.149	0.306	0110	0.149
	Open Lircuit	Chante Druft	Short Circuit	Volue Duife	Value Di III. Short Circuit	Onen Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	vauue Drut Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift Short Gironit	Onne Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Upen Circuit Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit
101	1.01		10.1	1.01		10.1	1.01		10.1			10.1			1.01		10.1			10.1	2	10.1			10.1		10.1	1.01		10.1		10.1	1.01		10.1	1	101	1.21		10.1			10.1		101	10.1
115 00	00.611		115 00	00.011		115.00	00.011		115.00			115.00			00.611		115.00			115.00		115.00			115.00		115.00	00.011		115.00		11E 00	00.611		115.00		115.00	00.011		115.00			115.00		115.00	115.00
1111 101		Non-Polarised	100-01/11	Mon. Dolonico.d	nastirite l'unit	100mE 16W	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V Non-Polarised		100 nF 16V	Non-Polarised		100nF 16V	lvon-Folarised	100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	1005-E 1237	Non-Polarised		100nF 16V	Non-Polarised	100mE 1417	Non-Polarised		100nF 16V	Non-Polarised	100nE 16W	Non-Polarised		100nF 16V	Non-Polarised		100nF 16V	Non-Polarised	100-1111	100nF 16V
000	دی :	Capacitor	000		Cap activit	C40	Capacitor	4	C41	Capacitor		C42	Capacitor	ç	Canacitor	intro du	C44	Capacitor		C45	Capacitor	C46	Capacitor		C47	Capacitor	040	Capacitor		C49	Capacitor	050	Capacitor		C51	Capacitor	(E)	Canacitor	T	C53	Capacitor		C54	Capacitor	AFF.	C55

1 71F_08	0. TOT 00	5.22E-U8 6 77E-08	1 7115 00	0. TOT 00	6 27E-08	1 71E-08	3.52E-08	6.27E-08	2.11E-08	4.33E-08	7.71E-08	1.71E-08	5.52E-U8 6 27E-08	1.71E-08	3.52E-08	6.27E-08	1.71E-08	6.27E-08	3.19E-09	2.20E-09	5.61E-09	2.05E-08 8.46E-09	2.76E-08	0.00E+00	0.00E+00	2.03E-08	8.46E-09	2.76E-08	2.03E-08 8.46E-09	2.76E-08	2.03E-08 8.46E-09	2.76E-08	3.19E-09	2.20E-09	5.61E-09	2.03E-08	8.46E-09	0.00E400	0.00E+00	0.00E+00	2.03E-08	8.46E-09	2.76E-08	2.03E-08
		Monitor	TOTITIOTAT		Monitor	TOTITOTIT		Monitor			Monitor		Monitor	TOTTION		Monitor		Monitor	Test		Test		Sequencer				E	Test		Sequencer		Test	Test		Test		c	Tantianhac					Test	
NF	INE	NE B	a In	NE		NE	NE	Ð	NE	NE	Ð	NE	NE	NE	NE	Ð	NE	2	Μ	NE	M	NE	Ð	NE	NE	NE	NE	E II	NE	BF	NE NF	E	Μ	NE	Μ	NE	NE	NF	NE	NE	NE	NE	Ð	NE
0.140	0.147	0.506	0.140	0.149	0.545	0 149	0.306	0.545	0.149	0.306	0.545	0.149	0.506	0.149	0.306	0.545	0.149	0.545	0.290	0.200	0.510	0.150	0.490	0.250	0.500	0.360	0.150	0.490	0.360	0.490	0.360 0.150	0.490	0.290	0.200	0.510	0.360	0.150	0.250	0.250	0.500	0.360	0.150	0.490	0.360
Onen Circuit		Value Drift Short Circuit		Open curcuit	Value Dint Short Circuit	Onen Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift Short Circuit	Onen Circuit	Value Drift	Short Circuit	Open Circuit	Value Dilli Short Circuit	Open Circuit	Value Drift	Short Circuit	Upen Circuit Value Drift	Short Circuit	Open Circuit	Value DTIL	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Drift	Short Circuit	Open Circuit Volue Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Onen Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit
10.1	1.01		101	1.01		101			10.1			10.1		10.1			10.1		Fairchild Semi		0	7.0		6.2		6.2		0	6.2		6.2		Fairchild Semi			6.2		62	4.0		6.2			6.2
115.00	00.011		115.00	00.611		115.00			141.48			115.00		115.00			115.00		11.00		100	4C.0C		0.00		56.39		0071	96.96		56.39		11.00			56.39		0.00	22.2		56.39			56.39
100hE 16W		Non-Polarised	100-101	1 . L C	nastren 1-mont	100nF 16V	Non-Polarised		1uF 16V	Non-Polarised		100nF 16V	Non-Polarised	100nF 16V	Non-Polarised		100nF 16V	DASTIPTO J-ITON	1.0A Fast Rectifier Diode	Relay FWD	2017 D. D. T. T. J. M. J.	TVS		12-15mA Regulator	NOT WOONTED	33V Bi-Di Transil Diode	TVS	9017 D. D. W	35V Bi-Di Transu Diode TVS		<u>33V Bi-Di Transil Diode</u> TV/C	0	1.0A Fast Rectifier Diode	Relay FWD		33V Bi-Di Transil Diode	SAL	12-15mA Regulator	NOT MOUNTED		33V Bi-Di Transil Diode	TVS		<u>33V Bi-Di Transil Diode</u>
US6		Capacitor	CE1	ور	capacitui	C58	Capacitor		C59	Capacitor		ر C60 د .	Capacitor	C61	Capacitor	4	C62	capacitui	D1	Diode	91 D	Diode		D3	Dioue	D4	Diode	24	حرب Diode		D6 Diode	TIOUC	D7	Diode		D8	Diode	10	Diode		D10	Diode		D11

Beam-2 A

Beam-2 B						Beam-2 Status False			Beam-2 Status False			Beam-2 Status True			Beam-2 Status True																	Beam-1 A										Beam-1 B							
2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-U9	2./ 0E-U0	2.03E-08	8.46E-09	2.76E-08	2.03E-08 8.47E.00	0.40E-09 2.76E-08	2.7 0E-08	8 46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	3.19E-09 2.20E-09	5.61E-09	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2./6E-U8	2.05E-08 8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	3.19E-09	2.20E-09	5.61E-09	2.03E-08 8.46E-09
Sequencer			Test			Sequencer			Sequencer			Monitor			Monitor			Monitor		Manitan	IOULUUI			Monitor		Monitor	TOTITIOTAT	0	Sequencer			Sequencer	lest	Test			Test		E	lest		Sequencer	Ē		Sequencer	Test		Test	
BF	NE	NE	Ð	NE	NE	Μ	NE	NE	Μ	NE	NE	Μ	NE	NE	Μ	NE	NE	Μ	NE	NE	TAT	NE	NE	W	NE	M	NF	NF	£	NE	NE	BF	ME	Μ	NE	NE	Ð	NE	NE	UI TI	NE	BF	NE	NE	£	Μ	NE	Μ	NE
0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.100	0.430	0.360	0.150	0.490	0.360	061.0 004 0	0.360	0.150	0.490	0.360	0.150	0.490	0.200	0.510	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.490	0.360	0.150	0.490	0.290	0.200	0.510	0.360 0.150
Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Chant Circuit		Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drut Short Circuit	Omen Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Driff	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Drift
	6.2			6.2			6.2			6.2			6.2			6.2			6.2	; ; ;	0	6.2		ć	6.2		69	7.0		6.2		- - - - 	Farrchild Semi		6.2			6.2		ć	0.2		6.2			Fairchild Semi			6.2
	56.39			56.39			56.39			56.39			56.39			56.39			56.39			56.39			56.39		56.30	10.00		56.39			11.00		56.39			56.39			65.00		56.39			11.00			56.39
	<u>33V Bi-Di Transil Diode</u>	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		<u>33V Bi-Di Transil Diode</u>	TVS		33V Bi-Di Transil Diode	IVS	T I T T	<u>33V Bi-Di Transil Diode</u>	IVS	1	<u>33V Bi-Di Transıl Diode</u>	SAI	33V Bi-Di Traneil Diode	SAL		33V Bi-Di Transil Diode	TVS		<u>1.0A Fast Rectifier Diode</u> Relav FWD		<u>33V Bi-Di Transil Diode</u>	TVS		<u>33V Bi-Di Transil Diode</u>	TVS	L 141 E 14 14 1400	35V BI-DI ITANSII DIODE TVS	3	33V Bi-Di Transil Diode	TVS		1.0A Fast Rectifier Diode	Relay FWD		<u>33V Bi-Di Transil Diode</u> TVS
	D12	Diode		D13	Diode		D14	Diode		D15	Diode		D16	Diode		D17	Diode		D18	Diode		019 1-1-	Diode	904 1	D20	TJOUE	101	Dinde		D22	Diode		D/23 Diode		D24	Diode		D25	Diode	X04	Diode		D27	Diode		D28	Diode		D29 Diode

												Beam-1 Status False			Beam-1 Status False								Boom 1 Croture Trato	ANTT SUMPLE I-IMPAG		Beam-1 Status True							Beam-2 A		Beam-2 A		Beam-2 A	, ,	beam-2 B				Ream-2 R		Beam-2 B				
2.76E-08	2.03E-08	8.46E-09	2.76E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	Z./ UE-UO	2.03E-08	0.40E-09	2./ UE-U6	2.03E-00 8.46E-09	2.76E-08	2.03E-08	8.46E-09	2.76E-08	2.03E-08	8.46E-09	2./05-00	3.75E-10 3.75E-10	1.80E-10	1.80E-10	6.38E-07	6.38E-07	1.80E-10	1.80E-10	2.52E-08	1.35E-07 8 25E-08	3.75E-10	3.75E-10	6.38E-07	6.38E-07	2.52E-08	1.35E-07	8.25E-08	2.52E-08 1.35E-07
Test			Test									Sequencer			Sequencer			Monitor			TOULIDIAL		Monitor	TOTTITOTAT		Monitor			Monitor		Monitor	INITIUM	Monitor		Sequencer		Sequencer	ţ	Sequencer	Monitor	Monitor	TOTTOTT	Monitor		Sequencer	Monitor		Monitor	Monitor
Ð	NE	NE	Ð	NE	NE	NE	NE	NE	NE	NE	NE	M	NE	NE	Μ	NE	NE	M	NE	NE	INI	NE	M	NI	NE	M	NE	NE	Μ	NE	NE	INI	BF	NE	BF	NE	BF	NE	BF	W.	NE	NF	BF	NE	BF	Μ	NE	Μ	M NE
0.490	0.360	0.150	0.490	0.250	0.250	0.500	0.250	0.250	0.500	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.47.0	0.360	061.0	0.240	0.150	0.490	0.360	0.150	0.490	0.360	0.150	0.490	0.500	0.500	0.500	0.500	0.500	0.500	005.0	0.104	0340	0.500	0 500	0.500	0.500	0.104	0.556	0.340	0.104 0.556
Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift		Open Circuit	Choset Circuit	Onen Circuit	Upen Circuit Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Gircuit Short Gircuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift Short Circuit	Onen Circuit	Short Gircuit	Onen Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit Value Drift
	6.2			6.2			6.2	1		6.2			6.2			6.2			6.2			6.2		67	7.0		6.2			6.2			<u>Maxim-IC</u> (487E Equivalent)	Texas Instruments		Fairchild Semi		Texas Instruments		6.19		Maxim-IC	(487E. Enrivalent)	Fairchild Semi		6.19			6.19
	56.39			0.00			0.00			56.39			56.39			56.39			56.39			56.39		E4 30	6C.0C		56.39			56.39			0.75	0.36		1275.00		0.36		242.75		0.75		1275.00		242.75			242.75
	33V Bi-Di Transil Diode	TVS		12-15mA Regulator	NOT MOUNTED		12-15mA Regulator	NOT MOUNTED		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	SVI	2317 B. D. Torred Diede	anord Helbert Rd-rd VCC		33V Bi-Di Transil Diode	TVS		33V Bi-Di Transil Diode	TVS	E C T T	Fail Safe Transceiver MAX3440E	Schmidt Trigger HCT	74HCT14D	Digital 10ns Optocoupler	HCPL2601	Schmidt Trigger HCT	/4HCT14D	Open Collector Slow O.C.	C-FH-618A-5	Fail Safa Transceiver	MAX3440F	Digital 10ns Ontocounder	HCPL2601	Open Collector Slow O.C.	SFH-618A-5		Open Collector Slow O.C. SFH-618A-5
	D30	Diode		D31	Diode		D32	Diode		D33	Diode		D34	Diode		D35	Diode		D36	Diode		D37 Diodo	anorr	1/20	Diode		D39	Diode		D40	Diode	101	IC1 Integrated Circuit	IC2	Integrated Circuit	IC3	Digital Optocoupler	IC4	Integrated Circuit	IC5	PT Single OC	IC6	Integrated Circuit	107	Digital Optocoupler	IC8	PT Single OC		IC9 PT Single OC

	Beam-2 Status False	Beam-2 Status True	Beam-2 Status False		Beam-2 Status True	Beam-2 Status False	Beam-2 Status True													Beam-1 B		Beam-1 A		Beam-1 A		Beam-1 B		Beam-1 A				d 1 d	Deam-1 D			Beam-1 Status False	Beam-1 Status True				Beam-1 Status False	beam-1 Status True	Beam-1 Status False	5	Beam-1 Status True					
8.25E-08	3.75E-10	3.75E-10	2.52E-08	1.35E-07	8.25E-08	1.80E-10	1.80E-10	2.52E-08	1.35E-07	8.25E-08	2.52E-08	1.35E-07	8.25E-08	2.52E-08	1.35E-07 0.75E-00	00-3C3C	1 355 07	8.25E-08	1.80E-10	1.80E-10	1.80E-10	1.80E-10	6.38E-07	6.38E-07	6.38E-07	6.38E-07	3.75E-10	3.75E-10	2.52E-08	1.35E-07	8.25E-08	3.75E-10	01-367.6	2.52E-08 1.35E-07	8.25E-08	1.80E-10	1.80E-10	2.52E-08	1.35E-07	8.25E-08	3.75E-10	3./5E-10 0.75E-00	2.52E-08	1.35E-07	8.25E-08	3.45E-10	3.45E-10	3.45E-10 3.45E-10	6 78E 00	6./8E-U9 3.57E-10
Monitor	Monitor	Monitor	Sequencer		Sequencer	Monitor	Monitor	Monitor		Monitor	Monitor		Monitor	Monitor		Monitor	TOTTTOTAT	Monitor		Sequencer		Sequencer		Sequencer		Sequencer		Monitor	Monitor		Monitor	Menter	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor		Monitor	Monitor	Monitor	Sequencer	c	Sequencer	Monitor	Monitor	Monitor	Monitor	Monitor
Μ	Μ	Μ	Μ	NE	Μ	W	Μ	Μ	NE	M	W	NE	M	W	NE	INI	TAT	M	NE	BF	NE	BF	NE	BF	NE	BF	NE	BF	Μ	NE ;	Μ	NE	Dr	NE	M	Μ	Μ	Μ	NE	W	Ν;	W ;	M	NE	W	Μ	Μ	MM	M	M
0.340	0.500	0.500	0.104	0.556	0.340	0.500	0.500	0.104	0.556	0.340	0.104	0.556	0.340	0.104	0cc.0 01 5 0	040.0	101-0	0.340	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.104	0.556	0.340	0.500	005.0	0.556	0.340	0.500	0.500	0.104	0.556	0.340	0.500	002.0	0.104	0.556	0.340	0.500	0.500	0.500	0050	0.050 0.050
Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Value Drift	Onon Circuit	Volue Deift	Value Dilli Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Short Circuit	Open Circuit Value Drift	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Value Drift	Short Circuit	Open Circuit	Short Circuit	Open Circuit Short Circuit	Onen Circuit / Duift	Open Circuit / Drift Short Circuit
	Maxim-IC	(487E Equivalent)	6.19			<u>Texas Instruments</u>		6.19			6.19			6.19		6 10	61.0		Texas Instruments		Texas Instruments		Fairchild Semi		Fairchild Semi		Maxim-IC	(487E Equivalent)	6.19			Maxim-IC	(40/E Equivalent)	61.0		Texas Instruments		6.19			Maxim-IC	(48/E Equivalent)	6.19		2	Maxim-IC	(488 Equivalent)	Maxim-IC (488 Fornivalent)	(mana ndu varent)	1.6
	0.75		242.75			0.36		242.75			242.75			242.75		37.070	C1-74-7		0.36		0.36		1275.00		1275.00		0.75		242.75			0.75	1000 11	C/ 747		0.36		242.75			0.75		242.72			0.69		0.69	7 1.4	/.14
	Fail Safe Transceiver		Open Collector Slow O.C.	SFH-618A-5		Schmidt Trigger HCT	74HCT14D	Open Collector Slow O.C.	SFH-618A-5		Open Collector Slow O.C.	SFH-618A-5		Open Collector Slow O.C.	C-R810-H4S	Omen Collector Corre O C	OPEL COLECUL 210W C.C.	C-14010-113C	Schmidt Trigger HCT	74HCT14D	Schmidt Trigger HCT	74HCT14D	Digital 10ns Optocoupler	HCPL2601	Digital 10ns Optocoupler	HCPL2601	Fail Safe Transceiver	MAX3440E	Open Collector Slow O.C.	SFH-618A-5		Fail Safe Transceiver MAV2440T	MAAA40E	Open Collector Slow U.C. SFH-618A-5		Schmidt Trigger HCT	74HCT14D	Open Collector Slow O.C.	SFH-618A-5		Fail Safe Transceiver	© 2 HAX3440E	Open Collector Slow O.C.	SFH-618A-5		Fail Safe Transceiver	MAX488E	Fail Safe Transceiver MAY488F	00.0.25W/Docietor	<pre>visition visition visitio</pre>
	IC10	Integrated Circuit	IC11	PT Single OC		IC12	Integrated Circuit	IC13	PT Single OC		IC14	PT Single OC		ICI5	PT Single OC	1016	DT Cincle OC	L I augus OC	IC17	Integrated Circuit	IC18	Integrated Circuit	IC19	Digital Optocoupler	IC20	Digital Optocoupler	121	Integrated Circuit	IC22	PT Single OC		IC23		PT Single OC	5	IC25	Integrated Circuit	IC26	PT Single OC		IC27	Integrated Circuit	IC28	PT Single OC		IC29	Integrated Circuit	IC30 Interrated Circuit		1DU Resistor

6.78E-09 3.57E-10	6 78E-09	3.57E-10	6.78E-09	3.57E-10	6.78E-09 2 E7E 10	01-11/CC	6./8E-09 357E-10	6 78E-09	3.57E-10	6.78E-09	3.57E-10	6.78E-09	3.57E-10	6.78E-09	3.57E-10	3.70E-08	3.77E-09	3.70E-08	5.12E-08	3.77E-09	3.70E-08	5.12E-08 3.77E.00	3.70E-08	5.12E-08	3.77E-09	1.85E-08	2.56E-08	1.88E-U9	0.4201 2.56F-08	1.88E-09	1.85E-08	2.56E-08	1.88E-09	1.85E-08 2.56E-08	1.88E-09	2.72E-09	2.93E-09	1.94E-09	2.72E-09	2.93E-09	1.94E-09	5.44E-09	3.87E-09	5.44E-09	5.87E-09	3.88E-09
Monitor	Monitor	TOTTOTT	Monitor		Monitor	M	MONITOF	Monitor		Monitor		Monitor		Monitor		Monitor	Monitor	Monitor	History	Monitor	Monitor	History	Monitor	History	Monitor			Monitor		Monitor			Monitor		Monitor	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual Visual	Visual	Visual	Visual
M	M	NE	М	NE	ME	M	MF	M	NE	M	NE	Μ	NE	W	NE	e i	€ €	: E	Ð	Ð	Ð	86	: E		Ð	NE	JE NE	U1 ME	NF	£	NE	NE	ED I	NE	£	NE	NE	NE	NE	NE	NE	NE	NF	NE	NE	NE
0.950 0.050	0.950	0.050	0.950	0.050	0.950	0000	0.050 0	0.950	0.050	0.950	0.050	0.950	0.050	0.950	0.050	0.403	/CC.U 0.041	0.403	0.557	0.041	0.403	0.557	0.403	0.557	0.041	0.403	0.557	0.041	0.557	0.041	0.403	0.557	0.041	0.557	0.041	0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.255	0.358	0.386	0.255
Open Circuit / Drift Short Circuit	Onen Circuit / Drift	Short Circuit	Open Circuit / Drift	Short Circuit	Open Circuit / Drift	Suort Carcuit	Open Circuit/ Drift Short Circuit	Onen Circuit / Drift	Short Circuit	Open Circuit	Intermittant Contact Short Circuit	Onen Circuit	Intermittant Contact	Short Circuit	Open Circuit	Intermittant Contact Chose Circuit	Onen Gircuit	Intermittant Contact	Short Circuit	Open Circuit	Intermittant Contact	Short Circuit	Open Carcaut Intermittant Contact	Short Circuit	Open Circuit	Intermittant Contact	Short Circuit	Upen Urcuit Intermittant Contact	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift Short Circuit	Open Circuit	Voltage Drift	Short Circuit						
9.1	91		9.1		9.1	•	1.6	91	:	9.1		9.1		9.1	ļ	15.1		15.1			15.1		15.1	4		15.1		T U T	1.61		15.1		•	1.61		6.11			6.11		;	6.11		6.11		
7.14	7 14		7.14		7.14		41.7	7 14		7.14		7.14		7.14		16.16		91.91			91.91		91 91	4		45.95		ft Of	40.73		45.95			CC:C4		7.60			7.60		00 II.	02.41		15.20		
0Ω 0.25W Resistor <0.001mW	0.0.0.25W Resistor	<0.001mW	0Ω 0.25W Resistor	<0.001mW	00 0.25W Resistor	WIIIT DOLOS	70.001.000 X KeSistor	0.0.0.25W Resistor	<0.001mW	00 0.25W Resistor	<0.001mW	00 0.25W Resistor	<0.001mW	00 0.25W Resistor	<0.001mW	Burndy 8-pin	beam-2	Burndv 12-nin	Beam-2		Burndy 8-pin	Beam-1	Burndv 12-nin	Beam-1		2x10 Test Connector	Beam-2	0 1 E 61 d	ZXIU LESU CONNECTOT Ream-1		2x7 Test Connector	Beam-2	C E E C	ZX/ 1est Connector Beam-1		5mm HE Green LED	Beam-2		5mm HE Red LED	Beam-2		5mm HE Green/Ked LED	Deam-2	5mm HE Green/Red LED	Beam-2	
ID1 Resistor	1172	Resistor	ID3	Resistor	Duiter-	TINGTGAN	Resistor	ID6	Resistor	ID7	Resistor	ID8	Resistor	edi	Resistor	, Д	Connector	12	Connector		J3	Connector	14	Connector		J5	Connector	17	Jo Connector		JT1	Connector	OT)12 Connector		LD1	LED		LD2	LED	6 6 A	LD3	Dual LED	LD4	Dual LED	

5.44E-09	5.87E-09	3.88E-09	2.72E-09	2.93E-09	1.94E-09	2.72E-09	2.93E-09	1.94E-09	2.72E-09	2.93E-09	1.94E-09	2.72E-09	2.93E-09	1.94E-09	5.44E-09	5.87E-09	3.88E-09	5.44E-09	5.87E-09	3.88E-09	5.44E-09	3.88E.00	0.70E-09	2.42E-07	1.94E-09	8.11E-08	1.12E-07	8.25E-09	8.11E-08	8 75F 00	5 63E-08	5.63E-08	5.63E-08	5.63E-08	2.24E-07	1.06E-07	7.74E-08	2.24E-07	1.06E-07	7.74E-08	2.24E-07	1.06E-07	7.74E-08	1.04E 07	7.74F-08	2 27E 10	4 98F-10	3.32E-10	A 08E 10	3.32E-10
Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Visual	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Test	History	Test	Test	History	Test	Test	History	Test	Li ctore :	Test	Teat	Test	Test	Tost	Test
NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	INE	NF	NE	NE	Μ	Μ	Μ	M	M	W	W	M	Μ	Μ	£	FD	Μ	£	£	M	£ (9 >	M	26	M	M	W	M	M
0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.386	0.255	0.358	0.386	CC2.0	0.358	0.055	0 358	0.386	0.255	0.403	0.557	0.041	0.403	10.0	0.500	0.500	0.500	0.500	0.550	0.260	0.190	0.550	0.260	0.190	0.550	0.260	0.190	0.00	0.190	0 400	0.400	0.000	0.400	0.600
Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage Drift	Short Circuit	Open Circuit	Voltage DTLL	Onen Circuit	Voltage Drift	Short Circuit	Open Circuit	Intermittant Contact	Short Circuit	Open Circuit	Chart Circuit	Onen Circuit	Short Circuit	Open Circuit	Short Circuit	Short Circuit	Intermittant/Spurious	Open Circuit	Short Circuit	Intermittant/Spurious	Open Circuit	Short Circuit	Intermittant/Spurious	Open Circuit	Intermittant/Consistent	miennitant/2purious Onen Circuit	Open Caracte	Open Circuit Short Circuit	Onen Circuit	Open Curcuit	Onen Circuit
6.11			6.11			6.11			6.11			6.11			6.11			6.11			6.11		611	11-0		15.1			15.1		19.1	1	19.1		6.11			6.11			6.11		112	11.0		73	C.0	63	0.0	63
15.20		~ 1	7.60			7.60			7.60			7.60			15.20			15.20			15.20		2 60	00.1		201.32			201.32		112.66		112.66		407.56			407.56			407.56		407 E¢	00.704		0.02	C8.U	0.83	0.00	0.83
5mm HE Green/Red LED	Beam-2		5mm HE Green LED	PSU Primary		5mm HE Green LED	PSU Secondary		5mm HE Green LED	Beam-1		5mm HE Red LED	Beam-1		5mm HE Green/Red LED	Beam-1		5mm HE Green/Red LED	Beam-1		5mm HE Green/Red LED	Deam-1	5mm HF Green I FD	DSITP or S		6 Pole 5V Connector	PSU Primary		6 Pole 5V Connector	r oc occontanty	4MHz TTL Clock	Beam-2	4MHz TTL Clock	Beam-1	G6K Dual Relay	Beam-2 Permit A		G6K Dual Relay	Beam-2 Permit B		G6K Dual Relay	Beam-1 Permit A		CON DUAL NELAY		BC047D NDN There also	BU84/BINFN ITANSIOF	RC847R NPN Transistor	DOOT N LI TI	RC847R NPN Transistor
LD5	Dual LED		LD6	LED		LD7	LED		LD8	LED		LD9	LED		LD10	Dual LED		LD11	Dual LED		LD12 Decel I ED	Dual LED	1113	TED		PSUI	Connector		PSUZ	CONTRACTOR	021	Ouartz	, OZD	Quartz	RL1	Small Signal Relay		RL2	Small Signal Relay		RI3	Small Signal Relay	101 A	Cmall Cianal Dalari	ошан лідпан менау	11	11 NDN Transistor	LUCERTELL AT IN	12 NDM Transistor	T3

AT HOUSE	3.32E-10	4.98E-10	6.64E-09	9.96E-09	6.64E-09	9.96E-09	3.32E-10	4.98E-10	6.64E-09	9.96E-09	3.32E-10	4.98E-10	6.64E-09	9.96E-09	3.32E-10	4.98E-10	2.78E-08	4.06E-10	8.12E-10	2.78E-08	4.06E-10	8.12E-10	Beam-2 S F	R 10632E-08										
1671	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Test	Monitor	Monitor	Monitor	Monitor	Monitor	Monitor	Beam-2 S T	1 008225-07										
	Μ	M	Μ	M	Μ	Μ	Μ	M	Μ	Μ	Ð	FD	FD	Ð	Ð	FD	FD	Ð	Ð	FD	FD	Ð	ß	FD	FD	Ð	Μ	M	Μ	Μ	Μ	Μ	Beam-2 B	C OUEENE UT
	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.400	0.600	0.958	0.014	0.028	0.958	0.014	0.028	Beam-2 A	6 BUSEAF 07
	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Open Circuit	Short Circuit	Short Circuit	Mask Defect	Open Circuit	Short Circuit	Mask Defect	Open Circuit	Beam-1SF	8 10637F 08										
	6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3		Xilinx DRR			Xilinx DRR			Beam-1ST	1 00077E 07
	0.83		0.83		0.83		0.83		0.83		0.83		16.60		16.60		0.83		16.60		0.83		16.60		0.83		29.00			29.00			Beam-1 B	¢ ODEE AF 07
	BC847B NPN Transistor		BC847B NPN Transistor		BC847B NPN Transistor		BC847B NPN Transistor		BC847B NPN Transistor		BC847B NPN Transistor		PZT2222		PZT2222		BC847B NPN Transistor		PZT2222		BC847B NPN Transistor		PZT2222		BC847B NPN Transistor		XC95288	Beam-2		XC95288	Beam-2		Beam-1 A	6 805545 07
	T4	NPN Transistor	T5	NPN Transistor	T6	NPN Transistor	T7	NPN Transistor	T8	NPN Transistor	79	NPN Transistor	T10	NPN Transistor	T11	NPN Transistor	T12	NPN Transistor	T13	NPN Transistor	T14	NPN Transistor	T15	NPN Transistor	T16	NPN Transistor	11	CPLD		IJ	CPLD		P (Fail Blind)	

8

as e.

Maintenance 5.11931E-06

No Effect 8.89858E-06

CIBUD P(Fail) per Hour The Blind Failure in the worksheet indicates the probability that a single USER_PERMIT_A OR USER_PERMIT_B fails blind, to have a complete blind failure would require that both USER_PERMIT_A AND USER_PERMIT_B fail within the same hour so 2.7×10^{-6} is squared to become 7.3×10^{-12} representing the probability of blind failure of both _A and _B.

This procedure has been repeated for each and every sub-system, deriving hourly probabilities of failure that have been used to create both Table 4.34 on page 111 and Table H.1 on page 181.

198

Appendix I

BEAM_PERMIT_INFO in the Test & Monitor Board

The CIBT receives BEAM_PERMIT_INFO flags from two sources with the RS485 receivers implemented as shown in Figure I.1.

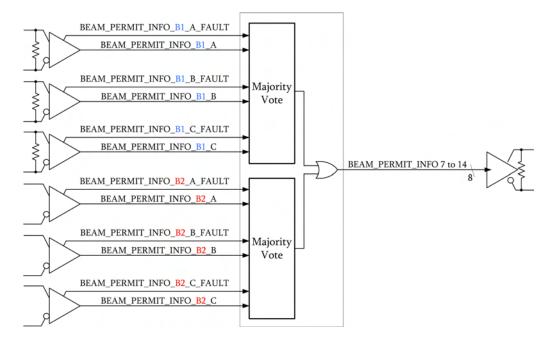


Figure I.1: Implementation of the CIBT BEAM_PERMIT_INFO Circuits

Note that only the beam-1 signals are terminated, this allows the same CIBT hardware to operate with both the LHC and SPS patch-panels. In the LHC CIBT_B1 receives BEAM_PERMIT_INFO from both CIBM_B1 and _B2, the CIBT_B2 however receives the same three signals twice on its beam-1 and beam-2 channels. This exploits the multidrop nature of RS485, with the termination implemented through the beam-1 circuits. Figure I.2 on the following page shows this implementation.

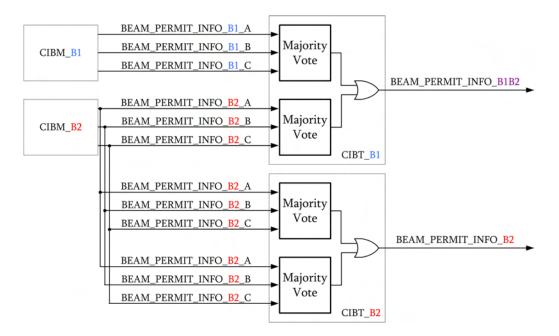


Figure I.2: Implementation of BEAM_PERMIT_INFO in the LHC

There is no cross-connection of CIBT BEAM_PERMIT_INFO signals when the SPS patch-panel is used, the LEFT CIBT receives the signals from the LEFT CIBM, the RIGHT from the RIGHT. In order to make the OR circuit of the CIBT function correctly, these signals are passed to both channels, as shown in Figure I.3.

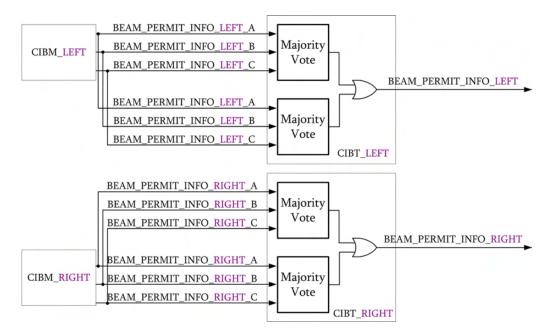


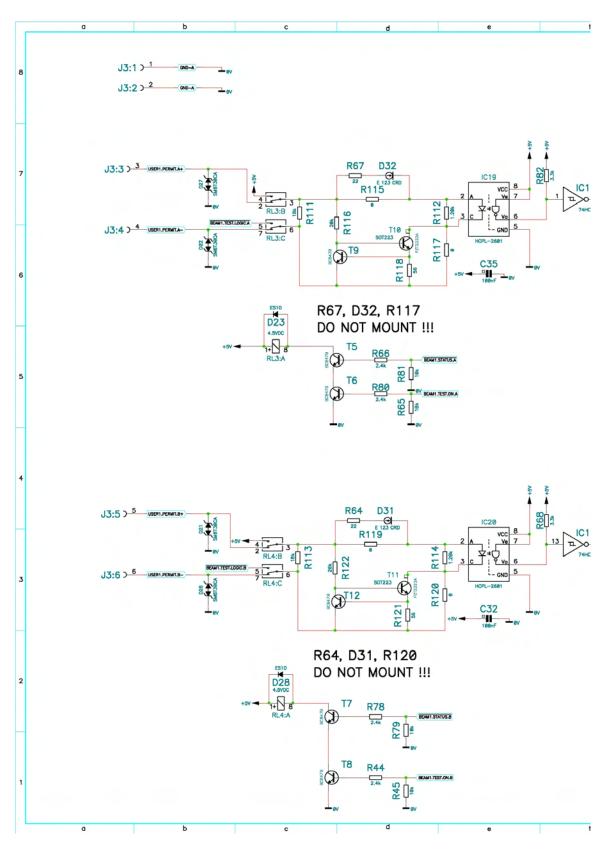
Figure I.3: Implementation of BEAM_PERMIT_INFO in the SPS

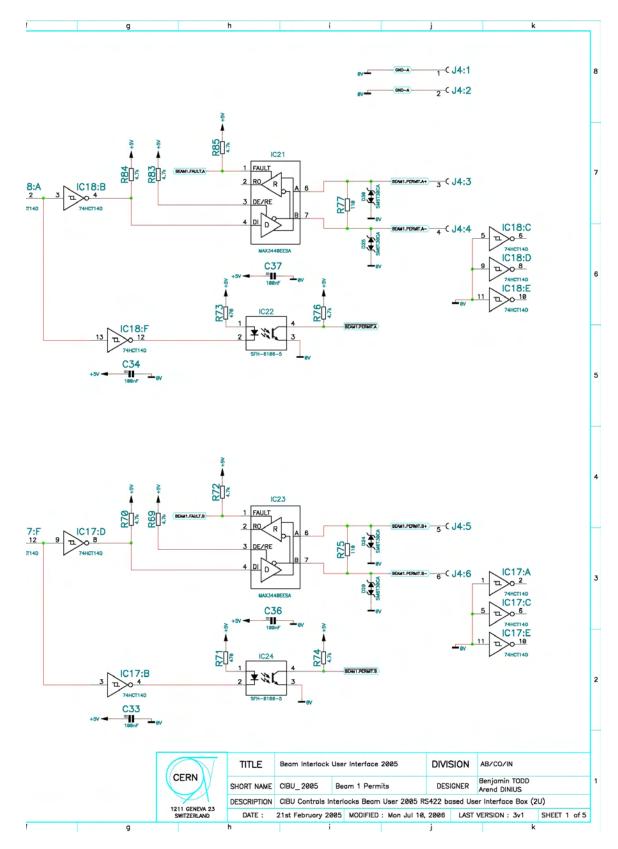
If anything malfunctions in the BEAM_PERMIT_INFO link the circuits default to TRUE. The _FAULT signals shown in Figure 4.63 on page 90 are ORed with the BEAM_PERMIT_INFOs to force the signal to TRUE if an RS485 fault appears. A single fault does not result in the loss of operation of the machine as Triple Mode Redundancy allows the failure of an A, B or C link can to be tolerated before operation must be halted. A majority voter is implemented to determine the equivalent logic level of these A,B and C links that is to be sent to the User Interface, this has a very simple truth-table:

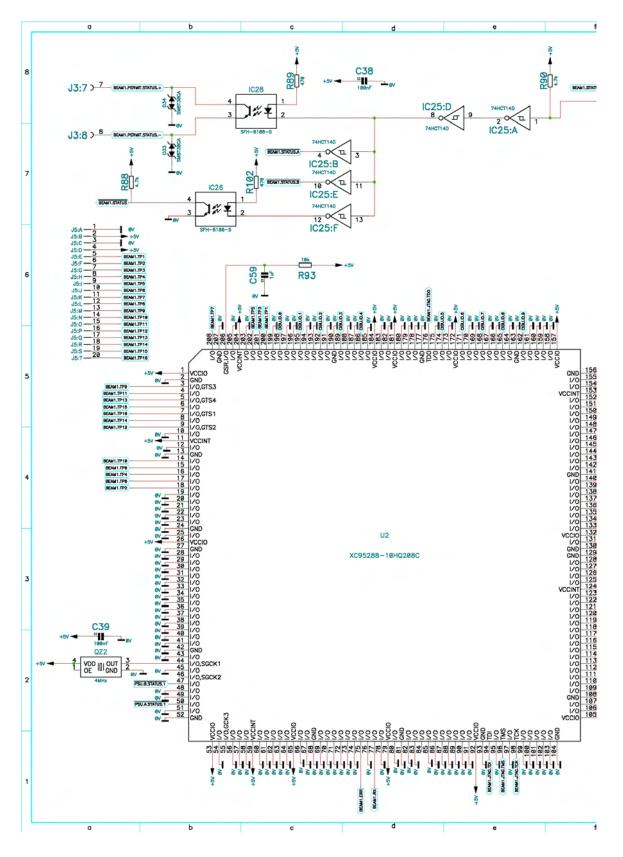
А	В	С	Output
TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE
TRUE	FALSE	TRUE	TRUE
TRUE	FALSE	FALSE	FALSE
FALSE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	FALSE
FALSE	FALSE	TRUE	FALSE
FALSE	FALSE	FALSE	FALSE

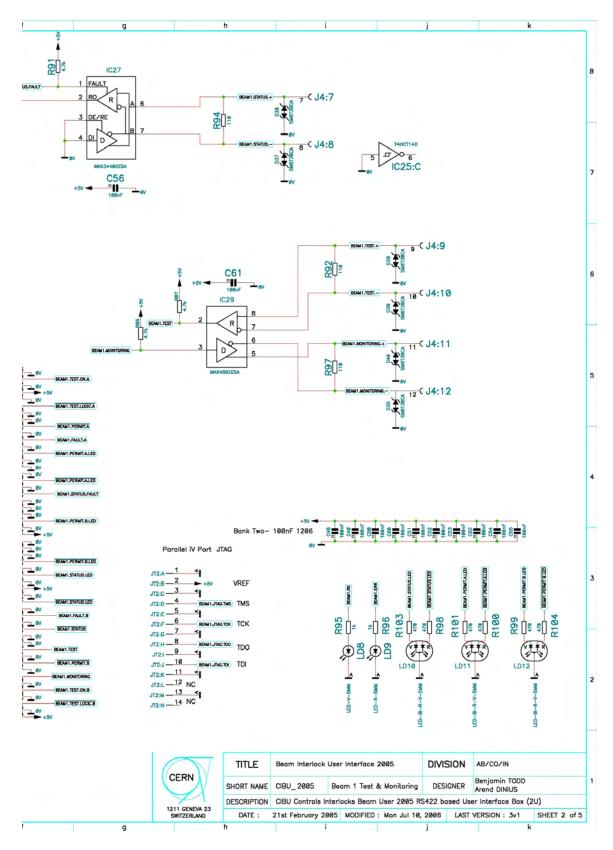
 Table I.1: Majority Voter Truth Table

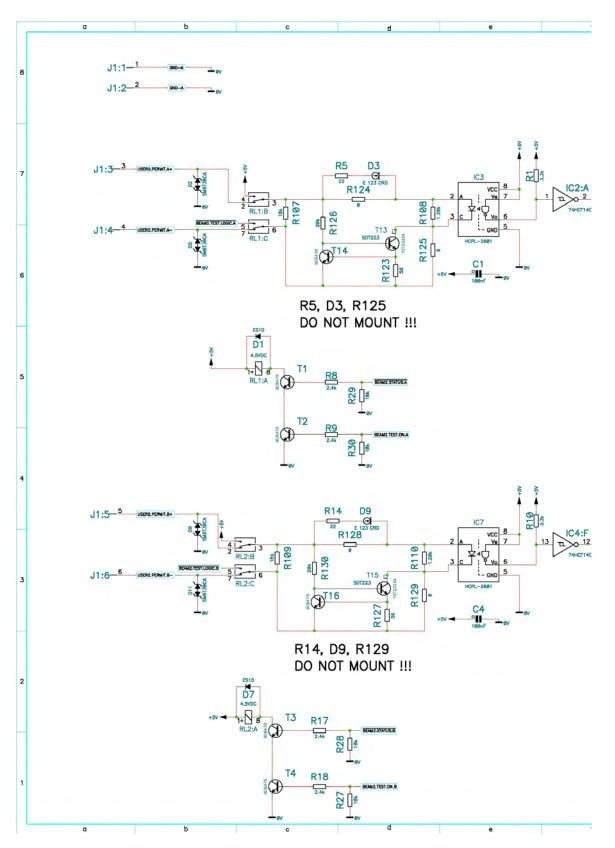
A voter is implemented on both the beam-1 and beam-2 circuits before being ORed together to create the final BEAM_PERMIT_INFO signal.

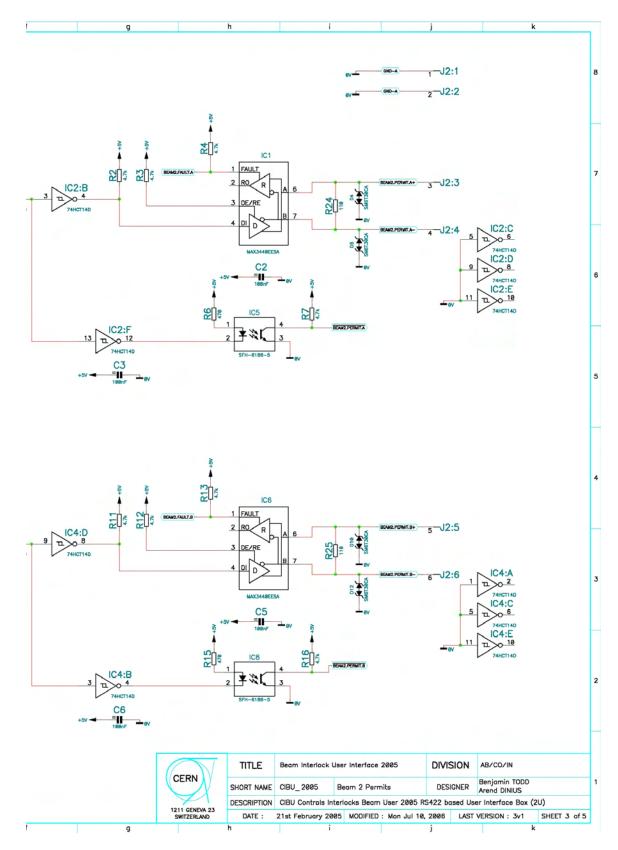

Appendix J

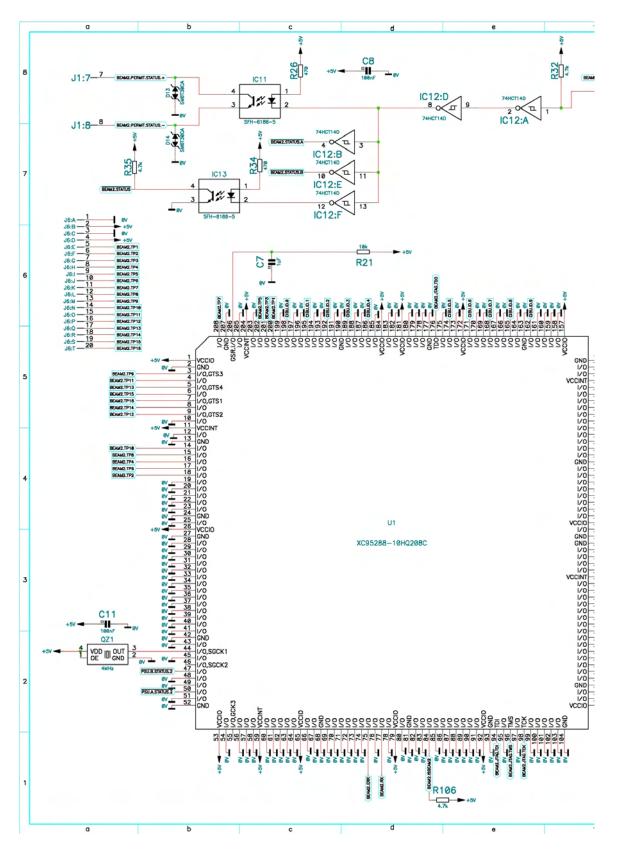

Schematic Examples

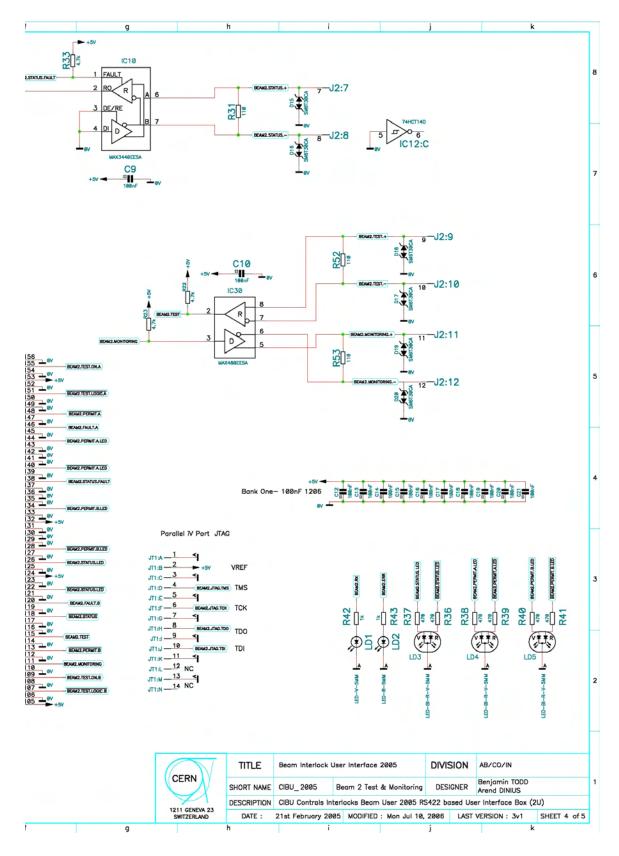

The schematics of the Double User Interface are presented in the following pages. There are five pages, each is spread across a double page.

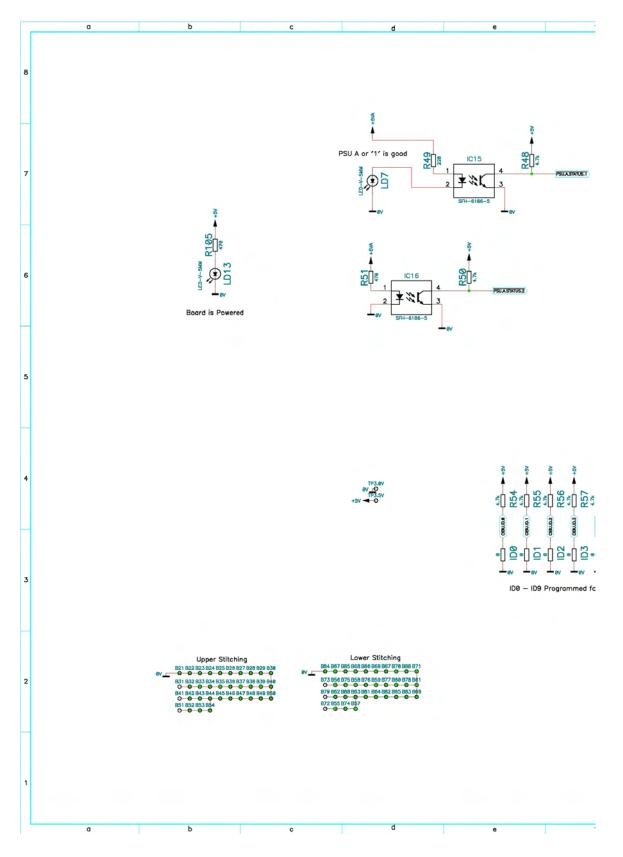

- **Page 1** shows the critical paths USER_PERMIT_A and USER_PERMIT_B for the beam-1 circuits.
- **Page 2** shows the non critical paths which drive BEAM_PERMIT_INFO, TEST and MONITOR for the beam-1 circuits.
- **Page 3** shows the critical paths USER_PERMIT_A and USER_PERMIT_B for the beam-2 circuits.
- **Page 4** shows the non critical paths which drive BEAM_PERMIT_INFO, TEST and MONITOR for the beam-2 circuits.
- Page 5 shows the common circuits for power and ground.

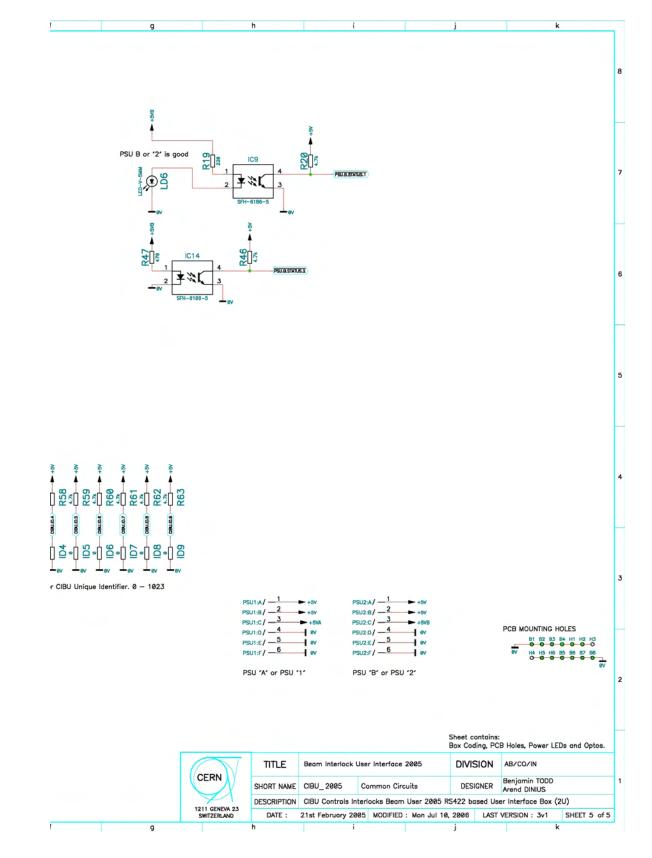

The CIBUS is made using the same schematics, expect in this case all of the beam-2 components are unmounted, leaving only a single interface between User System and Beam Interlock Controller.





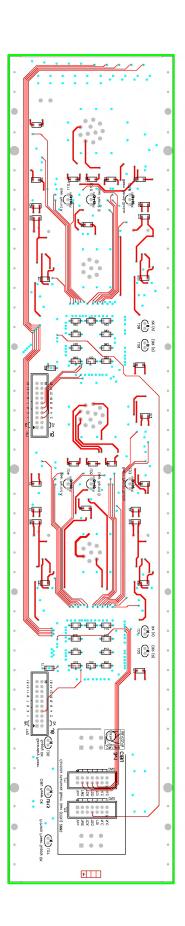






Appendix K

PCB Examples


The following pages shows the top and bottom layers of the CIBUD printed circuit board. It is a four layer PCB, with the following stack-up:

- 1. TOP component side
- 2. INT1 internal power plane
- 3. INT2 internal ground plane
- 4. BOTTOM wiring side

Components are mounted on both the TOP and BOTTOM layers, copper pours are not shown on the following diagrams, they are used to ground all the unused PCB areas on the upper and lower layers to improve the EMC characteristics.

Projet/			NAUE	LEL	DATE
Project		Reap	BMT		
Ensemble/		Designer	BMT		1 Jan 2006
	CONTROLS INTERIOCKS DEGITI USER (CIDU) 2003	Drawn by	Martin Christophe		
		MODA			
Underset		BOOM			
	Drawing Number		ГНС		
N COUNTY					
B/CO/N	LAD BOOMTONEE EUROPEEN POUR LA PHYSICULE DES PARTICULES EUROPEAN GUERER / GRUEN EUROPEAN GUERER / GRUEN UNIT	-		INDICE	

			ANNE	TEL	DATE
Project		Resp	BMT		
Ensemble/		Designer	BMT		1 Jan 2005
Set	CONTROIS INTERLOCKS DEGITI USER (VIDU) 2003	Drawn by	Martin Christophe		
Sous-ensemble/		MODA			
Underset		RODB			
K	Drawing Number		гнс		
CERN)	CIBU 3VI				
ALCO/N	и совожлоние сикореан макисте ритака в ССНЕЦLE/ 1. Сикореан изаконовитов ток кулисте ритака ССАLE	1/1		INDICE	

Appendix L

VHDL Examples

Two VHDL modules are described in this appendix, the Manchester Encoder and the Manchester Decoder. These modules are relatively small, and give a good impression regarding the general form of VHDL used throughout the Beam Interlock System.

L.1 Manchester Encoder

The Manchester encoder can be configured to transmit data in single or quad byte format.

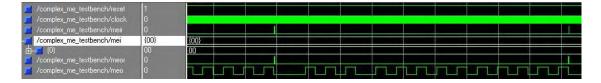
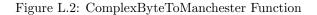



Figure L.1: Single Byte Transmission Using the Manchester Encoder

Both of these formats are derived from the same VHDL code, changing the generic mapping changes the size of the final Manchester encoder. Constants within the code also define the operation of the Manchester encoder, describing the lengths of the various sections that make up the encoded sequence.

Line 92 calls the combinational function 'ComplexByteToManchester' which converts an eight bit vector into an eighteen bit Manchester encoded equivalent, with an even parity bit. This function is shown below.

```
constant RESET_ACTIVE : std_logic := '0'; -- global reset activity
 -- Used in the functions ByteToManchester and ManchesterToByte
constant MANCHESTER_ONE : std_logic_vector(1 downto 0) := "01";
constant MANCHESTER_ZERO : std_logic_vector(1 downto 0) := "10";
   -- ComplexByteToManchester is used in the Manchester Encoder (Complex_Me)
 function ComplexByteToManchester(byterz : ByteTYPE) return std_logic_vector;
 end manchester_package;
 package body manchester package is
        -Converts NRZ to Manchester, optimised for a Complex Programmable Logic Device
   function ComplexByteToManchester(byterz : ByteTYPE) return std_logic_vector is
variable vbyterz : std_logic_vector(8 downto 0);
variable vbytem : std_logic_vector(((2*8)+2) - 1 downto 0);
variable p : std_logic;
         begin
p := (byterz(0) xor byterz(1) xor byterz(2) xor byterz(3) xor byterz(4) xor byterz(5) xor byterz(6) xor byterz(7));
          / - (bycerz(s) kor bycerz(r) kor bycerz
                         else
                        vbytem((2*i + 1) downto 2*i) := MANCHESTER ZERO;
                        end if,
              end loop;
               return vbytem;
   end function ComplexByteToManchester;
```



```
1
 2
              --Design Units : Complex Manchester Encoder EVEN PARITY XOR
 3
             --95288 CPLD Fit: |Macrocells| Pterms |Registers| Pins |FB Input|
 4
                                          49/288 115/1440 41/288 13/168 71/576
 5
 6
             --Author:
                                      Benjamin Todd
                                      European Organisation for Nuclear Research
 8
                                      AB Accelerators and Beam -- Control -- Infrastructure CERN, Geneva, Switzerland, CH-1211
             ---
10
11
                                      Building 864 Room 1 - A03
12
13
             --Simulator:
                                      Modelsim
14
15
             --Vsn Author Date
                                                   Changes
16
17
              --0.1
                         BMT
                                      20.05.2005 Smallest ME for CPLD, deterministic
18
                                                  |Was NOT implemented|
19
             --0.2 BMT 20.05.2005 Code Violation, Par, Byte Order fixed
20
                                        |Macrocells| Pterms |Registers| Pins |FB Input|
48/288 111/1440 39/288 13/168 78/576
21
22
23
                                      27.07.2005 CV moved for > decoder integrity, Gen added
|Macrocells| Pterms |Registers| Pins |FB Input|
49/288 115/1440 41/288 13/168 71/576 SI
24
             --0.3
                         BMT
25
26
                                                                                                                SIM OK
27
             --0.3 BMT
                                      02.08.2005 Uniquely Synchronous Design, no ASYNCH resets
28
29
                                                  |Was NOT implemented|
30
31
              --0.5 BMT
                                      02.08.2005 Added a Handshake on MDOR for enabling Encoder
                                       |Macrocells| Pterms |Registers| Pins |FB Input|
53/288 123/1440 41/288 13/168 84/576
32
33
34
             ---
35
             --0.6 BMT 11.08.2005 Naming consistent with documentation
36
              --0.7
                        BMT
                                     27.10.2005 Moved package info to message_package
37
38
39
             LIBRARY IEEE;
40
             USE IEEE.STD_Logic_1164.ALL;
41
             USE IEEE.Numeric STD.ALL;
42
             LIBRARY WORK;
43
             USE WORK.manchester_package.ALL;
44
             LIBRARY UNISIM;
             USE UNISIM.vcomponents.ALL;
45
46
47
            entity complex me is
48
49
                generic ( NBYTE
                                                      : natural := 1;
                                                                                            -- Number of BYTES to transmit
50
                                  CLOCK_DIVISION : natural := 4 );
                                                                                            -- Ratio of ME to Global Clock (see below)
51
52
                port
                            ( reset : in std_ulogic;
                                                                                            -- global reset
                                                                                                                                     [IN]
53
                                  clock : in std_ulogic;
meir : in std_ulogic;
                                                                                            -- global clock
                                                                                                                                     [IN]
                                                                                            -- data in ready
54
                                                                                                                                      [IN]
                                  mei : in ByteArray (NBYTE-1 downto 0); -- data in
meor : out std_ulogic; -- data out
55
56
                                                                                                                                     [IN]
                                                                                            -- data out ready = NOT busy
                                                                                                                                     [OUT]
57
58
                                  meo : out std ulogic);
                                                                                            -- data out
                                                                                                                                      [OUT]
59
             end complex_me;
60
61
             --Notes:
62
             --CLOCK_DIVISION:
             --1. Divide CLOCK FREQUENCY (Hz) by TRANMISSION FREQUENCY (Hz) i.e. 4000000/62500 = 64
--2. CLOCK_DIVISION = log (<answer from 1.>) / log 2 i.e. log 64 / log 2 = 6
--3. Subtract Two from the result 6-1 = 4.
--Input and Output types
63
64
65
66
             --1. MEI is sampled and stored when MEIR is '1', this is a long combinational path via XOR(8) --2. DO NOT allow MEIR to enable without polling MEOR to ensure the current TX is not corrupt
67
68
69
70
             architecture synchronous of complex me is
71
72
                                                                      -- Number of Code Violation TICKS
-- Number of Preamble ME BITS
-- Number of Start ME BITS
             constant CV N
                                              : natural := 3;
73
74
             constant PREAMBLE_N
                                              : natural := 3;
             constant START N
                                              : natural := 1;
                                              : natural := (CV_N + (2*PREAMBLE_N) + (2*START_N) + (NBYTE*18));
: natural := F_LEN; -- Number of Ticks to Transmit For
              constant F_LEN
75
76
77
78
                         C_LEN : natural := F_LEN; -- Number of factors to converted to manchester
ConvertedBytes : MByteArray (NBYTE-1 downto 0); -- each mei converted to manchester
ConvertedFrame : std_logic_vector (F_LEN-1 downto 0); -- storage for the ME Frame (Wire)
FrameToSend : std_logic_vector (F_LEN-1 downto 0); -- the frame to send
                                                                                  -- Number of Ticks to Transmit For
nto 0); -- each mei converted to manchester
             constant C LEN
              signal
             signal
79
              signal
80
             signal
                         Tick : std_ulogic;
Complete : std_ulogic;
ValidStart : std_ulogic;
81
              signal
82
             signal
              signal
```

```
84
 85
               begin
                -- VALIDATE INPUT Process from Documentation
ValidStart <= Complete AND meir;</pre>
 86
 87
 88
 89
                    generate bytes : process (mei)
 90
91
                    begin
for i in NBYTE-1 downto 0 loop
 92
                        ConvertedBytes(i) <= ComplexByteToManchester(mei(i));
 93
                        end loop;
 94
95
                    end process;
 96
                    expand_user_defined_frame : process (ConvertedBytes)
                    variable vCodeV : std_logic_vector((CV_N-1 downto 0);
variable vPreamble : std_logic_vector((2*PREAMBLE_N)-1 downto 0);
variable vStart : std_logic_vector((2*START_N)-1 downto 0);
variable vPayload : std_logic_vector((18*NBYTE)-1 downto 0);
 97
 98
 99
100
101
                    begin
                    vCodeV := (others => '0');
for i in PREAMBLE_N-1 downto 0 loop
102
103
104
                         vPreamble(((2*i)+1) downto (2*i) ) := "01";
                        end loop;
for i in START_N-1 downto 0 loop
105
106
                        vStart( ((2*i)+1) downto (2*i) ) := "10";
107
108
                        end loop;
109
                        for i in NBYTE-1 downto 0 loop
vPayload( ((18*i)+17) downto (18*i) ) := ConvertedBytes((NBYTE-1) - i);
110
111
                        end loop;
112
                    ConvertedFrame <= vPayload & vStart & vPreamble & vCodeV;
113
                  end process;
114
115
                    Timer : process (clock, reset)
                   Timer : process (clock, reset)
variable vCountH : std_ulogic;
variable vCount : unsigned (CLOCK_DIVISION downto 0);
constant vCountM : unsigned (CLOCK_DIVISION downto 0) := (others => '1');
constant vCount1 : unsigned (CLOCK_DIVISION downto 0) := (0 => '1', others => '0');
116
117
118
119
120
                   begin
                        if reset = RESET_ACTIVE then
vCountH := '1';
121
122
                        123
124
125
126
127
128
                             else
129
                             vCountH := vCount(vCount'HIGH);
                             vCount := vCount - vCount1;
130
131
                             end if;
                        end if;
132
133
                    Tick <= vCount(vCount'HIGH) AND NOT vCountH;
134
                    end process;
135
136
                    Shift Register : process(clock, reset)
                    begin
    if reset = RESET_ACTIVE then
        if reset = ^ '0
137
138
                        FrameToSend <= (others => '0');
elsif rising_edge(clock) then
    if ValidStart = '1' then -- code violation added for cable connect errors
139
140
141
                             FrameToSend <= ConvertedFrame;
elsif Tick = '1' then
142
143
                            FrameToSend <= '0' & FrameToSend(FrameToSend'HIGH downto FrameToSend'LOW + 1);
144
145
                             end if;
146
                        end if:
                    end process;
147
148
               meo <= FrameToSend(FrameToSend'LOW);</pre>
149
150
                    Counter TX : process (clock, reset)
                                                                             -- suspect process here
151
152
                    begin
    if reset = RESET ACTIVE then
153
                        II reset = news normal term
TicksRemaining <= 0;
elsif rising_edge (clock) then
    if ValidStart = '1' then
</pre>
154
155
156
                             if ValidStart = '1' then
TicksRemaining <= F_LEN;
elsif Tick = '1' then
if TicksRemaining = 0 then
TicksRemaining <= 0;
else</pre>
157
158
159
160
161
                                 else
162
                                 TicksRemaining <= TicksRemaining - 1;
163
                                 end if;
164
                            end if;
                        end if;
165
                    end process;
166
```

L.2 Manchester Decoder

The Manchester decoder is matched to the encoder, this includes both transmission rate and generic sizes. A quad-byte transmission is shown below:

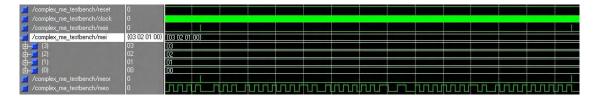


Figure L.3: Quad Byte Transmission Using the Manchester Encoder

The Manchester encoder in the User Interface is configured to send the memory contents of the CIBU in five successive transmissions of a single-byte without pausing between each frame. This transmission is as shown below.

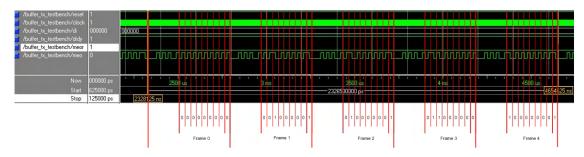


Figure L.4: Serialised Data Decoding Using the Manchester Decoder

Line 206 calls the combinational function 'ComplexManchesterToByte' which converts eighteen sampled bits into an eight bit output. This conversion also checks for the integrity of the transmitted frame at the electrical level, by verifying that each Manchester encoded bit-pair is coherent and that the parity transmitted is consistent with the decoded byte of data. This function is shown below.

```
function ComplexManchesterToByte (MD: std logic vector (17 downto 0)) return std logic vector is
-- NOTE incoming data is as shifted into MSB of a SR
                  PP0011223344556677 < With the Data Time Origin in LSB! Be Careful!
-- NOTE outgoing data is organised as follows:
  (9) is Violation (8 downto 1) is Data (0) is Parity
   constant M_LOGIC_ONE : std_logic_vector (1 downto 0) := "01"; -- Remember, it's FLIPPED!
   constant M_LOGIC_ZERO: std_logic_vector (1 downto 0) := "10";
                                                                   -- Remember, it's FLIPPED!
                    : std_logic_vector (1 downto 0);
                                                                    -- A single Manchester Bit
   variable vBit
  variable vViolation : std_ulogic;
variable vDecoded : std_logic_vector (8 downto 0);
                                                                    -- Code Violation Signal
                                                                    -- the completed Code
   begin
      vViolation := '0';
                                                       --Initially Raw Data is error free
         for i in 8 downto 0 loop
         vBit := MD( (17-(2*i)) downto (16-(2*i)) );
            case vBit is
               when M LOGIC ONE => vDecoded(i) := '1';
               when M_LOGIC_ZERO => vDecoded(i) := '0';
               when others
                               => vDecoded(i) := '0';
                                     vViolation := '1';
            end case;
         end loop;
   return vViolation & vDecoded;
end function ComplexManchesterToByte;
```

Figure L.5: ComplexManchesterToByte Function

		Complex Ma	nchester Decode	r EVEN PARITY			
			s Pterms Regi 154/1440 46				
		Devidender					
Author		Benjamin T European O	odd Irganisation for	Nuclear Rese	arch		
			ators and Beam				
			va, Switzerland				
		Building 8	64 Room 1 - A03				
Simulat	tor:	Modelsim					
Vsn	Author	Date	Changes				
	BMT		Smallest MD f				
			ells Pterms R 88 154/1440				
		02/2	.00 134/1440	40/200 13/1	00 110/5/0		
0.2	BMT	27.07.2005	CV at Start,	No clock sync	h in Frame		
		IMacroc	errs Pterms (R	egisters, Pin	s [FB Input]		
					68 87/576	SIM OK	
0.3	BMT	02.08.2005	Uniquely Sync	hronous Desig	n Flow		
		Macroc	ells Pterms R	egisters Pin	s [FB Input]		
		57/2	88 118/1440	35/288 13/1	68 96/576	SIM OK	
0.4	BMT	27.10.2005	Moved message	info to mess	age_package		
LIBRARY 1	IEEE;						
USE IEEE	.STD_Logi	c_1164.ALL; STD.ALL;					
USE IEEE	.Numeric_	STD.ALL;					
USE WORK	.manchest	er_package.	ALL;				
LIBRARY I	UNISIM;	package.					
		onents.ALL;					
	amples - 1	1.4.0					
entity co	omprex_md	15					
gener	ic (NB	YTE	: natural :=	1;	Number of By	tes to be	e received
	CL	OCK_DIVISIO	N : natural :=	4);	Ratio of ME	to Clock	(see below)
port	(set : in st	d ulogic.		Global Reset		[IN]
port		ock : in st			Global Clock		[TN]
		li : in st			Data In Seri	al	[IN]
		lo : out B	yteArray (NBYTE	-1 downto 0);	Data Out Dec	oded	[OUT]
	ma				Data Out Dec		
	md	lor : out s	td_ulogic:		Data Ready		[OUT]
	md	lor : out s	td_ulogic; td_ulogic);		Data Ready Decoder Erro		
end comp.	md md	lor : out s	td_ulogic; td_ulogic);		Data Ready		[OUT]
	md md lex_md ;	lor : out s lerr : out s	td_ulogic);		Data Ready		[OUT]
architect	md md lex_md ; ture sync	lor : out s lerr : out s chronous of	<pre>td_ulogic; td_ulogic); complex_md is</pre>		Data Ready Decoder Erro		[OUT]
architect	md md lex_md ; ture sync	lor : out s lerr : out s chronous of	complex_md is		Data Ready Decoder Erro		[OUT]
architect Notes: CLOCK_I	md md lex_md ; ture sync DIVISION:	lor : out s lerr : out s	complex_md is		Data Ready Decoder Erro	r	[OUT] [OUT]
Notes: CLOCK_I	md md lex_md ; ture sync DIVISION: ide CLOCK	lor : out s lerr : out s thronous of FREQUENCY	<pre>complex_md is (Hz) by TRANMIS</pre>	SION FREQUENC	Data Ready Decoder Erro Y (Hz) i.e. 4000	r 000/62500	[OUT] [OUT]
Notes: CLOCK_I 1. Div: 2. CLO	md md ture sync DIVISION: ide CLOCK CK_DIVISI	<pre>lor : out s lerr : out s chronous of</pre>	<pre>(Hz) by TRANMIS answer from 1.></pre>	SION FREQUENC	Data Ready Decoder Erro	r 000/62500	[OUT] [OUT]
Notes: CLOCK_I 1. Div: 2. CLO	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two	thronous of FREQUENCY ON = log (<	<pre>complex_md is (Hz) by TRANMIS</pre>	SION FREQUENC	Data Ready Decoder Erro Y (Hz) i.e. 4000	r 000/62500	[OUT] [OUT]
Notes: CLOCK 1. Div 2. CLOO 3. Sub Input a 1. MDO	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b	<pre>introduct solution introduct solution introduc</pre>	<pre>(Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is</pre>	SION FREQUENC) / log 2 i.e 'l', this is j	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com	r 000/62500 = 6	[OUT] [OUT]
architect Notes: CLOCK_1 1. Div 2. CLO 3. Sub Input 1. MDO 2. Both	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a	<pre>introduct solution introduct solution introduc</pre>	<pre>(Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is</pre>	SION FREQUENC) / log 2 i.e 'l', this is j	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2	r 000/62500 = 6	[OUT] [OUT]
archited Notes: CLOCK_1 1. Div: 2. CLOG 3. Sub 1. MDO 2. Botl Compat:	md d lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility	tor : out s lerr : out s chronous of CON = log (< o from the r it types we Registere and MDor are	<pre>(Hz) by TRANMIS (Hz) by TRANMIS answer from 1.> result 6-1 = 4. d when MDOR is cone-Shot pulse</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged.	r 000/62500 = 6	[OUT] [OUT]
archited Notes: CLOCK_1 1. Div: 2. CLOG 3. Sub1 Input 4 1. MD0 2. Bot1 Compat: 1. All	md md lex_md ; ture sync de CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant	thronous of thronous of trace of the trace	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match</pre>	SION FREQUENC) / log 2 i.e 'l', this is s, they need the ME const	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged.	r 000/62500 = 6 binationa	[OUT] [OUT]) = 64 al path XOR(
archited Notes: CLOCK_I 1. Div: 2. CLOG 3. Subj Input 4 1. MDO 2. Both Compat: 1. All 2. Ths:	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a bibility constant i decoder	tor : out s lerr : out s thronous of . FREQUENCY ON = log (< o from the r th types we Registere and MDor are .s defined b : is serious	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match ly limited in i</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence,	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited Notes: CLOCK_I 1. Div: 2. CLOG 3. Subj Input 4 1. MDO 2. Both Compat: 1. All 2. Ths:	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a bibility constant i decoder	tor : out s lerr : out s thronous of . FREQUENCY ON = log (< o from the r th types we Registere and MDor are .s defined b : is serious	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match ly limited in i</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence,	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited Notes: CLOCK_I 1. Div: 2. CLOG 3. Subj Input 4 1. MDO 2. Both Compat: 1. All 2. Ths:	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a bibility constant i decoder	tor : out s lerr : out s thronous of . FREQUENCY ON = log (< o from the r th types we Registere and MDor are .s defined b : is serious	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match ly limited in i</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence,	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited 	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N	<pre>ior : out s ierr : out s ihronous of FREQUENCY ON = log (< from the r rt types re Registere ind MDor are is serious</pre>	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match ily limited in i tural := 3; tural := 3; tural := 1;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu Nu	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited 	md md lex_md ; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N	<pre>ior : out s ierr : out s ihronous of FREQUENCY ON = log (< from the r rt types re Registere ind MDor are is serious</pre>	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse eelow must match ily limited in i tural := 3; tural := 3; tural := 1;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu Nu	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N S_LEN Tick	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY VON = log (</pre> from the r t types te Registere nd MDor are s defined b is serious ina	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse elow must match ly limited in i tural := 3; tural := 1; tural := cv_N + d_ulogic;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu Nu	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Output should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N S_LEN Tick MDRising MDRising	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY ON = log (<</pre>	<pre>(Hz) by TRANMIS answer from 1.> result 6-1 = 4. d when MDOR is cone-Shot pulse relow must match ly limited in i tural := 3; tural := 1; tural := CV_N + d_ulogic; d ulogic;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu Nu	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N SLEN Tick MDRsing StartupN	<pre>ior : out s ierr : out s ierr : out s icreation in the second secon</pre>	<pre>(Hz) by TRANMIS complex_md is (Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. d when MDOR is cone-Shot pulse relow must match ly limited in i tural := 3; tural := 3; tural := 1; tural := CV_N + d_ulogic; d_ulogic;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Start ME + 2*START_N;	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR() ; as possible
archited 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder 	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY VON = log (</pre> From the r t types re Registere md MDor are s defined b is serious	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is one-Shot pulse elow must match ly limited in i tural := 3; tural := 1; tural := CV_N + d_ulogic; d_ulogic; d_ulogic;</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const thelligence, Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/62500 = 6 binationa s compact	[OUT] [OUT]) = 64 al path XOR(: as possibl
archited Notes: CLOCK_J 1. Div. -2. CLO 3. Subb In MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder START_N PREAMBLE START_N SLEN Tick MDRising StartupN MByteAnd MRawByte	<pre>ior : out s ierr : out s ierr : out s inronous of FREQUENCY ON = log (<</pre>	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is cone-Shot pulse eelow must match ly limited in i tural := 3; tural := 3; tural := 1; tural := CV_N + d_ulogic; d_ulogic; d_ulogic; d_ulogic; yteParArray (NBYTE yteArray (NBYTE</pre>	SION FREQUENC) / log 2 i.e '1', this is s, they need the ME const ntelligence, Nu Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 ((18*NBYTE)-1 downto 0);	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a 	r 000/6250(= 6 binationa s compact lation TI ME BITS BITS	<pre>[OUT] [OUT]) = 64 al path XOR(t as possibl ICKS</pre>
archited Notes: CLOCK_J 1. Div. -2. CLO 3. Subb In MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder START_N PREAMBLE START_N SLEN Tick MDRising StartupN MByteAnd MRawByte	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY (ON = log (<</pre>	<pre>(Hz) by TRANMIS complex_md is (Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is cone-Shot pulse relow must match bly limited in i tural := 3; tural := 3; tural := 3; tural := 1; </pre>	SION FREQUENC) / log 2 i.e 'l', this is 's, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 YTE-1 downto -1 downto 0); Synchron	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Start ME 	r 000/62500 = 6 binations s compact lation TI ME BITS BITS equence	<pre>[OUT] [OUT]) = 64 al path XOR(t as possibl ICKS</pre>
archited Notes: CLOCK_J 1. Div. -2. CLO 3. Subb In MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Outpu should b h MDerr a ibility constant i decoder START_N PREAMBLE START_N SLEN Tick MDRising StartupN MByteAnd MRawByte	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY (ON = log (<</pre>	<pre>(Hz) by TRANMIS complex_md is (Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is cone-Shot pulse relow must match bly limited in i tural := 3; tural := 3; tural := 3; tural := 1; </pre>	SION FREQUENC) / log 2 i.e 'l', this is 's, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 YTE-1 downto -1 downto 0); Synchron	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Start ME 	r 000/62500 = 6 binations s compact lation TI ME BITS BITS equence	<pre>[OUT] [OUT]) = 64 al path XOR(c as possibl ICKS</pre>
archited Notes: CLOCK_J 1. Div. -2. CLO 3. Subb In MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Output should b h MDerr a bibility constant i decoder CV_N PREAMBLE START_N Tick MDRising StartupN MD MByteAnd MRawByte STATE_TY	<pre>ior : out s ierr : out s ierr : out s ihronous of FREQUENCY (ON = log (<</pre>	<pre>(Hz) by TRANMIS complex_md is (Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is cone-Shot pulse relow must match bly limited in i tural := 3; tural := 3; tural := 3; tural := 1; </pre>	SION FREQUENC) / log 2 i.e 'l', this is 's, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 YTE-1 downto -1 downto 0); Synchron	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Start ME 	r 000/62500 = 6 binations s compact lation TI ME BITS BITS equence	<pre>[OUT] [OUT]) = 64 al path XOR(c as possibl ICKS</pre>
archited Notes: CLOCK_I 1. Div 2. CLOG 3. Subbi- Input a 1. MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Output should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N S_LEN Tick MD MDRising StartupN MD MByteAnd MRawByte STATE_TY 	tor : out s lerr : out s chronous of c FREQUENCY ON = log (< o from the r t types t types e Registere and MDor are cs defined b is serious cs defined	<pre>(Hz) by TRANMIS answer from 1.> esult 6-1 = 4. d when MDOR is cone-Shot pulse elow must match ly limited in i tural := 3; tural := 3; tural := 1; d_ulogic; d_ulogic; d_ulogic; d_logic_vector yteParArray (NBYTE HRONISE, DE, UATE TYPE; ATE TYPE;</pre>	SION FREQUENC) / log 2 i.e '1', this is is s, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 YTE-1 downto 0); Synchron Wait for Integrit Current Nurex Sta	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Preamble mber of Start ME 	r 000/62500 = 6 binations s compact lation TI ME BITS BITS equence	<pre>[OUT] [OUT]) = 64 al path XOR() c as possible ICKS</pre>
archited Notes: CLOCK_I 1. Div 2. CLOG 3. Subbi- Input a 1. MDO 2. Botl Compat: 1. All 2. Ths: 	md md lex_md; ture sync DIVISION: ide CLOCK CK_DIVISI tract Two and Output should b h MDerr a ibility constant i decoder CV_N PREAMBLE START_N S_LEN Tick MD MDRising StartupN MD MByteAnd MRawByte STATE_TY 	tor : out s lerr : out s chronous of c FREQUENCY ON = log (< o from the r t types t types e Registere and MDor are cs defined b is serious cs defined	<pre>(Hz) by TRANMIS complex_md is (Hz) by TRANMIS canswer from 1.> cesult 6-1 = 4. cd when MDOR is cone-Shot pulse relow must match bly limited in i tural := 3; tural := 3; tural := 3; tural := 1; </pre>	SION FREQUENC) / log 2 i.e '1', this is is s, they need the ME const ntelligence, Nu Nu Nu 2*PREAMBLE_N ((18*NBYTE)-1 YTE-1 downto 0); Synchron Wait for Integrit Current Nurex Sta	Data Ready Decoder Erro Y (Hz) i.e. 4000 . log 64 / log 2 via a _long_ com not be re-edged. ants in order to be a mber of Code Vio mber of Preamble mber of Start ME 	r 000/62500 = 6 binations s compact lation TI ME BITS BITS equence	<pre>[OUT] [OUT]) = 64 al path XOR() c as possible ICKS</pre>

```
ParityOK : std_logic_vector(NByte - 1 downto 0);
nt OK : std_logic_vector(NByte - 1 downto 0) := (others => '1');
IntegrityOK : std_logic_vector(NByte - 1 downto 0);
AllOK : std_ulogic;
 84
               signal ParityOK
               constant OK
 85
 86
               signal
 87
               signal
 88
               begin
 89
 90
91
                -- StartupNow is '1' when the incoming data corresponds to the user defined startup
                   startupnow is '1' when the incoming data corresponds to the user defined startup
trigger_user_defined_startup_sequence : process (MD((MD'HIGH)downto((MD'HIGH-S_LEN)+1)))
variable vCodeV : std_logic_vector((CV_N-1 downto 0);
variable vStart : std_logic_vector((2*START_N)-1 downto 0);
variable vStart : std_logic_vector((s_LEN-1) downto 0);
variable vStartUpAll : std_logic_vector((s_LEN-1) downto 0);

 92
 93
 94
95
 96
 97
                   begin
                    vCodeV := (others => '0');
 98
                        for i in PREAMBLE_N-1 downto 0 loop
 99
100
                        vPreamble(((2*i)+1) downto (2*i) ) := "01";
101
                        end loop;
                        for i in START_N-1 downto 0 loop
vStart( ((2*i)+1) downto (2*i) ) := "10";
102
103
104
                         end loop;
                   vStartUpAll := vStart & vPreamble & vCodeV;
105
                        if vStartUpAll = MD((MD'HIGH)downto((MD'HIGH-S_LEN)+1)) then
StartUpNow <= '1';</pre>
106
107
108
                        else
109
                        StartupNow <= '0';
110
                        end if;
111
                   end process;
112
                   detect_edges: process (clock, reset)
variable vEdgeDet : std_logic_vector(1 downto 0);
113
114
                   begin
if reset = RESET_ACTIVE then
115
116
117
                        vEdgeDet := (others => '0');
elsif rising_edge (clock) then
118
119
                        vEdgeDet := vEdgeDet(vEdgeDet'LOW) & mdi;
120
                         end if;
121
                   MDRisingEdge <= vEdgeDet(vEdgeDet'LOW) AND NOT vEdgeDet(vEdgeDet'HIGH);
122
                   end process;
123
                 generate_tick : process (clock, reset)
124
                    genarate_tick : process (clock, reset)
variable vCountH : std_ulogic;
variable vCount : unsigned (CLOCK_DIVISION downto 0);
constant vCountM : unsigned (CLOCK_DIVISION downto 0) := (others => '1');
constant vCount1 : unsigned (CLOCK_DIVISION downto 0) := to_unsigned(1,CLOCK_DIVISION+1);--(0 => '1',
125
126
127
128
               others => '0');
129
                   begin
                        if reset = RESET_ACTIVE then
vCountH := '1';
130
131
                        132
133
134
135
                            vCountH := '1';
vCount := vCountM;
136
137
                            else
                             vCountH := vCount(vCount'HIGH);
138
                            vCount := vCount - vCount1;
end if;
139
140
141
                        end if:
142
                    Tick <= vCountH AND NOT vCount(vCount'HIGH);
143
                   end process;
144
145
                    ShiftRegister_incoming_data: process (clock, reset)--, clearregs)
146
                    begin
                        gin
if reset = RESET_ACTIVE then
MD <= (others => 'l');
elsif rising_edge (clock) then
if tick = 'l' then
147
                                                                                       -- Line goes to '1' on fault
148
149
150
151
                            MD <= mdi & MD(MD'HIGH downto MD'LOW + 1);-- new shifted into MSB of MD
end if;
152
153
                        end if;
154
                    end process;
155
               -- State Machine Processes for the data decoding
156
157
                    fsm_synchronous: process (clock, reset)
                     if reset = RESET_ACTIVE then
CS <= SYNCHPOYTER
158
                    begin
159
                        cs <= SYNCHRONISE;
160
161
                        elsif rising_edge (clock) then
162
                      cs <= ns;
163
                        end if;
                  end process;
164
165
```

```
166
                   fsm_combinational : process (cs, StartupNow, TicksLeft)
167
                  begin
                      ns <= cs;
168
                                         -- avoid latches
169
                      case cs is
170
                          when SYNCHRONISE => if StartupNow = '1' then
171
                                                      ns <= DECODE;
                                                      else
ns <= SYNCHRONISE;</pre>
172
173
174
                                                      end if;
                                                  => if TicksLeft = 0 then
175
                          when DECODE
176
                                                      ns <= EVALUATE;
177
                                                      else
                                                      ns <= DECODE;
178
179
                                                      end if;
                                                  => ns <= SYNCHRONISE;
=> ns <= SYNCHRONISE;
180
                          when EVALUATE
181
                          when others
182
                      end case;
                  end process;
183
184
                  record_ticks_left : process (clock, reset)
185
186
                  begin
if reset = RESET ACTIVE then
187
                       TicksLeft <= 18*NBYTE;
188
                                                                          -- Change here if reset is an issue
                       elsif rising edge (clock) then
189
190
                          if cs /= DECODE then
                          TicksLeft <= 18*NBYTE;
elsif tick = '1' then
if TicksLeft = 0 then
191
192
193
                                                                          -- MODELSIM compatibility
                              TicksLeft <= 18*NBYTE;
                                                                          -- MODELSIM compatibility
194
                                                                          -- MODELSIM compatibility
195
                              else
196
                              TicksLeft <= TicksLeft - 1;
                                                                          -- MODELSIM compatibility
197
                              end if;
198
                           end if;
199
                      end if;
200
                  end process;
201
              -- parse_out_manchesterdata : process (MD)
202
203
              -- begin
                      parse out manchesterdata : for i in 0 to NBYTE-1 generate
204
205
                      MRawBytePar(i) <= MD((MD'HIGH - i*18) downto (MD'HIGH - i*18 - 17));
MByteAndPar(i) <= ComplexManchesterToByte(MRawBytePar(i));</pre>
206
                      CalcParity(i) <= Complex AndPar(i)(8) XOR MByteAndPar(i)(7) XOR MByteAndPar(i)(6) XOR
MByteAndPar(i)(5) XOR MByteAndPar(i)(4) XOR MByteAndPar(i)(3) XOR
207
208
                      MByteAndPar(i)(2) XOR MByteAndPar(i)(1);
mdo(i) <= MByteAndPar(i)(8 downto 1);
ParityOK(i) <= CalcParity(i) XNOR MByteAndPar(i)(0);
IntegrityOK(i) <= NOT MByteAndPar(i)(9);</pre>
209
210
211
212
                       end generate;
213
              -- end process;
214
215
                  parse_out_ok : process (IntegrityOK, ParityOK)
216
217
                   variable vAllTestsPassed
                                                      : std_ulogic;
218
                  begin
219
                   vAllTestsPassed := '1';
                      for i in 0 to NBYTE-1 loop
    if IntegrityOK(i) = '0' OR ParityOK(i) = '0' then
    vAllTestsPassed := '0';
220
221
222
223
                          end if;
224
                       end loop;
225
                   AllOK <= vAllTestsPassed;
226
                   end process;
227
228
                   drive_outputs: process (clock, reset)
229
                  begin
                      if reset = RESET_ACTIVE then
mderr <= '0';
mdor <= '0';
elsif rising_edge (clock) the</pre>
230
231
232
                                        edge (clock) then
233
                         if cs = EVALUATE then
    if ALLOK = '1' then
    mdor <= '1';</pre>
234
235
236
                              mderr <= '0';</pre>
237
                              else
mdor <= '0';</pre>
238
239
240
                              mderr <= '1';</pre>
                              end if;
241
                          else
242
                              mdor <= '0';
243
244
                              mderr <= '0';</pre>
245
                          end if;
246
                      end if;
                  end process;
247
248
```

L.2. MANCHESTER DECODER

249 end synchronous;

Appendix M

Display Boards

The Manager Display has around 70 LEDs, arranged as shown below

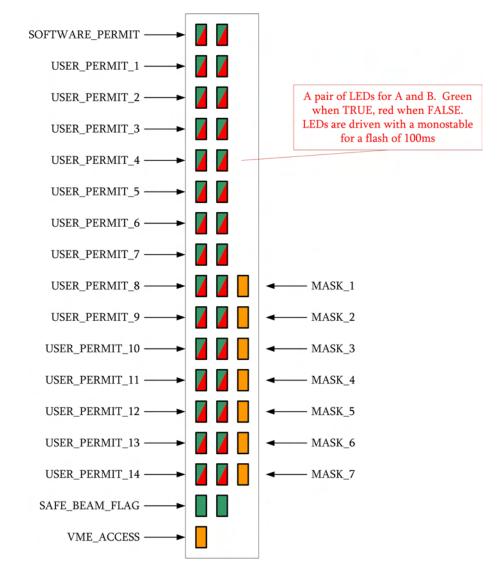


Figure M.1: The Manager Display (CIBMD)

The Test & Monitor Display has around 140 LEDs, arranged as shown below

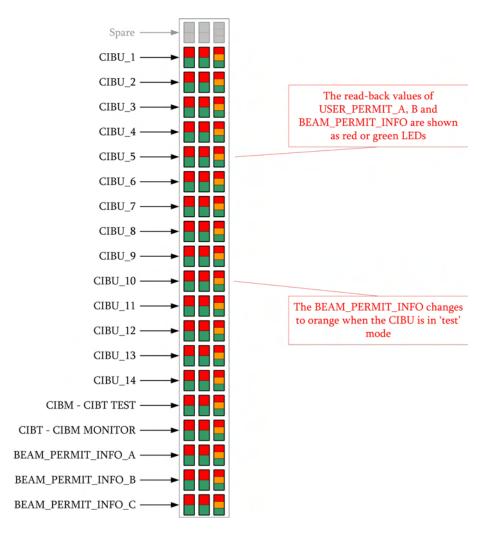


Figure M.2: The Test Display (CIBTD)

Appendix N

Photographs of Components

This appendix contains detailed photographs of various components of the Beam Interlock System.

N.1 CIBM Manager & CIBT Test and Monitor Boards

Figure N.1: Front View of the CIBM (left) and CIBT (right) Boards

The CIBM and CIBT are both 6U standard VME boards, notice that the CIBO are fixed onto the wiring side of the CIBM board.

Figure N.2: Rear View of the CIBM (left) and CIBT (right) Boards

The CIBMD and CIBTD fix onto the component side of the PCBs. This arrangement requires asymmetrical front panels.

Figure N.3: Plan View of the CIBM

Figure N.4: Plan View of the CIBT

The CIBM matrices sit in the upper right hand corner of the CIBM PCB, an optical transceiver (CIBO) mounted directly behind each one.

N.2 CIBMD Manager Display & CIBTD Test and Monitor Display Boards

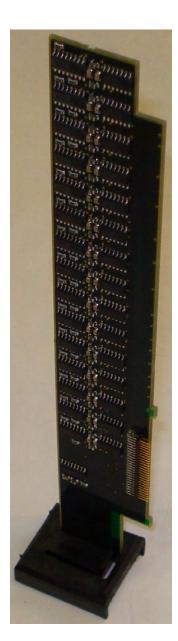


Figure N.6: Rear View of the CIBMD

Figure N.5: Front View of the CIBMD

The CIBMD has over 60 LEDs that are triggered using LS123 devices configured as $\approx 100ms$ monostables.

Figure N.7: Front View of the CIBTD

Figure N.8: Rear View of the CIBTD

The CIBMD has 140 LEDs that are each driven by a simple transistor. The uppermost row shows debug information for testing and is not mounted in the final series.

N.3 CIBO Optical Transceiver

Figure N.9: Front View of the CIBO Optical Transceiver

The transmitter and receiver are discrete blocks referred to as 'sugarcubes' for their resemblance.

N.4 CIBP Patch Panels

Figure N.10: Front View of the LHC Patch Panel CIBPL

Figure N.11: Rear View of the LHC Patch Panel CIBPL

Ground strips are are clearly visible on the rear of the CIBP, this gives a low impedance connection through the chassis to the patch-panel. The panels in the Beam Interlock Controller use specially treated metalwork that is electrically conductive.

Figure N.12: Assembled LHC Chassis Rear View

The LHC chassis has 20 Burndy connectors for connections to User Interfaces. The 21st connector, which is significantly larger than the others, serves for all the special connections from the Beam Interlock Controller.

Figure N.13: Assembled SPS Chassis Rear View

The SPS chassis has 28 connectors for User Interfaces, in this case the VME chassis special connections are given by six small four-pin Burndy connectors. Each is dedicated to a single pair of differential output signals.

N.5 CIBE Extender Boards

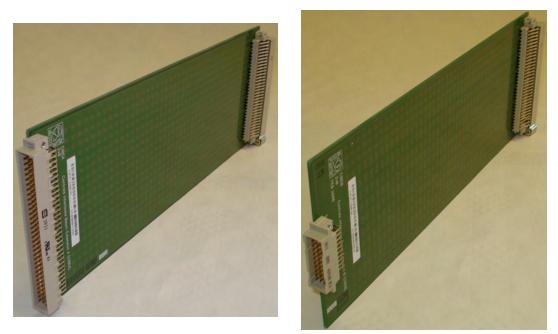


Figure N.14: Front View of the Type-A Extender CIBEA Figure N.15: Front View of the Type-B Extender CIBEB

The extension boards slide into the rear of the VME chassis connecting to the pins of the 'P2' connector. These interconnect a patch panel with the boards installed in the front of the VME chassis.

N.6 CIBU User Interface

Figure N.16: Front View of the Single User Interface CIBUS

Figure N.17: Rear View of the Single User Interface CIBUS

The CIBUS provides connections for a single link to the Beam Interlock Controller, shown on the right hand side above

Figure N.18: Front View of the Double User Interface CIBUD

Figure N.19: Rear View of the Double User Interface CIBUD

The CIBUD provides a pair of connections for the LHC User Systems that interlocks the LHC beams independently.

Figure N.20: CIBUD Pictured with the CIBU PCB (unmounted)

Figure N.21: CIBUD PCB Without Metalwork

N.7 CIBD DC Power Supply

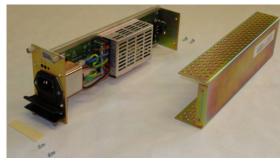


Figure N.23: CIBUD PCB Without Metalwork

Figure N.22: Front View of the CIBD

The CIBD power supply is an encased commercial PSU that has been re-enclosed in an conductive chassis and fitted with a power supply filter. This double enclosure and filtering provides very good EMC characteristics.

N.8 TT40 Installation Example

Figure N.24: Front View of the TT40 Beam Interlock Controller

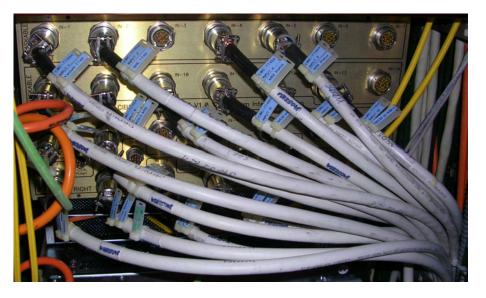


Figure N.25: Rear View of the TT40 Beam Interlock Controller

The TT40 Beam Interlock Controllers are installed in an SPS type chassis. The rear view shows that a high percentage of the channels are used.

Appendix O

Assembling the Rear Section of a VME Chassis

The assembly of the rear section of a VME chassis used as a Beam Interlock Controller is relatively simple, it's illustrated in the following diagrams.

Figure O.1: Rear of an Empty VME Chassis Equipped with a Card Cage

Figure O.1 shows the rear of a VME chassis, with the added card cage. The runners are only required to be installed in slots which are directly behind those that are occupied by boards in the Beam Interlock Controller:

- Slot 4, Beam-1 or LEFT manager board
- Slot 7, Beam-1 or LEFT test and monitor board
- Slot 10, Beam-2 or RIGHT test and monitor board
- Slot 13, Beam-2 or RIGHT manager board
- Slot 16, Reserved for future use
- Slot 19, Safe Machine Parameters Receiver board

Slots 4, 7, 10 and 13 all require CIBEA extension boards, slots 16 and 19 need CIBEB type extension boards. Figure O.2 on the following page shows the chassis with six extenders in the runners.

Figure O.2: Rear View Showing Card Cage with Extenders on Runners

Figure O.3: Alignment of CIBPx with VME Chassis

The extenders are mated with the VME bus, the the CIBP is aligned as shown in Figure O.3, then connected. Countersunk screws fasten the CIBP to the VME chassis using standard fixing holes. The final chassis looks like Figure N.12 on page 236 if it's an LHC type or N.13 on page 236 if it's an SPS type.

List of Figures

1.1	Sub-Atomic Structure [2]	3
1.2	Particles of the Standard Model	3
1.3	CMS Higgs Decay [4]	4
1.4	Unification of the Forces [2]	7
1.5	The 27km LHC Accelerator with SPS [Not to Scale] [23]	9
1.6	LHC Dipole Magnet Installed in the Machine [24]	10
1.7	The ATLAS Experiment $[25]$	11
1.8	The CMS Experiment [26]	11
1.9	The ALICE Experiment [27]	11
1.10	The LHC-b Detector $[28]$	11
1.10	Simulation of Higgs boson decay in ATLAS [29]	11
$1.11 \\ 1.12$	CERN Accelerator Complex, Dimensions and Operational Year Marked [30]	$11 \\ 12$
1.12	Nominal LHC Magnetic Cycle - adapted from [31]	13
1.13	The SPS, shown with LHC transfer lines TI2 and TI8 [32]	13
$1.14 \\ 1.15$	Neutrinos Sent from CERN, Switzerland to Gran Sasso, Italy [33]	14
$1.15 \\ 1.16$		$14 \\ 14$
1.10	SPS is the Source of Neutrinos for the CNGS Experiment [34]	14
2.1	Stored Energy of the LHC and other Accelerators [41]	17
2.1 2.2	Beam Intensity and Main Dipole Current in an LHC Cycle	18
2.2 2.3	Layered Metal Plates	19
		19 19
2.4	Damaged Plate	
2.5	Destroyed SPS Vacuum Chamber	19
2.6	5mm Groove in HERA Collimator	20
2.7	Damage to a Tevatron Collimator	20
2.8	Accelerator Structures with Beam Based Protection in the CERN Complex	20
2.9	Evolution of the LHC Machine Protection System 2000-2006	21
2.10	Simplified Architecture of the Beam Interlock System	22
2.11	Response Times of Elements of the Machine Protection System	24
2.12	Cross Redundancy Following a Failure, adapted from [68]	28
2.13	Specified Probability of Beam Interlock System Failure Modes	29
9.1	Descende Development Destatuting and Installation Schedule of the DIS	32
$3.1 \\ 3.2$	Research, Development, Prototyping and Installation Schedule of the BIS A Breakdown of the MPS Reaction Time	$\frac{52}{32}$
3.3	Beam-1, Beam-2 and Both-Beam Interface to the Beam Interlock System	33
3.4		34
3.5	Generator and Detector Principle for the BEAM_PERMIT signal	34
3.6	Beam Permit Loops for LHC Beam-2	35
3.7	Simple Block Diagram of a pair of LHC Beam Interlock Controllers	36
3.8	Fail Safe RS485 Link Implementation	38
3.9	Redundant Critical Paths and Non-Critical BEAM_PERMIT_INFO	39
3.10	Simple Block Diagram of the User Interface Hardware	40
3.11	The Two Variants of the User Interface	40
4.1		
4.1	Part of the CERN Accelerator Complex and Associated Beam Interlock Systems .	44
4.2	Feedback of Beam Permit from Destination to Source Equipment	44
4.3	Ring Versus Tree Architectures of the Beam Interlock System	45
4.4	SPS BA4 Extraction to CNGS or LHC	45
4.5	The Electrical Architecture of the Beam Interlock System	46

1.0		10
4.6	The Beam Permit Closed-Loop Principle	49
4.7	LHC Beam-2 Permit Loops	49
4.8	Permit Loops of the SPS	50
4.9	The Beam Permit Open-Loop Principle	50
4.10	Permit Loops of the Injection and Extraction Systems	51
4.11	Creating and Maintaining the Beam Permit Loop 10MHz with 50% Duty Cycle .	52
	· · ·	
4.12	Worst Case Interconnections from Controller to Controller	52
4.13	Block Diagram of the Optical Transceiver	53
4.14	Detailed Block Diagram of the CIBO Optical Transceiver	54
4.15	Testing the Effect of Attenuation on the 10MHz Waveform	55
4.16	Typical Resulting Histogram for the Beam Permit Loop Period Observations	55
4.17	Results from the Frequency Observation Experiments	56
4.18	Results of Convolution of Period Errors for Seventeen Retransmissions	57
4.19	Manifestations of Bit Errors	57
4.20	Experiment Setup to Determine the Bit Error Rate	58
4.21	Bit Error Rate as a function of Signal to Noise Ratio	58
4.22	Counting the Edges of the Beam Permit Loop Signal During a Sampling Window	60
4.23	Beam Permit Loops with FAST and SLOW Detectors	61
4.24	Detailed Diagram of the Beam Permit Loop Frequency Generator	61
4.25	Finite State Machine for the Arming of the Beam Permit Loop	62
4.26	Automatic Simultaneous Disarm of Both Beam Permit Loops in the LHC	62
4.27	Implementation of the Detector Circuits in the BT Systems, with Tertiary Trigger	63
4.28	Using the Tertiary Permit	63
4.29	Creating BEAM_PERMIT_INFO for User Systems	65
4.30	A Single LHC VME Chassis Housing Both Beam-1 and Beam-2 BICs	66 67
4.31	Signal Routing through the LHC Patch-Panel (CIBPL) and Extension Cards	67
4.32	Signal Routing through the SPS Patch-Panel (CIBPS) and Extension Cards	67
4.33	USER_PERMIT to Beam Permit Loop Using the LHC Patch-Panel	68
4.34	USER_PERMIT to Beam Permit Loop Using the SPS Patch-Panel	68
4.35	BEAM_PERMIT to LOCAL_BEAM_PERMIT Using the LHC Patch-Panel	69
4.36	BEAM_PERMIT to LOCAL_BEAM_PERMIT Using the SPS Patch-Panel	69
4.37	TEST and MONITOR Using the LHC Patch-Panel	70
4.38	TEST and MONITOR Using the SPS Patch-Panel	70
4.39	Block Diagram of the Manager Board with Matrix CPLDs and Monitor FPGA	72
4.40	Routing of the Permit Signals in the Manager	72^{-12}
4.41	Routing of the Safe Beam Flag Signals in the CIBM	73
4.42	Routing of the Latch Signals in the CIBM	74
4.43	Matrix Electrical Block Diagram	75
4.44	An Example of Fail Safe Routing in an XC95288XL	76
4.45	Six Stages Inside the Matrix CPLD	76
4.46	Block Diagram of CIBM Matrix Functionality	77
4.47	Simple AND Gate, with False Frequency Propagation	79
4.48	Input and Outputs of the CIBM Monitor	81
4.49	Basic Block Diagram of the Monitor FPGA Internal Architecture	82
4.50	Basic Block Diagram of the CIBM Status Memory	82
4.51	Frequency Detection and Monitoring Block Inside the CIBM Monitor	83
4.52	Driving the BEAM_PERMIT_INFO signals	84
4.53	Block Diagram of the CIBT Status Memory	85
4.54	Dual Redundant TEST and MONITOR Links Between the CIBM and CIBT \ldots .	85
4.55	Block Diagram of the History Buffer	85
4.56	Communication Link Parameters for CIBT Channels	87
4.57	Expanded Block Diagram of the CIBT	87
4.58	Transmission Through the CIBT	88
4.59	Single Byte Manchester Encoded Frame	88
4.60	Single Byte Manchester Encoded Frame	88
4.61	Manchester Encoder Block Diagram	89
4.62	Manchester Decoder Block Diagram	89
4.63	Implementation of the CIBT BEAM_PERMIT_INFO Circuits	90
4.64	Data Transmission Paths for TEST and MONITOR Data	92
4.65	Block Diagram of the User Interface (CIBU)	93

4.66	USER_PERMIT Current Regulation in the CIBU
4.67	USER_PERMIT Current Loop to Differential Conversion in the CIBU 94
4.68	BEAM_PERMIT_INFO Differential to Current Loop Conversion in the CIBU 95
4.69	TEST and MONITOR Channel Implementation in the CIBU 95
4.70	External and Internal Sources of MONITOR Data
4.71	CIBU CPLD Internal Architecture
4.72	CIBU Front Panel LEDs
4.73	USER_PERMIT Circuit with TEST and MONITOR in the CIBU 97
4.74	BEAN_PERMIT_INFO Circuit with TEST and MONITOR in the CIBU 98
4.75	Power Supply Circuits with MONITOR in the CIBU
4.76	Single and Double User Interfaces, CIBUS and CIBUD
4.77	Extending the CIBU to Controller Link Length
4.78	Three Types of Cabled Links at the System Level 102
4.79	Typical Board to Board Link at the Controller Level
4.80	Typical On-Board Link at the Controller Level
4.81	Typical Active PCB Cross-Section
4.82	Typical Interconnecting PCB Cross-Section
4.83	Balanced Differential Signalling, Shields and Ground
4.84	Recommended User System to User Interface Cable
4.85	User Interface to Controller Cable
4.86	EMC Testing of the VME Power Supply
4.87	Development of the System Dependability to Meet Operational Requirements 111
4.88	Diagnosis of Stand-Alone Controller Operation
4.89	Diagnosis of Controller and CIBU Operation
4.90	Diagnosis of Slave-Controller to Master-Controller Link
4.91	Diagnosis of an Extended Controller to User Interface Link
4.92	Testing the Beam Interlock System
4.92 4.93	Test and Commission of Beam Interlock System
4.93 4.94	CERN-wide Supervision
4.94 4.95	Architectural View of the LHC BIS Supervision
$4.95 \\ 4.96$	Bar Graph View of the BA4 Extraction BIS Supervision
	Controller Level Simple Supervision
4.97	
4.98	Controller Level Floating Bar-Graph
4.99	Specialist Supervision Beam Interlock Controllers
4.100	Specialist Supervision of the Beam Permit Loops
4.101	Specialist Test Screens at the Controller Level
4.102	Specialist Test Screens at the System Level
5.1	TRUE to FALSE
$5.1 \\ 5.2$	FALSE to TRUE 120 128 128
$5.2 \\ 5.3$	USER_PERMIT FALSE $\geq 2\mu s$
$5.3 \\ 5.4$	USER_PERMIT FALSE $\leq 2\mu s$
$5.4 \\ 5.5$	Monitoring of the CIBU via the CIBT and Visual Basic $\dots \dots \dots$
5.6	User Interface \rightarrow Controller \rightarrow Master
$5.0 \\ 5.7$	Reponse Time of the Master-Slave Links $\dots \dots \dots$
$5.7 \\ 5.8$	Simple Three Controller Prototype Beam Permit Loop
	- •
5.9 5.10	$CIBG_{OUT} \text{ vs } BIC_1 \dots \dots$
5.10	001 -
5.11	$CIBG_{OUT}$ vs BIC_3
5.12	$CIBG_{OUT}$ vs $CIBG_{IN}$
5.13	Beam Interlock Installation in SPS, 2006
5.14	Beam Permit Loop and Controller Installation in SPS, 2006
5.15	Overview Supervision Screen Prototype, SPS 2006
5.16	Software Interlocking in SPS, 2006
5.17	Controller Supervision Screen Prototype, SPS 2006
5.18	Specialist Supervision Screen Prototype, SPS 2006
5.19	CNGS and TI8 Beam Interlock System, 2006
5.20	CNGS Controller Hierarchy, 2006
E 01	
$5.21 \\ 5.22$	Magnets and Equipment Around the Extraction Region137Normal SPS Closed Orbit138

$\begin{array}{c} 5.23\\ 5.24\\ 5.25\\ 5.26\\ 5.27\\ 5.28\\ 5.29\\ 5.30\\ 5.31\\ 5.32\\ 5.33\\ 5.34\\ 5.35\\ 5.36\\ 5.37\\ 5.38\end{array}$	SPS Bumped Orbit138SPS Beam Extraction138Set-up of the Current-Change Monitor Tests139Bar Graph Supervision Screen Example from CNGS Extraction, 2006140Interpreted History Buffer140BA4 Rack141Rear of SPS BIC BA4141Rear of TT40 BICs141Rear of TT41 BICs141Predicted Worst Case Response Time for the Beam Interlock System (to scale)142Proposed Integration of the Software Interlock System144DC versus Frequency Based Operation for the Beam Permit Loops144Upgrade to the CIBO Transceiver145Proposed Upgrade for the Optical Switching Circuit145Pinging the Beam Permit Loops to Check Delay146Required Implementation of the Master BIC for 2007146
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12	Current Loop Transmission Circuit151Optically Isolated RS485 Transmission Circuit151RS485 Transmission Circuit151FALSE to TRUE Transmission Using Current Loops152TRUE to FALSE Transmission Using Current Loops153FALSE to TRUE Transmission Current Loop Line Voltages153TRUE to FALSE Transmission Using Isolated RS485154TRUE to FALSE Transmission Using Isolated RS485154TRUE to FALSE Transmission Using Isolated RS485154FALSE to TRUE Transmission Using Isolated RS485155TRUE to FALSE Transmission Using RS485155TRUE to FALSE Transmission Using RS485155Example of RS485 Resistance to External Perturbation156
B.1 B.2 B.3 B.4 B.5	30cm RS485 Delay 157 315m RS485 Delay 157 615m RS485 Delay 158 915m RS485 Delay 158 1215m RS485 Delay 158
D.1 D.2	MONITOR Data Transmission from User Interfaces to the Manager
E.1 E.2	Connector and Socket Coding for the SPS and Transfer Line Systems
F.1 F.2 F.3 F.4 F.5	User System to CIBU cable, with a Single Pig-Tail Shield Connection171User System to CIBU cable, with a Pair of Pig-Tail Shield Connections172User System to CIBU Cable as Recommended172User Interface to Controller Cable173EMC Testing of the VME Power Supply174
G.1 G.2 G.3 G.4	Basic USER_PERMIT Current Loop Implementation176Basic BEAM_PERMIT_INFO Current Loop Implementation176Safe Beam Flag Transmission within an LHC Patch Panel (CIBPL)178Safe Beam Flag Transmission within an SPS Patch Panel (CIBPS)178
I.1 I.2 I.3	Implementation of the CIBT BEAM_PERMIT_INFO Circuits 199 Implementation of BEAM_PERMIT_INFO in the LHC 200 Implementation of BEAM_PERMIT_INFO in the SPS 200
L.1 L.2 L.3 L.4 L.5	Single Byte Transmission Using the Manchester Encoder 219 ComplexByteToManchester Function 219 Quad Byte Transmission Using the Manchester Encoder 223 Serialised Data Decoding Using the Manchester Decoder 223 ComplexManchesterToByte Function 223

M.1	The Manager Display (CIBMD)	229
M.2	The Test Display (CIBTD)	
N.1	Front View of the CIBM (left) and CIBT (right) Boards	231
N.2	Rear View of the CIBM (left) and CIBT (right) Boards	232
N.3	Plan View of the CIBM	232
N.4	Plan View of the CIBT	232
N.5	Front View of the CIBMD	233
N.6	Rear View of the CIBMD	233
N.7	Front View of the CIBTD	234
N.8	Rear View of the CIBTD	234
N.9	Front View of the CIBO Optical Transceiver	235
N.10	Front View of the LHC Patch Panel CIBPL	235
N.11	Rear View of the LHC Patch Panel CIBPL	235
N.12	Assembled LHC Chassis Rear View	236
N.13	Assembled SPS Chassis Rear View	236
N.14	Front View of the Type-A Extender CIBEA	237
N.15	Front View of the Type-B Extender CIBEB	237
N.16	Front View of the Single User Interface CIBUS	237
N.17	Rear View of the Single User Interface CIBUS	238
N.18	Front View of the Double User Interface CIBUD	238
N.19	Rear View of the Double User Interface CIBUD	238
N.20	CIBUD Pictured with the CIBU PCB (unmounted)	239
N.21	CIBUD PCB Without Metalwork	239
N.22	Front View of the CIBD	239
N.23	CIBUD PCB Without Metalwork	239
N.24	Front View of the TT40 Beam Interlock Controller	240
N.25	Rear View of the TT40 Beam Interlock Controller	240
0.1	Rear of an Empty VME Chassis Equipped with a Card Cage	241
O.2	Rear View Showing Card Cage with Extenders on Runners	242
O.3	Alignment of CIBPx with VME Chassis	242

List of Tables

$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6$	The K-Mesons / Kaons Standard Model Particles and their Superpartners Standard Model Particles and their Superpartners Standard Model Particles and their Superpartners Bosonic String and Superstring Theories Past, Present, Future and Hypothetical Colliders [20] Past, Present, Future and Hypothetical Colliders [20] Past, Present, Future and Hypothetical Colliders [20] A Brief History of CERN [21] Past, Present, Past, Past	$5 \\ 6 \\ 7 \\ 8 \\ 15$
$2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6$	Quench and Damage Levels for the LHC Machine [43]	18 19 25 26 27 28
3.1 3.2 3.3	RX_FAULT and RX of the MAX3440E Transceiver [84]	31 38 39
$\begin{array}{c} 4.12 \\ 4.13 \\ 4.14 \\ 4.15 \\ 4.16 \\ 4.17 \\ 4.18 \\ 4.19 \end{array}$	BEAM_PERMIT used by Beam Transfer Systems in the CERN Accelerator ComplexComparison of the Ring and Tree Beam Permit Loop ArchitecturesTabulating the Losses for the Optical Power BudgetComparison of LED and LASER Diode Technology [95]Electrical Characteristics of the ELED Based Optical TransmitterInterpretation of the Period Sigma Error ResultsProbabilities of Glitch Occurence for sampling Windows from 1 to $6\mu s$ Mean Time Between Glitch Occurences for sampling Windows from 1 to $6\mu s$ Specifying the FAST Detection ParametersSpecifying the SLOW Detection ParametersDeriving BEAM_PERMIT_INFO from BEAM_PERMITBreak-Down of Connections to the LHC Patch-PanelPolarities and Failure Modes of the CIBM Critical SignalsMapping a MASK to a USER_PERMITDecoding the Source of the Safe Beam FlagWalid Values of the Upper Nibble of the VERSION BusCONFIGURATION of the Expected CIBM Matrix Type by Soldered Resistors	$\begin{array}{r} 45\\ 48\\ 51\\ 53\\ 53\\ 54\\ 59\\ 60\\ 60\\ 61\\ 65\\ 74\\ 78\\ 80\\ 80\\ 80\\ \end{array}$
$\begin{array}{c} 4.20 \\ 4.21 \\ 4.22 \\ 4.23 \end{array}$	Define the Monitor FPGA Base Address	83 88 90 93
$\begin{array}{c} 4.25 \\ 4.26 \\ 4.27 \\ 4.28 \end{array}$	Converting TEST Data into Signals Within the CIBU	94 96 99 .02 .05
	*	.00

$\begin{array}{c} 4.32\\ 4.33\end{array}$	EMC Test Results of Circuit in Figure 4.84 on page 107	107 110 110 111
$5.1 \\ 5.2 \\ 5.3 \\ 5.4$	Time Delay of the CIBU circuits for a 5V User System	128 131 133 133
A.1 A.2 A.3	Current Loop Observations	153 154 156
B.1	NE12 Cable Delay Measurements	158
C.1	List of LHC User Systems and Connections to the Beam Interlock System (July 2007)	160
D.1 D.2 D.3 D.4 D.5 D.6 D.7	Different Types of Records in the History Buffer	$ \begin{array}{r} 161 \\ 163 \\ 164 \\ 165 \\ 168 \\ 168 \\ 168 \\ 168 \\ \end{array} $
E.1 E.2 E.3 E.4	Socket Coding for the LHC Patch-Panel (CIBPL)	169 169 169 169
F.1 F.2 F.3 F.4 F.5 F.6	EMC Test Results of Circuit in Figure F.1 on page 171	171 172 172 173 174 174
H.1 H.2	Sub-System Probability of Failure for the Whole of LHC During a Ten-Hour Mission Double User Interface Hourly Probability of Failure	181 181
I.1	Majority Voter Truth Table	201

Bibliography

- [1] American Physical Society. The American Physical Society Presents "A Century of Physics", post 1995.
 http://timeline.aps.org/APS/Timeline/.
- [2] ATLAS. ATLAS Physics eTour Quarks and the scale of things, 2005. http://www.atlas.ch/etours_physics/etours_physics05.html.
- [3] P. Higgs. Broken symmetries, massless particles and gauge fields. In *Physics Letters, Volume 12, Issue 2, pages 132-133*, 15 September 1964. http://cdsweb.cern.ch/search.py?recid=641590&ln=en.
- [4] CERN. CERN-EX-9710002 Simulation of Higgs decay in the CMS detector, October 1987. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-ex/9710002_10.jpeg.
- [5] R. Cashmore. The Need to Understand Mass Department of Physics, OXON, 1993. http://hepwww.ph.qmw.ac.uk/epp/higgs2.html.
- [6] D Castelvecchi. What is direct CP violation?, unknown. http://www2.slac.stanford.edu/tip/special/cp.htm.
- [7] CERN. Supersymmetry physics on (and off) the brane. In CERN Courier, Volume 40, Number 10, December 2000. http://www.cerncourier.com/main/article/40/10/19.
- [8] Various. Online encyclopedia, 1995-date. http://www.wikipedia.org/.
- [9] CERN. "Is particle research useful?". CERN public web-pages, 2006. http://public.web.cern.ch/public/.
- [10] SLAC Design Study Group. The Stanford Linear Collider SLC Website, 2003. http://www2.slac.stanford.edu/vvc/experiments/slc.html.
- [11] S. Myers. The LEP collider from design through to approval and commissioning. In *The John Adams Memorial Lecture*, 26 November 1990. http://sl-div.web.cern.ch/sl-div/history/lep_doc.html.
- [12] KEK. The KEKB Design Report, 1999. http://www-acc.kek.jp/KEKB/publication/KEKB_design_report/KEKB%20Design%20Report.html.
- [13] J. Seeman et al. Status report on PEP-II performance. In Proceedings from EPAC'00, Vienna, Austria, 26-30 June 2000. http://accelconf.web.cern.ch/AccelConf/e00/PAPERS/MOXE03.pdf.
- [14] G. H. Hoffstaetter. Future possibilities for HERA. In Proceedings from EPAC'00, Vienna, Austria, 26-30 June 2000. http://accelconf.web.cern.ch/AccelConf/e00/PAPERS/M0ZE04.pdf.
- [15] E. Clements. Twenty years of physics and technology achievements. In *FermiNews Number* 15, November 2003. http://www.fnal.gov/pub/ferminews/ferminews03-11-01/p3.html.
- [16] CERN. The LHC Design Report Volume 1, 1994. https://edms.cern.ch/file/445829/4/Vol_1_Chapter_1.pdf.

- [17] NRC. Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics, page 62. NRC, 2006.
 http://www.nap.edu/catalog/11641.html.
- [18] F. Tecker. Highlights from CERN: The CLIC Study for a future e⁺e⁻ Linear Collider, 8 September 2005. http://clic-study.web.cern.ch/CLIC-Study/Presentations/20050904.pdf.
- [19] VLHC Design Study Group. Design Study for a Staged Very Large Hadron Collider, 4 June 2001. http://tdserver1.fnal.gov/tddoc/DesignStudyReport/upload/PDF/Chap01_final_010604.pdf.
- [20] T. Lesiak. Lecture V: Physics of Elementary Particles, 12 January 2006. http://chall.ifj.edu.pl/~lesiak/lect05_accel.pdf.
- [21] CERN Scientific Information Service Archive. Chronologie du CERN, 2005. http://library.cern.ch/archives/chrono/chrono_2002_cern.php.
- [22] CERN. Organisations Founding Convention, 1954. http://public.web.cern.ch/public/Content/Chapters/AboutCERN/WhatIsCERN/CERNName/ CERNName-en.html.
- [23] Jean-Luc Caron. LHC-PHO-1997-059 LHC Layout, September 1997. http: //doc.cern.ch//archive/electronic/cern/others/PHO/photo-lhc//lhc-pho-1997-059.jpg.
- [24] M. Brice and C. Marcelloni. CERN-EX-0606036 View of the LHC tunnel with worker..., 21 June 2006. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-ex/0606036_01.jpg.
- [25] ATLAS Collaboration. ATLAS Detector Photos, ATLAS SE (labelled version), circa 2000. http://atlas.ch/atlas_photos/fulldetector/fulldetector.html.
- [26] CERN AC. CERN-DI-9803027 Layout of CMS detector, a proposed experiment for the LHC, March 1998. http://doc.cern.ch//archive/electronic/cern/others/PHO/photo-di/9803027.jpeg.
- [27] Vittorio Frigo. LHC-PHO-1997-206 ALICE Detector, March 1997. http: //doc.cern.ch//archive/electronic/cern/others/PHO/photo-lhc//lhc-pho-1997-206.jpg.
- [28] Jean-Luc Caron. LHC-PHO-1998-307 LHC-B detector with English & French captions, March 1998. http: //doc.cern.ch//archive/electronic/cern/others/PHO/photo-lhc//lhc-pho-1998-307.jpg.
- [29] CERN PhotoLab. CERN-DI-2506025 Simulation by the ATLAS experiment of the decay of a Higgs boson..., June 1995. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-di/9506025.jpeg.
- [30] C. Vanoli. CERN-DI-0606052 Accelerators [sic] complex of CERN, 30 June 2006. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-di/0606052.pdf.
- [31] O. Brüning et al. The nominal operational cycle of the LHC with beam (version 1). In LHC Project Note 313, CERN, 25 February 2003. http://doc.cern.ch//archive/electronic/cern/others/LHC/Note/project-note-313.pdf.
- [32] Laurent Guiraud. CERN-DI-0108001 Plan which shows the LHC and SPS accelerators..., 6 August 2001. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-di/0108001_01.jpg.
- [33] CERN Council. The European Strategy for Particle Physics. CERN, 2006. http://council-strategygroup.web.cern.ch/council-strategygroup/Strategy_Brochure.pdf.
- [34] Jean-Luc Caron. CERN-DI-0108003 Neutrinos for the CNGS project will be produced by a special target and decay tunnel..., 8 August 2001. http://doc.cern.ch//archive/electronic/cern/others/PH0/photo-di/0108003_01.jpg.

- [35] CERN. LHC Cost and Schedule Review Committee Report, 15 December 2003. http://user.web.cern.ch/user/LHCCost/2003-12-15/CostScheduleReview2.pdf.
- [36] CERN. ATLAS Technical Proposal for a General-Purpose pp Experiment at the Large Hadron Collider at CERN, 15 December 1994. http://atlas.web.cern.ch/Atlas/TP/NEW/HTML/tp9new/tp9.html.
- [37] CERN. CMS Technical Proposal.
- [38] CERN. ALICE Technical Proposal for A Large Ion Collider Experiment at the CERN LHC, 15 December 1995. http://doc.cern.ch//archive/electronic/other/generic/public/cer-000214817.pdf.
- [39] CERN. Status of the LHCb Experiment, 30 September 2005. http://lhcb-doc.web.cern.ch/lhcb-doc/progress/Source/RRB/October_2005/RRB_status.pdf.
- [40] CERN. CERN AC Note 2000/03: General description of the CNGS Project, 2000. http://proj-cngs.web.cern.ch/proj-cngs/GeneralDescriptionVe/GDVe_p03.htm.
- [41] R. Assmann and other. requirements for the LHC collimation system. In Proceedings from EPAC'02, La Vilette, Paris, France, 3-7 June 2002. adapted fromhttp://accelconf.web.cern.ch/AccelConf/e02/PAPERS/TUAGB001.pdf.
- [42] LHC Design Group. LHC Design Report Chapter II EDMS 445830, 1994. https://edms.cern.ch/document/445830/5.
- [43] R. Schmidt and J. Wenninger. Protection against accidental beam losses at the LHC. In Proceedings from PAC'05, Knoxville, TN, USA, 16-20 May 2005. http://epaper.kek.jp/p05/PAPERS/MOPA005.PDF.
- [44] V. Kain et al. Material damage test with 450 gev LHC-type beam. In Proceedings from PAC'05, Knoxville, TN, USA, 16-20 May 2005. http://accelconf.web.cern.ch/AccelConf/p05/PAPERS/RPPE018.PDF.
- [45] B. Goddard. Transfer line damage during high intensity proton beam extraction from the SPS in 2004. In *Proceedings from ICFA-HB 2006*, Tsukuba, Japan, 31 May 2006. http://doi.org/10.1016/j.japan.2006

//indico.kek.jp/MaKaC/contributionDisplay.py?contribId=63\&sessionId=35\&confId=5.

- [46] K. Wittenburg. Very fast beam losses at HERA and what has been done about it. In Proceedings from ICFA-HB 2006, Tsukuba, Japan, 31 May 2006. http: //indico.kek.jp/MaKaC/contributionDisplay.py?contribId=117\&sessionId=35\&confId=5.
- [47] N. Mokhov. Beam-induced damage to the tevatron components and what has been done about it. In *Proceedings from ICFA-HB 2006*, Tsukuba, Japan, 31 May 2006.
 http://doi.org/10.1016/j.com/10016/j.com/10016/j.com/

//indico.kek.jp/MaKaC/contributionDisplay.py?contribId=61\&sessionId=35\&confId=5.

[48] F. Bordry et al. LHC Project Report 521 - machine protection for the LHC: Architecture of the beam and powering interlock systems. Technical report, CERN, Geneva, Switzerland, 2001.

http://doc.cern.ch/archive/electronic/cern/preprints/lhc/lhc-project-report-521.pdf.

- [49] R.Schmidt. Diagnostics and protection of LHC equipment. In Proceedings from Chamonix X, Chamonix, France, 17-21 January 2000. http://doc.cern.ch//archive/electronic/other/sis/sis-2001-067.pdf.
- [50] R. Schmidt. Machine protection software issues for MAC. Technical report, CERN, 25 November 2005. http://lhc-mpwg.web.cern.ch/lhc-mpwg/Meetings/Meetings-2005/No52-25Nov05/ RSchmidt-05-52.pdf.
- [51] R. Schmidt. Diagnostics and protection of LHC equipment. In Proceedings from Chamonix X, Chamonix, France, 17-21 January 2000. CERN. http://sl-div.web.cern.ch/sl-div/publications/chamx2k/PAPERS/6_5.pdf.
- [52] K.-H. Mess. Architecture of the machine protection system. In Proceedings from the Workshop on LHC Performance, Chamonix XI, Chamonix, France, 15-19 January 2001.

http://documents.cern.ch/archive/electronic/other/uploader/CHAMXI/8-5-khm.pdf.

- [53] J. Wenninger and R. Schmidt. Machine protection review analysis. Technical report, CERN, 29 April 2005. http://lhc-mpwg.web.cern.ch/lhc-mpwg/Meetings/Meetings-2005/No44-29Apr05/ JWenninger-05-44.ppt.
- [54] M. Zerlauth et al. From the LHC reference database to the powering interlock system. In proceedings from ICALEPCS'03, Gyeongju, Korea, 13-17 October 2003. http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WP514.PDF.
- [55] M. Zerlauth. Powering and Machine Protection of the Superconducting LHC Accelerator. PhD thesis, Graz University in collaboration with CERN, 2004. http://doc.cern.ch/archive/electronic/cern/preprints/thesis/thesis-2005-050.pdf.
- [56] R.C. Agostini et al. PLC-based Interlock System for Superconducting Magnets. SLAC Internal Publication SLAC-PUB-4976, May 1989. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-4976.pdf.
- [57] B. Denis et al. The new control and interlock system for the SPS main power converters. In Proceedings from ICALEPCS'99, Trieste, Italy, 4-8 October 1999. CERN. http://documents.cern.ch/archive/electronic/other/uploader/ICAL/mc1p28.pdf.
- [58] R. Schmidt et al. Beam loss scenarios and strategies for machine protection at the LHC. In Proceedings from HALO'03, Montauk, Long Island, New York, USA, 19-23 May 2003. http://doc.cern.ch/archive/electronic/cern/preprints/lhc/lhc-project-report-665.pdf.
- [59] R.Schmidt and E. Radermacher. Facing new safety-challenges in a large particle accelerator experiment at cern. In CMS Internal Note, CERN-CMS-CR-1999-004, 1999. http://cmsdoc.cern.ch/documents/99/cr99_004.pdf.
- [60] M.C. Wilson et al. DIAMOND personnel safety system. In proceedings from ICALEPCS'03, Gyeongju, Korea, 13-17 October 2003. http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/WP515.PDF.
- [61] IEC. IEC 61508 functional safety of electrical/electronic/programmable-electronic safety related systems. Technical report, IEC, Geneva, Switzerland, 1998.
- [62] IEC. IEC 61508-1 functional safety of electrical/electronic/programmable-electronic safety related systems, part 1: General requirements. Technical report, IEC, Geneva, Switzerland, 1998. 7.6.2.9 Table 3: high demand or continuous mode operation SIL.
- [63] R. Schmidt. Private communication. other accelerator faults when scaled to LHC, 30 June 2006.
- [64] A. Drees et al. Reliability of beam loss monitor system for the large hadron collider. In Proceedings from BIW'04, Geneva, Switzerland, May 2004. http://www.sns.gov/workshops/20040503_biw04/presentations_for_web/5-4-02_guaglio.ppt.
- [65] A. Drees et al. Review of the LHC collimation system report of the review committee. Technical report, CERN, Geneva, Switzerland, 2004. http://lhc-collimation-project.web.cern.ch/lhc-collimation-project/review-report04/ report.pdf.
- [66] IEC. IEC 61508-5 functional safety of electrical/electronic/programmable-electronic safety related systems, part 5: Examples of methods for determining safety integrity levels. Technical report, IEC, Geneva, Switzerland, 1998. Appendix B, Table B.1: Example of Risk Classification of Accidents.
- [67] F. Balda. Reliability Analysis: Methods to Evaluate and Compare the Safety of Systems, 2001.
 http:

//lhc-mpwg.web.cern.ch/lhc-mpwg/Meetings/Meetings-2001/No9-14Dec01/FBalda-01-9.pdf.

[68] R. Filippini et al. Reliability assessment of the LHC machine protection system. In Proceedings from PAC'05, Knoxville, TN, USA, 16-20 May 2005. http://doc.cern.ch/archive/electronic/cern/preprints/lhc/lhc-project-report-812.pdf.

- [69] D.D. Reid et al. A VME/X-Windows based control system for a clinical neutron machine. In Proceedings from ICALEPCS'99, Trieste, Italy, 4-8 October 1999. http://documents.cern.ch/archive/electronic/other/uploader/ICAL/wc1p50.pdf.
- [70] N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995. direct quote, page 27 ISBN 0-201-11972-2.
- [71] P.E. Ross. The exterminators. In *IEEE Spectrum*, September 2005. http://ieeexplore.ieee.org/iel5/6/32236/01502527.pdf?tp=\&arnumber=1502527.
- [72] N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley, 1995. cited on page 28, ISBN 0-201-11972-2.
- [73] S. Toutoutnchi and A. Lai. FPGA test and coverage. In *ITC International Test Conference*, 2002. http://ieeexplore.ieee.org/iel5/8073/22329/01041811.pdf?isNumber=.
- [74] P. Garrault. Methodologies for Efficient FPGA Integration into PCBs, 2003. http://www.xilinx.com/bvdocs/whitepapers/wp174.pdf.
- S. Horn et al. Implementation of a personnel safety interlock system based on reprogrammable I/O hardware. In *Proceedings from ICALEPCS'99*, Trieste, Italy, 4-8 October 1999. CERN. http://documents.cern.ch/archive/electronic/other/uploader/ICAL/mc1p05.pdf.
- [76] C.R. Scorzato et al. LNLS interlock system. In *Proceedings from EPAC'96*, Sitges, Barcelona, Spain, 10-14 June 1996. http://accelconf.web.cern.ch/accelconf/e96/PAPERS/THPL/THP073L.pdf.
- [77] T. Grevsmühl. The RF-station interlock for the european X-Ray laser. In Proceedings from LINAC'04, Lubeck, Germany, 16-20 August 2004. http://accelconf.web.cern.ch/accelconf/104/PAPERS/THP49.pdf.
- B. Puccio et al. The beam interlock system for the LHC. Technical report, CERN, 17 February 2005. https://edms.cern.ch/file/567256/0.2/LHC-CIB-ES-0001-00-10.pdf.
- [79] H. Smith et al. Radiation and electrical safety systems for PEP. In Proceedings from PAC'81, Washington, DC, USA, 11-13 March 1981.
 http://accelconf.web.cern.ch/accelconf/p81/PDF/PAC1981_2800.pdf.
- [80] NuMI Technical Design Handbook. Chapter 4.8 controls, interlocks and cable installation (WBS 1.1.8). Chapter 4.8, FNAL, March 2004. http://www-numi.fnal.gov/numwork/tdh/TDH_V3_4.8_Controls.pdf.
- [81] C.R. Conkling. RHIC beam permit and quench detection communications system. In Proceedings from PAC'97, Vancouver, BC, Canada, 12-16 May 1997. http://accelconf.web.cern.ch/accelconf/pac97/papers/pdf/6P023.PDF.
- [82] K.-H. Mess et al. Interlock and protection systems for superconducting accelerators: Machine protection system for LHC. In *Proceedings from WAO'01*, Villars-sur-Ollon, Switzerland, 28 January - 2 February 2001. CERN. http://doc.cern.ch//archive/cernrep/2001/2001-002/p140.pdf.
- [83] LHC Crates AB. Order for LHC VME Chassis', 10 July 2006. https://edh.cern.ch/Document/TID/2223342.
- [84] Dallas / Maxim Semiconductor. ESD-Protected, Fault-Protected, 10Mbps, Fail-Safe RS-485/J1708 Transceivers, 19-2666, Rev 0, October 2002. http://pdfserv.maxim-ic.com/en/ds/MAX3440E-MAX3444E.pdf.
- [85] P.Dahlen M. Zerlauth and R. Harrison. PIC / WIC for cern magnet protection. CERN. PLCs use Field-Bus technology which is an extension of RS-485.
- [86] S. Xiong et al. Upgrading beam line interlock and control systems at the BSRF. In Proceedings from ICALEPCS'99, Trieste, Italy, 4-8 October 1999. http://documents.cern.ch/archive/electronic/other/uploader/ICAL/wc1p02.pdf.

- [87] S. Takeda et al. Safety and interlock system for TRISTAN. In Proceedings from PAC'87, Washington, DC, USA, 16-19 March 1987.
 http://accelconf.web.cern.ch/accelconf/p87/PDF/PAC1987_0695.pdf.
- [88] Dallas / Maxim Semiconductor. Application note 1064: Designing a 4-20 mA current loop... Technical report, Dallas / Maxim Semiconductor, 1 May 2002. http://pdfserv.maxim-ic.com/en/an/AN1064.pdf.
- [89] M.R. Wilson. TIA/EIA-422-B overview. Technical report, National Semiconductor, January 2000.

http://www.national.com/an/AN/AN-1031.pdf.

- [90] J.Lewis et al. The evolution of the CERN SPS timing system for the LHC era. In proceedings from ICALEPCS'03, Gyeongju, Korea, 13-17 October 2003. http://accelconf.web.cern.ch/AccelConf/ica03/PAPERS/MP535.PDF.
- [91] Xilinx. XC9500XL high-performance CPLD family data sheet, DS054, v2.2. Technical report, Xilinx, 25 July 2006. http://www.xilinx.com/bvdocs/publications/ds054.pdf.
- [92] Force Optical Broadcast Systems. Optical link loss budget. Technical report, http://www.fiber-optics.info/, 2005. http://www.fiber-optics.info/articles/loss-budget.htm.
- [93] Force Optical Broadcast Systems. Table 1 types of optical connectors. Technical report, http://www.fiber-optics.info/, 2005. 0.5dB chosen as pessimistic from ST-SM value of typical 0.4dB http://www.fiber-optics.info/articles/connector-care.htm%#Table_1.
- [94] Fujikura. Large-capacity & low-loss optical transmission in the 1310nm and 1550nm window. Technical report, http://www.fujikura.co.jp, 2006. guarantees less than 0.35dB per km http://www.fujikura.co.jp/optcable/ei/sm.html.
- [95] G. Snell. An introduction to fibre optics and broadcasting. Technical report, SMPTE Journal, January 1996. http://www.leitch.com/resources/tutorials/january.pdf.
- [96] Agilent Technologies. Inexpensive dc to 32 MBd fiber-optic solutions ... application note 1121. Technical report, Agilent Technologies, 18 July 2005. http://www.avagotech.com/assets/downloadDocument.do?id=177.
- [97] Dallas / Maxim Semiconductor. Physical layer performance: Testing the bit error ratio (BER). Technical report, Dallas / Maxim Semiconductor, October 2004. http://pdfserv.maxim-ic.com/en/an/3419.pdf.
- [98] Xilinx. Device reliability report Q4-05, UG116, v2.9. Technical report, Xilinx, February 2006. http://www.xilinx.com/bvdocs/userguides/ug116.pdf.
- [99] J. le Mauff. *CPLD MTBF due to Atmospheric Neutrons at Sea Level*, January 2004. private communication, no problems expected with 9500 technology.
- [100] P. Nouchi. *CIBM SPS Extraction Equipment*, July 2006. failed device due to foreign object causing pin-pin short.
- [101] M. Sampson and H. Leidecker. Tin Whiskers, 20 April 2005. http://nepp.nasa.gov/whisker/background/index.htm.
- [102] P. Alfke. Metastable Recovery in Virtex-II Pro FPGAs, XAPP094, v0.3. Technical report, Xilinx, November 2002. http://direct.xilinx.com/bvdocs/appnotes/xapp094.pdf.
- [103] K. Chapman. Get Smart About Reset, think Local not Global, TechXclusive. Technical report, Xilinx, March 2001. http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp.
- [104] ANSI / VITA. American National Standard for VME64, 10 April 1995. http://www.vita.com.

- [105] ANSI / VITA. American National Standard for VME64 Extensions, 7 October 1998. http://www.vita.com.
- [106] Xilinx. XC9500 In-System Programmable CPLD Family, DS063, v5.4, 3 April 2006. http://www.xilinx.com/bvdocs/publications/ds063.pdf.
- [107] Q. King A. Dinius et al. Radiation Tests on the LHC Power Converter Control Electronics, Universite Catholique de Louvain-la-Neuve. Technical report, CERN, 12 June 2003. http://documents.cern.ch//archive/electronic/cern/others/ab/ab-note-2003-041.pdf.
- [108] M. Werner. Private Communication, 2005.
- [109] B&B Electronics. Current Loop Application Note, CLAN1495, January 1995. www.bb-elec.com/bb-elec/literature/tech/curentlp.pdf.
- [110] R. Schmitt. Electro-Magnetics Explained, pages 290–293. In [141], 2002. Differential and Common Mode Radiation.
- [111] R. Schmitt. Electro-Magnetics Explained, page 269. In [141], 2002. The 5/5 rule, 5ns or 5MHs.
- [112] R. Schmitt. Electro-Magnetics Explained, page 286. In [141], 2002. The 3W rule, preventing crosstalk.
- [113] R. Schmitt. Electro-Magnetics Explained, page 266. In [141], 2002. Using encased PCBs for signals, striplines.
- [114] R. Schmitt. *Electro-Magnetics Explained*, page 267. In [141], 2002. Using copper pours and stitching in unused sections of PCBs.
- [115] R. Schmitt. Electro-Magnetics Explained, pages 8, 14. In [141], 2002. Definition of what is considered a short electrical length.
- [116] R. Schmitt. *Electro-Magnetics Explained*, page 190. In [141], 2002. Grounding shields.
- [117] R. Schmitt. *Electro-Magnetics Explained*, page 252. In [141], 2002. Frequency spectrum of digital signals, frequency as a function of rise time.
- [118] R. Schmitt. Electro-Magnetics Explained, page 301. In [141], 2002. Using twisted pairs leads to a B-proof system.
- [119] R. Schmitt. *Electro-Magnetics Explained*, page 301. In [141], 2002. Applying grounds at both ends leads to a best response at HF.
- [120] R. Schmitt. Electro-Magnetics Explained, page 302. In [141], 2002. Balanced signalling is E-Proof.
- [121] A. Charoy. Installation and Remedies (originally in French), page 98. In [142], 1985-2004. reference 37155-AC4: Ground Wire proximity leads to best performance.
- [122] A. Charoy. Installation and Remedies (originally in French), page 101. In [142], 1985-2004. reference 48105-DP3: Connect both shields of a cable connecting systems.
- [123] A. Charoy. Installation and Remedies (originally in French), pages 105–106. In [142], 1985-2004. references 37206-AC3 and 35413-AC3: Put unused wires to ground.
- [124] A. Charoy. Installation and Remedies (originally in French), page 20. In [142], 1985-2004. reference 37171-AC3: General equipment ground connections.
- [125] A. Charoy. Installation and Remedies (originally in French), page 71. In [142], 1985-2004. reference 35173-GC4: Abandon separate grounds.
- [126] A. Charoy. Installation and Remedies (originally in French), page 74. In [142], 1985-2004. reference 37424-AC4: Connected grounds guarantee a good system.
- [127] A. Charoy. Installation and Remedies (originally in French), page 91. In [142], 1985-2004. reference 37425-AC3: There should be only one ground (ground = earth = 0V).
- [128] A. Charoy. Installation and Remedies (originally in French), page 106. In [142], 1985-2004. reference 35413-AC3: Forbid the use of pig-tails in shielding.

- [129] W-IE-NE-R Plein & Baus GmbH. Series 6000 lhc vme 64x crate user manual *00647.a0. Technical report, W-IE-NE-R, 2003. Page 8: EN 61 000 - 4 - 4: 1995.
- [130] Tracopower. Enclosed Power Supplies, TXL Series, 25-600 Wat 09/05.1. Technical report, Tracopower, 2005. http://dsb.tracopower.com/upload/dsbuserfile/cpn_tracopower/mdt_7022/0_txl.pdf.
- [131] US DoD. Military Handbook, Reliability Prediction of Electronic Equipment -MIL-HDBK-217F/i/ii. Technical report, US DoD, 2 December 1991. including addendum i and ii.
- [132] US DoD. Military Handbook, Electronic Reliability Design Handbook MIL-HDBK-338B. Technical report, US DoD, 1 October 1998.
- [133] US DoD. Military Standard, Procedures for Performing a Failure Modes Effects and Criticality Analysis - MIL-STD-1629A. Technical report, US DoD, 24 November 1980.
- [134] US DoD. Faiure Mode/Mechanism Distributions FMD-97. Technical report, Reliability Analysis Centre, 1 October 1998.
- [135] J. Wenninger et al. Results of Fast Magnet Current Change Tests. Technical report, CERN, 16 August 2006. unpublished.
- [136] R. Schmitt. Electro-Magnetics Explained, page 8. In [141], 2002. Definition of Electrical Length.
- [137] DRAKA Multimedia Cables. Symmetrical FRNC cables for data transmission and process control according to CERN specification. Technical report, DRAKA Multimedia Cables, 24 August 2004. NE_P_cern_spec_165_e.doc.
- [138] A. Charoy. Installation and Remedies (originally in French), page 75. In [142], 1985-2004. reference 37218-AC6: Use Fibre Optics to ensure a galvanic isolation.
- [139] L. Davis. Logic Family Slew Rate. Online. Assume 1V/ns from http://www.interfacebus.com/IC_Output_Slew_Rate.html.
- [140] Analog Devices. AD8611/AD8612 Ultrafast 4ns Single Supply Comparators Revision 0. Technical report, Analog Devices, 2000. http://www.analog.com/UploadedFiles/Data_Sheets/703465986AD8611_2_0.pdf.
- [141] R. Schmitt. *Electro-Magnetics Explained*. Newnes, 2002.
- [142] A. Charoy. Installation and Remedies (originally in French). AEMC, 1985-2004.
- [143] H. Kopka and P.W. Daly. Guide to $\mathbb{A}T_{EX}$. Addison-Wesley, 4th edition edition, 2004.
- [144] C. Zamantzas. Real-Time Data Analysis and Decision System for Particle Flux Detection in the LHC Accelerator at CERN. PhD thesis, Brunel University in collaboration with CERN, 2006.

http://czam.web.cern.ch/czam/Thesis_doc/BLMTC_V8_060117_BRUNEL.pdf.

- [145] T. Oetlker et al. The not so short introduction to LATEX 2ε 4.20. http://www.tug.org/tex-archive/info/lshort/english/lshort.pdf, 31 May 2006.
- [146] University of Brunel. Brunel University Research Student Guide, 2006.

Glossary of Terms, Acronyms and Abbreviations

μP	Microprocessor
7400 Series	The first widespread family of Integrated Circuit families
AGAN	As Good As New - This implies that the failure rate of a system is restored to its original value following a system test
ALARP	As Low As Reasonable Possible - The chances of a system unsafe failure should be ALARP, IEC 61508 defines a statistic value for these failures
ALICE	A Large Ion Collider Experiment
ATE	Automated Test Equipment
ATLAS	A Large Toriodal LHC Apparatus
BA	An SPS surface building (1-6)
BaBar	A multi-layer particle detector at SLAC
Beam Abort	A controlled removal of circulating beam in the SPS or LHC accelerators
Beam Permi	t Loops Communications channels connecting the Beam Interlock Systems to the relevant Beam Transfer or beam dumping system
BEAM_PER	MIT Signals given to the Beam Transfer and beam dumping systems that evaluate to TRUE when the required User Systems connected to the Beam Interlock System give permission for beam operation
BEAM_PER	MIT_INFO A signal transmitted from the Beam Interlock System to User Systems that evaluates to TRUE when the Beam Interlock System gives permission for beam operation
Belle	A particle detector part of the KEKB accelerator complex
BER	Bit Error Rate
BERT	Bit Error Rate Tester
BESSY	Berliner Elektronenspeicherring-Gesellschaft für Synchrotron Strahlung - Berlin electron storage ring company for synchrotron radiation
BGA	Ball Grid Array
BIC	Beam Interlock Controller
BIS	Beam Interlock System
BLMS	Beam Loss Monitor System
BSRF	Beijing Synchrotron Radiation Facility
BT System	Beam Transfer System - The control system and kicker magnets that are responsible for the deflection of beam from one part of the accelerator complex to another
CCC	CERN Control Centre

260	Glossary of Terms, Acronyms and Abbreviations
CERN	European Council for Nuclear Research - commonly referred to as Euporean Centre for Nuclear Research, or European Centre for Particle Physics
CIBD	Controls Interlocks Beam DC - A DC supply for the User Interface electronics
CIBE	Controls Interlocks Beam Extenders - The extension boards that link the VME bus to the patch-panels
CIBF	Controls Interlocks Beam Fibre - An extension kit that can be used to increase the length between User Interface and Beam Interlock Controller above the 1200m maximum of RS485
CIBG	(or CIBMG) Controls Interlocks Beam Generator - The generator of the permit loop frequency
CIBM	Controls Interlocks Beam Manager - The Manager board
CIBM_ID	An identification bit that informs the Manager board whether it is installed in the left or the right hand side of a chassis
CIBMD	Controls Interlocks Beam Manager Display - The display board attached to the Manager
CIBO	Controls Interlocks Beam Optical - The optical transceiver used to convert light signals to electronic ones and vice-versa
CIBO.Pxx	A specific prototype optical transceiver
CIBP	Controls Interlocks Beam Patch - The patch-panel used principally to connect the VME to the User Interfaces
CIBP_ID	An identification bit that informs the Manager board whether it is connected to an SPS or LHC type chassis
CIBT	Controls Interlocks Beam Test & Monitor - The Test & Monitor board
CIBTD	Controls Interlocks Beam Test Display - The display board attached to the Test $\&$ Monitor
CIBU	Controls Interlocks Beam User - The User Interface
CIBU_ID	A unique ten-bit identification number assigned to each User Interface
CIBUD	Controls Interlocks Beam User Double - A double-interface to a User System
CIBUS	Controls Interlocks Beam User Single - A single-interface to a User System
CIBV	(or CIBMV) Controls Interlocks Beam Verifier - A Manager board configured to observe the beam permit loops and derive BEAM_PERMIT
CIBX	(or CIBMX) Controls Interlocks Beam eXtraction - A Manager board configured to control the extraction regions, replacing the Manager board in the Master Beam Interlock Controller
CLIC	Compact Linear Collider
Closed-Loo	p A beam permit loop that reads the output of the final stage and uses it to control the signal generation
CMS	Compact Muon Solenoid
CNGS	CERN Neutrinos to Gran Sasso
CP	Charge Parity
CPLD	Complex Programmable Logic Device
CTG	Controls Timing Generator - The source of timing information for the CERN accelerator complex
CTRV	Controls Timing Receiver VME - A VME based timing receiver board that synchronises to the CERN timing system
Current Lo	ops A communications interface that uses current instead of voltage for signalling

dB	deciBels
dBm	deciBel milliWatts - An absolute value of power referenced to one milliWatt
DC	Direct Current - A synonym for constant
DESY	Deutsches Elektronen Synchrotron - German Electron Synchrotron
DET	Detector - A device implemented in the Beam Transfer or beam dumping system that determines whether BEAM_PERMIT is TRUE or FALSE
Double Inte	erface A User Interface (CIBUD) that allows a pair of interlock connection to be made between User System and Beam Interlock System(s)
Electrical L	ength The fraction of a signal's wavelength that will be present at one time in a given length of material
ELED	Edge Light Emmitting Diode
EMC	Electro-Magnetic Compatibility
eV	electron-Volt
FAST_DET	ECT Circuits detecting the presence or abscence of a frequency in a short amount of time having a low accuracy
FermiLab	Fermi National Accelerator Laboratory
FESA	Front End Software Architecture
FIT	Failures in Time - Failures per billion operating hours
FMCM	Fast Magnet Current-Change Monitor
FMECA	Failure Modes, Effects and Criticality Analysis
FPGA	Field Programmable Gate Array
FSM	Finite State Machine
${\rm GeV}$	Giga electron-Volt = 10^9 eV
GMT	General Machine Timing
GUT	Grand Unification Theory
HEP	High Energy Physics
HERA	Hadron-Elektron-Ringanlage - Hadron-Electron Ring Accelerator
History But	ffer A record of events maintained in each Manager board that is synchronised to the CERN General Machine Timing to within one microsecond
HQ208	A 208 pin flat pack Integrated Circuit
IC	Integrated Circuit
IEC 61000	IEC standard related to Electro-Magnetic Compatibility
IEC 61508	Functional safety of electrical/electronic/programmable electronic safety related systems
ILC	International Linear Collider
Independan	t User System Any User System that interlocks LHC beam-1 and beam-2 separately, having a different connection to the Beam Interlock System for beam-1 and beam-2
IP	Internet Protocol
IR	Insetion Region (1-8)
ISOLDE	On Line Isotope Mass Separator - A facility at CERN generating radioactive ion beams for different experiments
ISR	Intersecting Storage Rings

262	Glossary of Terms, Acronyms and Abbreviations
JTAG	Joint Test Action Group - The name used for the IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-Scan Architecture
KEK	Kō Enerugī Kasokuki Kenkyū Kikō - A high energy accelerator research organisation in Tsukuba, Ibaraki Prefecture, Japan
KEKB	An electron-positron collider at KEK
LASER	Light Amplification by Stimulated Emmission of Radiation
LBDS	LHC Beam Dumping System
LD	LASER Diode
LEP	Large Electron Positron
LHC	Large Hadron Collider
LHC-b	LHC beauty - an experiment of the LHC
LINAC	Linear Accelerator
LNLS	Laboratório Nacional de Luz Síncrotron - Brazilian National Laboratory of Synchrotron Light
LOCAL_BE	EAM_PERMIT A signal given by a Beam Interlock Controller that evaluates to TRUE when all locally connected User Systems give permission for beam operation
M Theory	A potential Theory of Everything showing that popular string theories could be viewed as sub-sets of a single M Theory
Manchester	Encoding A form of communications where each but that is encoded is represented by at least one voltage level transition, Manchester encoding is used throughout the Beam Interlock System for serial data connections
MASKING	Allowing a certain predefined section of USER_PERMIT signals to be ignored, or masked, when the beam energy and intensity in the machine is considered as below damage thresholds as indicated by the Safe Beam Flag
Matrix	The key element of the Manager board, responsible for deriving LOCAL_BEAM_PERMIT from the connected USER_PERMIT signals
MAX3440E	A 'true fail-safe' slew-rate limited fault-protected RS485 transceiver from MAXIM
MBIC	Master Beam Interlock Controller
MDB	Measurement Database
MeV	Mega electron-Volt = 10^6 eV
MONITOR	A serial communications channel that contains monitor data
MPS	Machine Protection System
MTBF	Mean Time Between Failures
NE12	A CERN standard cable used for control interconnects, with full copper shelld, having 12 wires in six twisted pairs each with an impedance of 90Ω
NRZ	Non Return-to-Zero
NuMI	Neutrinos at the Main Injector - A beamline facility at Fermilab which produces neutrinos
OPB	Optical Power Budget
Open-Loop	A beam permit loop that does not have feedback from the final stage
PCB	Printed Circuit Board
PEP	Positron Electron Project - An accelerator at SLAC recently rebuilt as PEP II
PEP II	Positron Electron Project II - An accelerator at SLAC
PIC	Power Interlock Controllers

Glossary of	Terms, Acronyms and Abbreviations	263
PIN Diode	P-type intrinstic N-type diode	
PLC	Programmable Logic Controller	
Post Morter	m A process that is carried out following a Beam Abort, this involves reading data from protection systems to ensure that the system functions were all carried out as that the system safety was not compromised	nd
PPC	Power PC	
PRBS	Pseudo Random Bit Sequence	
\mathbf{PS}	Proton Synchrotron	
PSB	Proton Synchrotron Booster	
QPS	Quench Protection System	
R&D	Research and Development	
RF	Radio Frequency	
Ring Archit	secture One of the two heirarchies that can be implemented by the Beam Interlock System. Ring architectures are used to protect the circular SPS and LHC accelerat	tors
RS485	$\mathrm{TIA}/\mathrm{EIA}$ 485 - A multi-drop differential signalling standard	
RZ	Return-to-Zero	
SBDS	SPS Beam Dumping System	
SBF	Safe Beam Flag	
Simultaneou	us User System Any User System that interlocks both LHC beams at the same time without differentiating between ring-1 for beam-1 and ring-2 for beam-2	Э
Single Inter	face A User Interface (CIBUS) that allows a single interlock connection to be made between User System and Beam Interlock System	;
SIS	Software Interlock System	
SLAC	Stanford Linear Accelerator Center	
SLC	Stanford Linear Collider - An electron positron collider at SLAC	
SLOW_DET	FECT Circuits detecting the value of a frequency to a relatively high accuracy takin relatively long time	ıg a
SMP	Safe Machine Parameters project	
SMPR	Safe Machine Parameters Receiver	
SNR	Signal to Noise Ratio	
SNS	Spallation Neutron Source - An accelerator based neutron source built in Tennesse USA	æ,

- Software Interlock An interlock signal that is present in ever Manager board, if this enabled it allows a command written to the Manager via the VME to be considered as a fifteenth User System of that Manager board
- SOFTWARE_PERMIT A signal given to the matrices by the monitor FPGA of the Manager board, it evaluates to TRUE when the monitor FPGA permits beam operation
- SPS Super Proton-Synchrotron
- SSC Start Super Cycle

Standard Model A theory describing fundamental forces and interactions

- SUSY Super Symmetry
- TEST A serial communications channel that contains test data
- Tera electron-Volt = 10^{12} eV TeV
- Tevatron A circular proton-antiproton Accelerator at Fermilab, Illinois, USA

- TI2 Transfer line from the end of TT60 to the LHC beam-1 injection in IR2
- TI8 Transfer line from the end of TT40 to the LHC beam-2 injection in IR8
- TIA Trans-Impedance Amplifier
- TMR Triple Mode Redundancy
- TOE Theory of Everything
- TPU Tertiary Permit Unit A third set of detection circuits for the LHC Beam Dumping System
- Tree Architecture One of the two heirarchies that can be implemented by the Beam Interlock System. Tree architectures are used to protect transfer lines, injection and extraction regions of the CERN accelerator complex
- TRISTAN An electron-positron colliding beam facility at KEK, Japan
- True 'Fail-Safe' This indicates that a circuit will fail to a known level when its operation is outside of prefined tolerances, it differs from 'fail-safe' in that no biasing network is required to fix a predefined level
- TT40 Transfer line from SPS point 4 that leads to TT41 and TI8
- TT41 Transfer line from the end of TT40 to the CNGS target
- TT60 Transfer line from SPS point 6 that leads to TI2
- TVS Transient Voltage Suppressor diode
- UPS Uninterruptible Power Supply
- User Interface A device that is given to each User System providing an interface between the User System electronics and the Beam Interlock System

User System A system which is connected as an input to a Beam Interlock System

- USER_PERMIT Signals given by User System that evaluate to TRUE when operation with beam is allowed
- VHDL VHSIC Hardware Description Language
- VHSIC Very High Speed Integrated Circuit
- VLHC Very Large Hadron Collider A hypothetical future hadron collider with performance significantly beyond the Large Hadron Collider
- VME FAN Ventilation tray that is fitted to each VME chassis
- VME PSU Power supply for the VME chassis

VMEbus (commonly VME) VERSA module Eurocard or Versa Module Europa - A computer bus standardized by the IEC as ANSI/IEEE 1014-1987

- WIC Warm Magnet Interlock Controllers
- WIMP Weakly Interacting Massive Particle

www World Wide Web

Index

Accelerator Complex, 1, 12, 20, 44 CNGS, 8, 13 LHC, 8 PS, 8 SPS, 8, 13 TI2, 13 TI8, 13 BEAM_PERMIT, 48, 69 Activation Time, 45 Feedback, 43 BEAM_PERMIT_INFO, 38-39, 45, 46, 69, 83, 89.94 LHC, 64 Beam Abort, 27 Beam Abort Gap, 32 Beam Interlock Controller, 35, 64 Chassis, 36, 65 Power PC, 36, 65 Beam Interlock System, 1, 17, 22 Architecture, 33 **CNGS**, 45 Dependability Specification, 28 Failure Modes, 29 Locations, 15 Response Times, 32 Beam Losses, 24, 27 Fast, 24 Slow, 24 Ultra-Fast, 24 Very Fast, 24 Beam Parameters, 18 Beam Permit Loops, 34, 48 Arming, 61 Bit Errors, 57–59 Closed-Loop, 34, 48 Detector, 34, 80, 83 ELED, 53 FAST Detector, 60 Frequency Detection, 59 Generator, 34, 61, 71 Jitter, 55-57 Open-Loop, 34, 50 Permit Frequency, 35, 51 PIN Diode, 53 Power Losses, 52 Power Margin, 56 Signal to Noise Ratio, 58 SLOW Detector, 61 Third Detector, 63 Transceiver, 53–54 Beam Transfer Systems, 48

BIC, see Beam Interlock Controller BIS, see Beam Interlock System CERN, 8-15 Charter, 8 Colliders LEP.8 Worldwide, 7 Commissioning, 1, 31, 113–117 **Critical Failures** HERA, 20 SPS, 19 Tevatron, 20 Current Loops, 39, 46, 101 Dependability, 26, 41, 109-112 Blind Failure, 109 Criticality Worksheet, 110 Failure Modes, 26, 29 Failures in Time, 26 False Dump, 109 **FMECA**, 109 Maintainability, 26 Maintenance, 109 Mean Time Between Failures, 26 Mission, 27 No Effect Failures, 109 Redundancy, 39, 109 Reliability, 26 Safety, 26 Electro-Magnetic Compatibility, 37, 46–47, 101 - 1083W Rule, 104 5/5 Rule, 103 Copper Pours, 104 Electrical Length, 104 Grounding, 105 IEC61000 Testing, 106 Impedance, 103 Laver Stack-up, 103 Pig-Tails, 105 Shielding, 105 EMC, see Electro-Magnetic Compatibility Extension Boards, 65 Extraction Permit, 50 Fail Safe, 74 FESA, see Front End Software Architecture Fibre Extender, 122

Fibre Optics, 101 Front End Software Architecture, 118, 134General Machine Timing, 36, 38 Receiver, 65 GMT, see General Machine Timing Independent Interlocking, see User Systems Injection Permit, 50 Injector Chain, see Accelerator Complex **JTAG**, 75 Large Hadron Collider, 1, 9 Experiments ALICE, 10 ATLAS, 10 CMS, 10 CNGS, 8 LHCb, 10 Investment, 15 LAT_FX x, 269 LHC, see Large Hadron Collider LOCAL_BEAM_PERMIT, 35, 36, 48, 64, 68, 76 Latching, 74 Machine Protection System, 1, 20 Architecture, 21 Beam Absorbers, 23 Beam Loss Monitor System, 22 Collimation, 23 Core Safety Structure, 28 Fast Magnet Current-Change Monitors, 23Inherent Redundancy, 24 LHC Beam Dumping System, 1, 21 Powering Interlocks, 17, 23 Quench Protection System, 17 Magnet Quench, 1 Response Times, 25, 32 Safe Machine Parameters, 22 Magnetic Cycle, 13, 18 Manager Board, 36-37, 65, 71, 72 CONFIGURATION, 80 Display, 86 History Buffer, 36 Matrix, 37, 68, 71, 75-80 Arming, 74 **CPLD**, 75 Glitch Filters, 37 Latching, 37, 74 VHDL, 37, 75 Monitor, 68, 71 VERSION, 80 VME Address, 83 Manchester Encoding, 47, 88, 113 MASK, 73, 78, 84 Master Beam Interlock Controller, 45, 50, 71, 129, 136

MBIC, see Master Beam Interlock Controller Mean Time Between Failures, 75 Microprocessor, 28 MIL-HDBK-217F, 110 Modern Physics Charge-Parity Violation, 4 Dark Matter, 5, 6 Fundamental Interactions, 3 Grand Unified Theory, 6 Higgs Boson, 4, 11 M-Theory, 6 Standard Model, 3 String Theory, 5 Sub-Atomic Structure, 3 Superstring Theory, 5 Super Symmetry, 5 Theory of Everything, 6 Weakly Interacting Massive Particles, 5, 6 MONITOR, 70, 84, 91, 93, 95, 113 MPS, see Machine Protection System NE12 Cable, 46, 65 Normal-Conducting Magnets, 9 **OPB**, see Optical Power Budget **Optical Power Budget**, 52 Patch Panel, 65 LHC Type, 66 SPS Type, 68 PLC, see Programmable Logic Controllers Post Mortem, 41, 63, 120 Programmable Logic Controllers in protection systems, 23 safety series, 28 Programmable Logic Devices, 28 Complex Programmable Logic Devices, 28, 37, 71 Field Programmable Gate Array, 28, 71Research and Development Timescale, 32 Ring Architecture, 31, 34, 44, 48 RS485, 37-38, 46, 93, 101, 113, 122 True Fail Safe, 37 Safe Machine Parameters, 22, 37 Beam Energy, 22 Beam Intensity, 22 Beam Presence Flag, 22 Machine Mode, 22 Receiver, 65 Safe Beam Flag, 22, 37, 65, 73 Safety Integrity Levels, 26 Catastrophic Consequences, 26 Critical Consequences, 26 Marginal Consequences, 26

Negligible Consequences, 27 Related Probabilities, 26 Risk Classification, 27 SBF, see Safe Machine Parameters SIL, see Safety Integrity Levels Simultaneous Interlocking, see User Systems SIS, see Software Interlocks SMP, see Safe Machine Parameters SOFTWARE_PERMIT, 37, 84, 134 Disabling, 72 Software Interlocks, 37 Stored Energy, 17 Beam Energy, 1, 18 Damage Experiment, 19 Damage Levels, 19 Quench Levels, 19 Powering Circuit Energy, 18 Superconducting Magnets, 9 Supervision Software, 41, 118 Bar Chart, 120 Bar Graph, 139 **Operator Screens**, 118 Requirements, 41 Specialist Screens, 122 Working Prototype, 133, 139 Tertiary Permit Unit, 63, 72 TEST, 70, 84, 91, 93, 95 Test & Monitor, 36, 84, 87 Display, 91 Display Driver, 87, 91 Serial Communications, 87, 90 Test Mode, 113, 115, 125 Tin Whiskers, 75 Transient Voltage Suppressors, 37 Tree Architecture, 31, 34, 44, 50 USER_PERMIT, 36, 39, 46, 64, 68, 72, 93 Disabling, 72 Masking, 73, 78 User Interface, 37, 39, 65, 93 **CPLD**, 93 DC Power Supply, 40 Double, 40, 93, 98 Identification, 99 Link Extension, 99 Monitor Data, 96 Power Supply, 98, 108 Single, 40, 93, 98 Test Data, 95 User Systems, 37 Independent, 33, 40 Simultaneous, 33, 40